
Fractal market hypothesis and two power-laws

Aleksander Weron a,*, Rafaø Weron b,1

a Hugo Steinhaus Center for Stochastic Methods, Technical University of Wrocøaw, 50-370 Wrocøaw, Poland
b Institute of Mathematics, Technical University of Wrocøaw, 50-370 Wrocøaw, Poland

Abstract

A fractal approach is used to analyze ®nancial time series by applying di�erent degrees of time resolutions. This leads to the

heterogenous market hypothesis (HMH), where di�erent market participants analyze past events and news with di�erent time hori-

zons. A new general model for asset returns is studied in the framework of the fractal market hypothesis (FMH). It concerns capital

market systems in which the conditionally exponential dependence (CED) property can be attached to each investor on the mar-

ket. Ó 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

For some years now, the set of available data from ®nancial markets has grown rapidly. In the 1960s and
1970s, most of the empirical studies were based on yearly, quarterly, or monthly data. During the 1980s, the
study of weekly and daily data led to discovery of new properties such as autoregressive hetereroskedasticity.
The studies of intraday data in the 1990s revealed a new wealth of complexity (see [2,13,14]).

It is well known starting from [3,8], see also [1,11,14] that market returns are not normally distributed,
but this information has been downplayed or rationalized away over the years to maintain the crucial
assumption of the traditional capital market theory (CMT). A variety of alternatives to the normal law can
be found in literature and it is undeniable that as long as the distribution that is implied by these models is
more leptokurtic than the Gaussian law, it will provide a better ®t, see Fig. 1.

Mandelbrot introduced fractal model to describe a certain class of objects exhibiting a complex be-
havior. He ®rst applied it to ®nancial data in [8]. The fractal view starts from a basic principle: analyzing an
object on di�erent scales, with di�erent degrees of resolution, and comparing and interrelating the results.
For ®nancial time series, this means using di�erent time yardsticks from hourly through daily to monthly
and yearly, within the same study. This is far from the conventional time series analysis, which focusses on
regularly spaced observations with ®xed time intervals.

In a search for satisfactory descriptive models of economic data, large numbers of distributions have
been tried and many new distributions have been discovered. Entire classes of distributional types have
been constructed and these often serve to direct the search process for a suitable choice, see [11] and ref-
erences therein where a variety of alternative distributions for asset returns is analyzed. In any particular
case it is always possible to ®nd a distribution that ®ts the data well, provided one works within a suitably
broad and ¯exible class of candidates, see Fig. 1. Some alternatives to the normal distribution, like the
stable Pareto distribution [5,10] were often rejected even though they ®t the data without modi®cation.
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Why? ± Standard statistical analysis cannot be applied using those distributions. Besides that, it is one thing
to ®t given data well through the choice of a ``good distribution'', but it is an entirely di�erent matter to
explain return's data through the use of a statistical model that predicts the data's main characteristics. To
deal with such a problem, this paper employs a new conditionally exponential dependence (CED) model,
introduced recently in [17] to describe global distributional structure of asset returns.

The e�cient market hypothesis (EMH) [4] including arbitrage pricing theory (APT) of Ross [18] and
capital asset pricing model (CAPM) originally developed by Sharp [19], Linter [7] and Mossin [12], was very
successful in making the mathematical environment easier, but unfortunately is not justi®ed by the real
data. Instead, there is a need to seek for a market hypothesis that ®ts the observed data better and takes
into account why markets exist to begin with. In the EMH place, fractal market hypothesis (FMH) has
been recently proposed by Peters [15,16], and heterogeneous market hypothesis (HMH) for foreign ex-
change markets by M�uller et al. [13]. Based on current developments of chaos theory and using the fractal
objects whose disparate parts are self-similar, these hypotheses provide a new framework for a more precise
modeling of turbulence, discontinuity, and non-periodicity that truly characterize today's ®nancial markets.
They seem to be robust tools for understanding the con¯icting market randomness and determinism we
experience every trading and investing day.

