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Classical Hardy inequalities

For historical account see Kufner, Maligranda, Persson [30]. Hardy
[24] initiated the subject in 1920 by proving that∫ ∞

0

[
u′(x)

]2
dx ≥ 1

4

∫ ∞

0

u(x)2

x2
dx,

for absolutely continuous u with u(0) = 0 and u′ ∈ L2(0,∞).
The classical Hardy inequality in Rd for d ≥ 2 is∫

Rd

|∇u(x)|2 ≥ (d− 2)2

4

∫
Rd

u(x)2

|x|2
dx.

For symmetric Dirichlet form E , Fitzsimmons [21] proposed this:

If L is the generator of E , h ≥ 0 and Lh ≤ 0 (superharmonic), then

E(u, u) ≥
∫

u2
−Lh
h

.
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Fractional Laplacian

Once and for all let d ∈ N and α ∈ (0, 2). Consider

∆α/2u(x) := −(−∆)α/2u(x) := lim
ϵ→0+

∫
|y−x|>ϵ

(u(y)− u(x)) ν(x−y) dy,

where ν(z) = Ad,−α|z|−d−α, z ∈ Rd (Lévy measure density),

Ad,−α = 2αΓ
(
(d+ α)/2

)
π−d/2/|Γ(−α/2)|,

and, say, u ∈ C2
c (Rd). Let

E [u] := E(u, u) := 1

2

∫
Rd

∫
Rd

(u(x)− u(y))2ν(x− y) dy dx,

and D(E) := {u ∈ L2(Rd) : E [u] < ∞}.
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Hardy identity on L2(Rd)

By [6], if α < d, 0 ≤ β ≤ d− α, and u ∈ L2(Rd), then

E [u] =κβ

∫
Rd

u(x)2

|x|α
dx

+
1

2

∫
Rd

∫
Rd

[
u(x)

hβ(x)
− u(y)

hβ(y)

]2
hβ(x)hβ(y)ν(x− y) dy dx,

where hβ(x) := |x|−β, and

κβ =
2αΓ

(β+α
2

)
Γ
(d−β

2

)
Γ
(β
2

)
Γ
(d−β−α

2

) ;

see earlier Frank, Lieb and Seiringer [22] for u ∈ C∞
c (Rd).

Note that κδ = κd−α−δ (symmetry w/r to δ = (d− α)/2).

Krzysztof Bogdan Probability in PDEs



Hardy(-Rellich) inequality (in L2(Rd))

Figure: The function β 7→ κβ .

κ(d−α)/2 = 2αΓ

(
d+ α

4

)2

Γ

(
d− α

4

)−2

,

The following fractional Hardy inequality is optimal in L2:

E [u] ≥ κ(d−α)/2

∫
Rd

u(x)2

|x|α
dx,

see Herbst [25], Beckner [5] and Yafaev [40].
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The Lp(Rd) setting: the Sobolev-Bregman form

For p ∈ (1,∞) and u : Rd → R we define the p-form,

Ep[u] :=
1

2

∫
Rd

∫
Rd

(u(x)−u(y))(u(x)⟨p−1⟩−u(y)⟨p−1⟩)ν(x−y) dy dx.

Here and below a⟨k⟩ := |a|k sgn a. We have (nearly optimal)

4(p− 1)

p2
(b⟨p/2⟩−a⟨p/2⟩)2 ≤ (b−a)(b⟨p−1⟩−a⟨p−1⟩) ≤ 2(b⟨p/2⟩−a⟨p/2⟩)2,

see Liskevich, Perelmuter and Semenov [32]. Thus, for u ∈ Lp(Rd),

Ep[u] ≥
4(p− 1)

p2
E2[u⟨p/2⟩] ≥

4(p− 1)

p2
κ(d−α)/2

∫
Rd

|u(x)|p

|x|α
dx.

The inequality is given, e.g., in Cialdea and Maz’ya [18].

Our goal is, among others, to improve the constant.
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Bregman divergence

Recall (the French power):

x<κ> = |x|κ sgn(x), κ, x ∈ R.

E.g., x⟨0⟩ = sgn(x), 3
√
x = x⟨1/3⟩ and x⟨2⟩ ̸= x2 as functions on R.

We have (|x|κ)′ = κx<κ−1> and (x<κ>)′ = κ|x|κ−1 for x ̸= 0.

Recall that p ∈ (1,∞). Define (Bregman divergence),

Fp(a, b) = |b|p − |a|p − pa<p−1>(b− a), a, b ∈ R.