The goal of this paper is to demonstrate how the basic ideas of the FMH lead to a rigorous mathematical
model, which can be used to explain some empirical facts. For this purpose, we adopt here a recent idea of
[6,20] to model asymptotic behavior of general complex systems with local conditionally exponential decay
property. Our model leads uniquely to two power-laws describing asset returns. It also explains how the
two contrary states: local randomness and global determinism coexist leading, in a natural way, to the
universally observed non-Gaussian distributions of returns. This approach makes a signi®cant step toward
explaining features of the statistical mechanism of data generation and, moreover, it predicts the data's
main characteristics. In this framework the class of possible distributions, well representing the observa-
tions is uniquely determined by the general return equation.

2. Fractal market hypothesis

The FMH emphasizes the impact of information and investment horizons on the behavior of investors.
In traditional ®nance theory, information is treated as a generic item. The investor is also generic. Basically,

Fig. 1. Histogram of the empirical density (kernel estimator) of the Dow Jones Industrial Average (DJIA) daily returns and four

estimating densities: stable, Normal Inverse Gaussian (NIG), hyperbolic and Gaussian (left panel). Left tails of the empirical distri-

bution function and the four countinuous distributions (right panel).
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an investor is any one who wants to buy, sell, or hold a security because of the available information. The
investor is also considered rational price-taker, i.e. someone who always wants to maximize return and
knows how to value current information. This generic approach, where information and investors are
general cases, implies that all types of information impact all investors equally. That is where it fails.

The following ®ve basic assumptions were proposed by Peters [16] for his FMH:
· FMH 1. The market is made up of many individuals with a large number of di�erent investment hori-

zons.
· FMH 2. Information has a di�erent impact on di�erent investment horizons.
· FMH 3. The stability of the market is largely a matter of liquidity (balancing of supply and demand).

Liquidity is available when the market is composed of many investors with many di�erent investment
horizons.

· FMH 4. Prices re¯ect a combination of short-term technical trading and long-term fundamental valua-
tion.

· FMH 5. If a security has no tie to the economic cycle, then there will be no long-term trend. Trading,
liquidity, and short-term information will dominate.
The purpose of the FMH is to give a model of investor behavior and market price movements that ®ts

our observations. When markets are considered stable, the EMH and CAPM seem to work ®ne. However,
during panics and stampedes, those models break down, like singularities in physics. This is not unexpected,
because the EMH, APT, and the CAPM are equilibrium models. They cannot handle the transition to
turbulence. Unlike the EMH, the FMH says that information is valued accordingly to the investment
horizon of the investor. The key is that under the FMH the market is stable when it has no characteristic
timescale or investment horizon. Instability occurs when the market loses its fractal structure and assumes a
fairly uniform investment horizon, see [16].

3. Heterogeneous market hypothesis

A statistical study of ®nancial time series from the fractal point of view is based on the analysis of time
intervals Dt of di�erent sizes. An elementary example is the scaling law reported in [14], which relates the
mean of the absolute logarithmic price change in foreign exchange markets

jDxj � c�Dt�D;

where the bar over jDxj denotes the mean over a long sample, c is an empirical constant and D is the
empirical drift exponent. A di�erent empirical scaling behavior in the dynamics of Standard & Poor's 500
index has been presented by Mantegna and Stanley [9]. In spite of its elementary nature, a scaling law study
is immediately able to reject the Gaussian hypothesis and reveal an important property of ®nancial time
series. For the Gaussian case the above formula is true with a drift exponent of 0:5, while the empirical
values of drift exponents D for USD-DEM exchange rate are clustered around a signi®cantly higher value
of 0:59. For DEM-NLG rate a drift exponent of only 0:24 was measured, see [13]. These and other recently
found properties of empirical time series lead these authors to the HMH as opposed to the assumption of a
homogeneous market where all participants interpret news and react to news in the same way. The HMH is
characterized by the following interpretations of the empirical ®ndings:
· HMH 1. Di�erent actors in the heterogeneous market have di�erent time horizons and dealing frequen-

cies. The market is heterogeneous with a fractal structure of the participants' time horizons as it consists
of short-term, medium-term and long-term components.

· HMH 2. Di�erent actors are likely to settle for di�erent prices and decide to execute their transactions in
di�erent market situations. In other words, they create volatility.

· HMH 3. The market is also heterogeneous in the geographic location of the participants.
The market participants of the HMH also di�er in the other aspects beyond the time horizons and the

geographic locations: they can have di�erent degrees of risk aversion, institutional constraints, and
transaction costs. Further empirical evidence in favor of the HMH is given in [13].
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4. CED model and two power-laws

Below, we propose a new statistical mechanism that explains the observed market local randomness and
global determinism. We hope that this approach clari®es also the ideas of the FMH or the HMH and
provides a rigorous mathematical framework for further analysis of ®nancial complex processes. The
distributional form of returns on ®nancial assets has important implications for theoretical and empirical
analyses in economics and ®nance. For example, asset, portfolio and option pricing theories are typically
based on distributional assumptions. In empirical tests, statistical inference concerning the e�cient market
hypothesis, the excess volatility question or option pricing models may be sensitive to the distributional
assumptions for the returns of the underlying assets.

The market is made up of participants, from tick traders to long-term investors. Each has a di�erent
investment horizon that can be ordered in time. When all investors with di�erent horizons are trading
simultaneously the market is stable. The stability of the market relies, however, not only on a random
diversi®cation of the investment horizons of the participants but also on the fact that the di�erent horizons
value the importance of the information ¯ow di�erently. Hence, both the information ¯ow and the in-
vestment horizons should have their own contribution to the observed global market features. In general,
the locally random markets have a global statistical structure that is non-random.

Following [17] we will assume that the model is a discrete time economy with a ®nite number of trading
dates from time 0 to time T and its uncertainty has a global impact on the market index daily returns on the
interval �0; T �. (As a proxy of the market index one typically uses a stock index, for example S&P or
NASDAQ.) In the family of all world investors let us identify those N who are acting on a given market
described by a chosen index. Call them I1N ; I2N ; . . . ; INN . Let RiN be the positive (or the absolute value of
negative) part of the ith investor's return. The economy is populated by a ®nite, but a large number N of
investors on the market. Each ith investor is related to a cluster of agents acting simultaneously on common
complement markets. The in¯uence of this cluster of agents is of the type of short-range (inter-cluster)
interactions and is re¯ected by a random risk-aversion factor Ai. The long-range type of interactions are
imposed on the ith investor by the inter-cluster relationship manifested by the random risk factors Bi

j for all
j 6� i. They re¯ect how fast the information ¯ows to the ith investor.

CED 1. For the ith investor the following CED property holds:

/iN �r ja; b� � P RiN

ÿ
P r jAi � a; bÿ1

N max�Bi
1; . . . ;Bi

iÿ1;B
i
i�1; . . . ;Bi

N � � b
� � exp�ÿ�a min�r; b��c�; �1�

where r; a; b are non-negative constants, bN is a suitable, positive normalizing constant and c P 1. The
range of the exponent c is justi®ed by the reversion tendency of the market.
The dependence in the CED model measured by the conditional return excess decays similarly as in

EGARCH models in an exponential way, see Eq. (1) , but re¯ects both short as well as long-range e�ects.
This new probabilistic idea concerns systems in which the behavior of each individual entity strongly de-
pends on its short- and long-range random interactions.