E.g., F2(a, b) = (b− a)2 and F4(a, b) = (b− a)2(b2 + 2ab+ 3a2).
Note that Fp(a, b) is the second-order Taylor remainder of |x|p.
It is an example of Bregman divergence, see, e.g., Sprung [37].
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Estimates and algebra of Fp

Recall that Fp(a, b) = |b|p − |a|p − pa<p−1>(b− a). By the
convexity of |x|p, we have Fp ≥ 0. Moreover,

Fp(a, b) ≈ (b− a)2(|a|+ |b|)p−2, a, b ∈ R,

see Pinchover, Tertikas, Tintarev [35], Bogdan, Dyda, Luks [7] and
Bogdan, Wiȩcek [15]. Again, we also have [32]

Fp(a, b) ≈ (a<p/2> − b<p/2>)2.

Note |b− a|p ≲ Fp(a, b) if p ≥ 2, Fp(a, b) ≲ |b− a|p if p ≤ 2.
In general Fp(a, b) ̸= Fp(b, a), but (the symmetrization yields)

1

2
(Fp(a, b) + Fp(b, a)) =

p

2
(b− a)(b⟨p−1⟩ − a⟨p−1⟩).

Thus, Ep[u] ≈ E [u<p/2>].
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Hardy identity and inequality on Lp

Recall hβ(x) = |x|−β, x, β ∈ Rd.

Theorem (1)

If 0 < α < d ∧ 2, 0 ≤ β ≤ (d− α) ∧ (d− α)/(p− 1), h = hβ and
u ∈ Lp(Rd), then

Ep[u] =
κ(p−1)β + (p− 1)κβ

p

∫
Rd

|u(x)|p

|x|α
dx

+
1

p

∫
Rd

∫
Rd

Fp

(
u(x)

h(x)
,
u(y)

h(y)

)
h(x)p−1h(y)ν(x− y) dy dx.

In particular, for β = (d− α)/p we obtain

Ep[u] ≥ κ(d−α)/p

∫
Rd

|u(x)|p

|x|α
dx, u ∈ Lp(Rd).
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Optimality

Recall,

Ep[u] ≥ κ(d−α)/p

∫
Rd

|u(x)|p

|x|α
dx, u ∈ Lp(Rd). (1)

It turns out (by calculus) that for p ̸= 2 we have

κ(d−α)/p >
4(p− 1)

p2
2αΓ

(
d+α
4

)2
Γ
(
d−α
4

)2 .

Here is a deeper result.

Theorem (2)

The constant in (1) is sharp.
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Comparison of the constants for d = 3, α = 1
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Results: Applications

Let P̃t be the F-K semigroup generated by ∆α/2 + κδ|x|−α.

Theorem (3)

Let 0 < α < d, 1 < p < ∞ and 0 < t < ∞. The operator P̃t is a
contraction on Lp(Rd) if and only if κδ ≤ κ(d−α)/p.

Recall that (for α = 2) ∆+ κ|x|−2 generates a contraction
semigroup on Lp(Rd) iff κ ≤ κ(d−2)/p = (d− 2)2(p− 1)p−2, see
Kovalenko, Perelmuter and Semenov [29], Liskevich and Semenov
[34] and Arendt, Goldstein and Goldstein [1].

Theorem (4)

Let 1 < p < ∞ and 0 < t < ∞. The operator P̃t is bounded on
Lp(Rd) if and only if δ < d/p∗, where p∗ = max{p, p/(p− 1)}.
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Illustration: The range of admissible p in Theorem (3) is
marked in red, and in Theorem (4) – in blue.

 

 

t
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Insights for Theorem (1): Scaling, estimates of pt(x, y)

Let pt(x, y) ∼ ∆α/2. We have pt(x, y) = pt(x− y) and (scaling):

pt(z) = t−
d
α p1(t

− 1
α z) , t > 0, z ∈ Rd .

It is well known that pt(x, y) ≈ min
(
t−d/α, t|x− y|−d−α

)
, hence

pt(x, y)/t ≤ cν(x− y), t > 0, x, y ∈ Rd.

Also, pt(x, y)/t → ν(x− y) as t → 0+.

For u ∈ Lp(Rd), v ∈ Lp/(p−1)(Rd) and t > 0, let

E(t)(u, v) :=
1

t
⟨u− Ptu, v⟩.

Then, for u ∈ Lp(Rd), u ∈ Dp(∆
α/2) (respectively),

Ep[u] = lim
t→0

E(t)(u, u⟨p−1⟩)
(resp.)
= −⟨∆α/2u, u⟨p−1⟩⟩.
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The α-stable convolution semigroup

Recall d ∈ {1, 2, . . .}, 0 < α < 2 and

ν(z) = Ad,−α|z|−d−α , z ∈ Rd .

In a connection to the Lévy-Khintchine formula,∫
Rd

(1− cos ξ · x) ν(|x|) dx = |ξ|α, ξ ∈ Rd,

and for every t > 0 there is a smooth function pt > 0 such that∫
Rd

eiξ·xpt(x) dx = e−t|ξ|α , ξ ∈ Rd.

Of course, ps ∗ pt = ps+t. We can also treat pt by subordination:

pt(x) =

∫ ∞

0
gs(x)ηt(s) ds , t > 0, x ∈ Rd.
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Superharmonic functions

For α < d and β ∈ (0, d), we let

fβ(t) = ct
(d−α−β)/α
+ , t ∈ R.

Here c ∈ (0,∞) is a normalizing constant so chosen that∫ ∞

0
fβ(t)pt(x)dt = |x|−β = hβ(x), x ∈ Rd.

By [6], Pthβ ≤ hβ (superharmonic!). For β ∈ (0, d− α) we also let

qβ(x) :=
1

hβ(x)

∫ ∞

0
f ′
β(t)pt(x)dt, x ∈ Rd.

By [6], qβ(x) = κβ|x|−α, and P̃thβ ≤ hβ.
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Insights for Theorem (2)

Let
u(x) := |x|−δ/(p−1) ∧ |x|−δ , x ∈ Rd.

The function “reverses” the Hardy inequality in Lp(Rd) with κδ if
κδ > κ(d−α)/p.

We face annoying integrability issues for u and puzzling questions
about the natural domain of Ep.
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Insights for Theorem (3)

P̃t ∼ ∆α/2 + κ|x|−α =: ∆α/2 + q is given by perturbation series.

For f in the domain of ∆α/2 on Lp(Rd), let u(t, x) = P̃tf(x).

Then (p > 1),

d

dt

∫
Rd

|u(t)|pdx =

∫
Rd

d

dt
|u(t)|pdx =

∫
Rd

pu(t)⟨p−1⟩ d

dt
u(t)dx

= p

∫
Rd

u(t)⟨p−1⟩(∆α/2 + q)u(t)dx

= p

(
−Ep[u(t)] +

∫
Rd

q|u(t)|pdx
)

≤ 0,

provided κ ≤ κ(d−α)/p.
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Insight for Theorem (4)

For p̃t(x, y) ∼ ∆α/2 + κδ|x|−α, where δ ∈ [0, (d− α)/2], we have

p̃t(x, y) ≈
(
1 + tδ/α|x|−δ

)(
1 + tδ/α|y|−δ

)(
t−d/α ∧ t

|x− y|d+α

)
,

for all x, y ∈ Rd, t > 0. The result is given in [10].

The boundedness of P̃t on Lp(Rd) follows quite directly – it is
characterized by δ ≤ d/p∗, where p∗ = max{p, p/(p− 1)}.

Note that P̃t is bounded on L2(Rd) if 0 ≤ δ ≤ (d− α)/2, and
p̃(x, y) = ∞ for κ ≥ κ(d−α)/2.

We have only discussed d > α, κ ≥ 0 and p ∈ (1,∞)...
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Some more insights

Note/recall that for, e.g., ϕ ∈ C∞
c (Rd) we have

Ep[ϕ] = −
∫
Rd

ϕ(x)⟨p−1⟩∆α/2ϕ(x) dx.

On the other hand,
Ep[u] ≈ E [u⟨p/2⟩],

but this may be a mouse trap, resulting in loss of accuracy/insight.

It seems that even the symmetrization,

1

2
(Fp(a, b) + Fp(b, a)) =

p

2
(b− a)(b⟨p−1⟩ − a⟨p−1⟩),

should be avoided early on.

Krzysztof Bogdan Probability in PDEs



Connections

Davies [19] and Bakry [3] give some essential calculations with
forms and powers.

That Ep captures the evolution of the Lp norm of functions upon
the action of operator semigroups is known since Varopoulos [39].

The comparison of Ep[u] and E [u⟨p/2⟩] can be traced back to
Liskevich et al. [33] and [32]. See also [39], [4], Stroock [38] and
Carlen, Kusuoka and Stroock [17] for formulations with
nonnegative arguments or one-sided comparison.

Liskevich and Semenov [34] use the Lp setting to analyze
perturbations of Markovian semigroups.

See Pinchover, Tertikas, Tintarev [35] for estimates and
applications of Fp, also higher dimensions.
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Connections and Bibliography

For the semigroups of local generators see Langer and Maz’ya [31]
and Sobol and Vogt [36].

For nonlocal operators and bivariate forms see Farkas, Jacob and
Schilling [20], Jacob [27] and Hoh and Jacob [26].

See Kinzebulatov and Semenov [28] for recent developments.