CED 2. Investors have di�erent investment horizons (``short-range interaction'') a�ected by di�erent in-
formation sets (``long-range interaction''). The investment horizon of the investor is re¯ected by the ran-
dom variable Ai, while fBi

j; j � 1; 2; . . . ;N ; j 6� ig re¯ect the information ¯ow to this investor.
The probability that the return RiN will be not less than r is conditioned by the value a taken by the

random variable Ai and by the value b taken by the maximum of the set of random variables
fBi

j; j � 1; 2; . . . ; N ; j 6� ig. Therefore Eq. (1) can be rewritten as follows:

/iN �r ja; b� �
1 for r � 0;
exp�ÿ�ar�c� for r < b;
exp�ÿ�ab�c� for r P b;

8<: �2�

i.e. the conditional return excess /iN �r ja; b� decays exponentially with a decay rate a and exponent c as r
tends to the value b. Then it takes a constant value � 1. The basic statistical assumption is that

CED 3. The random variables A1;A2; . . . and Bi
1;B

i
2; . . . form independent and convergent (with respect to

addition and maximum, respectively [6]) sequences of non-negative, independent, identically distributed
(iid) random variables. The variables R1N ; . . . ;RNN are also non-negative, iid for each N.

292 A. Weron, R. Weron / Chaos, Solitons and Fractals 11 (2000) 289±296



Let us stress, however, that the dependence on external conditions is expressed by the above relationship,
Eq. (1), of each RiN with Ai and max�Bi

1; . . . ;Bi
iÿ1;B

i
i�1; . . . ;Bi

N �. Assumption 3 can be partially justi®ed by
the following argument. Institutional trading is a major factor in the determination of security prices. If
professional investment managers have similar beliefs, then the iid distributions assumption may hold as a
®rst approximation. Professional managers are likely to have similar beliefs because they have access to
similar information sources. This uniformity of information over time would tend to generate similar be-
liefs. It is important to point out that the assumption of iid of the returns RiN is not as restrictive as it may
appear. For example, Mitttnik and Rachev [11] showed that the assumption of iid random asset-price
changes can be used to describe large classes of well-known ®nancial models.

The cut-o� in the return excess Eq. (2) given by the value r � b determines the probability (indeed very
small) that the return of ith investor can reach any value greater than b. The value of this probability is the
smallest one, since a cut-o� by any other value b1 < b yields a greater probability than exp�ÿ�ab�c�. This is a
manifestation of the unlimited returns. Thus the market contains some arbitrage opportunities. Note that
Eq. (1) precisely de®nes the meaning of random variables related to it. It does not hold for sets of any
arbitrarily chosen variables. If RiN has to denote a return, then Ai � a has the sense of an individual risk
aversion factor and

bÿ1
N max�Bi

1; . . . ;Bi
iÿ1;B

i
i�1; . . . ;Bi

N � � b;

the sense of a submarket maximal risk factor given by

/iN �r jb� �
Z 1

0

/iN�r ja; b�dFA�a�;

where FA is the common distribution function (but unknown) of the sequence of random variables fAig.
Let the global behavior of the asset market be given by

/�r� � P lim
N!1

rN min�R1N ; . . . ;RNN �
�

P r
�
; �3�

where rN is a suitable, positive normalizing constant. Under the above assumptions, the function /�r�,
ful®lls the global return equation

d/
dr
�r� � ÿak�kr�aÿ1

1

�
ÿ exp

�
ÿ �kr�ÿa

k

��
/�r�; �4�

where the parameters k > 0; k > 0; l > 0 and a � a0c�c > 1; 0 < a06 1� are determined by the limiting
procedure in Eq. (3).

By Jurlewicz et al. [6] the probability density f �r� � ÿd/�r�=dr has the following two power-laws
property:

f �r� / �kr�aÿ1
for kr� 1;

�kr�ÿ�a=k�ÿ1
for kr� 1:

�
�5�

The above equality (3) de®nes the return excess P�~R P r� of a system as a whole, where ~R represents the
global return. The derivative f �r� � ÿ�d/=dr��r� represents the frequency distribution (probability density)
of a global market return. Hence the global return distribution is characterized by the following three
parameters: �a; k; k�. Here a is the shape and k is the scale parameter. At this point let us stress the role of
the parameter k. It decides how fast the information ¯ow is spread out in the market; k ! 0 denotes the
case when the long-range interaction is neglected. So, there are no arbitrage opportunities on the market. If
k ! 0, Eq. (4) takes the form

d/
dr
�r� � ÿa�kr�aÿ1/�r�;

with the solution

/�r� � exp�ÿ�kr�a�:
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5. Empirical analysis