For probability connection, in particular martingale connections see
KB, Dyda and Luks [7], KB and Wiȩcek [16] and KB, Grzywny,
Pietruska-Pa luba and Rutkowski [11].

The paper [11] gives related trace and extension results for the
Dirichlet problem for nonlocal operators in the setting of Lp spaces.
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(Still some time?) Ikeda-Watanabe and Dynkin formulas

Ikeda-Watanabe formula: for J ⊂ R, A ⊂ D, B ⊂ (D)c,

Px[τD ∈ J,XτD− ∈ A,XτD ∈ B] =

∫
J

∫
B

∫
A

pDu (x, y)ν(y, z)dydzdu.

I-W gives the law of (τD, XτD−, XτD) on {XτD− ∈ D}.

Consider nice U ⊂⊂ D and ϕ : Rd → R, say, C2. Then for x ∈ U ,∫
ϕ(y)ωx

U (dy) =

∫
D
ϕ(z)PD(x, z)dz = Exϕ(XτU )

Dynkin
= ϕ(x) + Ex

∫ τU

0
Lϕ(Xt)dt = ϕ(x) +

∫
U
GU (x, y)Lϕ(y)dy .

Say, L is a unimodal operator with scaling and C2 Lévy measure,
or just let L+∆α/2.
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Hardy-Stein formula (explanation)

Recal that u : Rd → R is L-harmonic in D if for all open U ⊂⊂ D,

u(x) = Exu(XτU ) , x ∈ U .

Using ν ′′ and Grzywny and Kwaśnicki [23] we get

Lemma

If u is L-harmonic on D, then u ∈ C2(D) and Lu = 0 on D.

Clearly, b2 − a2 − 2a(b− a) = (b− a)2. If u is L-harmonic,

Lu2(y) = Lu2(y)− 2u(y)Lu(y) =

∫
Rd

(u(z)− u(y))2ν(z, y) dz,

for y ∈ U . Applying Dynkin to u(x)2, we get Hardy-Stein:

Exu(XτU )
2 = u(x)2 +

∫
U
GU (x, y)

∫
Rd

(u(z)− u(y))2ν(z, y)dzdy.
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Some insights: Nonlinear Hardy-Stein

Recall that Fp(a, b) = |b|p − |a|p − pa<p−1>(b− a), a, b ∈ R.
Since u is L-harmonic,

L|u|p(y) = L|u|p(y)− pu(y)⟨p−1⟩Lu(y)

= lim
ϵ→0+

∫
|z−y|>ϵ
(|u(z)|p − |u(y)|p − pu(y)⟨p−1⟩(u(z)− u(y)))ν(y, z) dz

=

∫
Rd

Fp(u(y), u(z))ν(y, z).

To get Hardy-Stein identity we use the Dynkin formula for |u(x)|p:

Lemma ([11]; for ∆α/2 see [7])

If u = PD[g] and x ∈ D, then
∫
Dc |g(z)|p PD(x, z)dz equals

|u(x)|p +
∫
D
GD(x, y)

∫
Rd

Fp(u(y), u(z))ν(y, z) dzdy.
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Some more insights

There is a Douglas identity in Lp, proved by Hardy-Stein,
mysterious cancellations and the following

Lemma

Let X be a random variable with E|X| < ∞. Then,

EFp(EX,X) = E|X|p − |EX|p ≥ 0,

and
EFp(a,X) = Fp(a,EX) + EFp(EX,X), a ∈ R.

Note that
E(p)
D [u] ≈ ED(u<p/2>, u<p/2>),

however our nonlinear Douglas identity is an exact equality [12],
[8], discussed by Katarzyna Pietruska-Pa luba on Monday. See also
[2], [13] for Hardy-Stein for semigroups.
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Burkholder inequality by bregman divergence, 2021.

K. Bogdan and M. Wiȩcek.
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Birkhäuser/Springer, Cham, 2014.

E. B. Davies.
Heat kernels and spectral theory, volume 92 of Cambridge
Tracts in Mathematics.
Cambridge University Press, Cambridge, 1990.

W. Farkas, N. Jacob, and R. L. Schilling.
Feller semigroups, Lp-sub-Markovian semigroups, and
applications to pseudo-differential operators with negative
definite symbols.
Forum Math., 13(1):51–90, 2001.

P. J. Fitzsimmons.
Hardy’s inequality for Dirichlet forms.
J. Math. Anal. Appl., 250(2):548–560, 2000.

R. L. Frank, E. H. Lieb, and R. Seiringer.
Hardy-Lieb-Thirring inequalities for fractional Schrödinger
operators.
J. Amer. Math. Soc., 21(4):925–950, 2008.

Krzysztof Bogdan Probability in PDEs



T. Grzywny and M. Kwaśnicki.
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