5.1. Example 1. Standard & Poor 500 composite index

The data set is the S&P500 index which is a composite index based on the performance of the main 500
shares on the New York Stock Exchange. To illustrate the typical characteristics of the global market
returns we consider daily observations during the period from 2 July 1962 to 31 December 1991. We note
that this period includes the stock market crash of October 1987. Let S�t� be the daily observation of day t
for the S&P 500 index and R�t� be the daily return of day t. Then S�t� and R�t� are related by
R�t� � log S�t� ÿ log S�t ÿ 1�: The 7420 daily returns of the S&P 500 are splitted to 3879 positive and 3495
negative returns; there are also 47 zero returns.

Applying the CED model separately to both data sets we are getting the following parameters:

a� � 0:8656; k� � 142:5871; k� � 0:4977

and

aÿ � 0:7405; kÿ � 125:0000; kÿ � 0:3392:

for positive and absolute value of negative S&P500 returns, respectively.
Zipf plots (double logarithmic plots) of empirical densities (kernel estimators) of the S&P500 daily re-

turns vs rank are shown in Fig. 2 for positive and absolute value of negative returns. Observe that the Zipf
plots demonstrate clearly the di�erence in the behavior of positive and negative returns and also visualize
the two power-laws (see Eq. (5)) for small and large returns, respectively.

5.2. Example 2. NASDAQ index

The data set is the NASDAQ index which is a composite index based on the performance of the main
shares on the NASDAQ over-the-counter market. To illustrate the typical characteristics of the global
market returns we consider daily observations during the period from 14 December 1972 to 31 December
1991. We note that this period includes the stock market crash of October 1987. The 4809 daily returns for
the NASDAQ index are splitted to 2735 positive and 2067 negative returns; there are also seven zero re-
turns.

Applying the CED model separately to both data sets we are getting the following parameters:

a� � 0:9228; k� � 166:6667; k� � 0:4230

Fig. 2. Zipf plots (double logarithmic plots) of empirical densities (kernel estimators) of the S&P500 daily returns vs rank for positive

(left panel) and absolute value of negative returns (right panel). Bold lines represent the two power-laws, see Eq. (5).
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and

aÿ � 0:8596; kÿ � 181:8182; kÿ � 0:6510

for positive and absolute value of negative returns, respectively.
Zipf plots of empirical densities of the NASDAQ daily returns vs rank are shown in Fig. 3 for positive

and absolute value of negative returns.

5.3. Example 3. USD/SFR exchange rate

The data set is the USD/SFR exchange rate from the period 20 May 1985 to 12 April 1991. To illustrate
the dependence of the empirical result from the time horizons we consider three types of USD/SFR ex-
change rate returns. Namely, daily, hourly and one minute returns. Zipf plots of empirical densities of the
USD/SFR exchange rate Dt-returns vs rank are shown in Fig. 4 for Dt � 1 day, 1 h and 1 min, respectively.
Observe essential di�erences in the shapes of these densities supporting the hypothesis of a fractal scaling
law as a function of the time interval ranging from few minutes up to a day. This demonstrates that, in
principle, it is possible to estimate the empirical drift exponent D in the scaling law reported in [13] from the
two power-law approach.

Fig. 3. Zipf plots of empirical densities of the NASDAQ daily returns vs rank for positive (left panel) and absolute value of negative

(right panel) returns. Bold lines represent the two power-laws.

Fig. 4. Zipf plots of empirical densities of the USD/SFR exchange rate returns for three time intervals: 1 day, 1 h and 1 min vs rank.

Positive returns are displayed on the left panel and absolute value of negative returns on the right panel.
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