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Classical Hardy inequalities

For historical account see Kufner, Maligranda, Persson [30]. Hardy
[24] initiated the subject in 1920 by proving that

[ weras [T

X

for absolutely continuous u with u(0) = 0 and v’ € L%(0, 00).
The classical Hardy inequality in R for d > 2 is

2o (d=2) [ u(@)?
/Rd |Vu(x)|* > 1 /Rd e dx.

For symmetric Dirichlet form &£, Fitzsimmons [21] proposed this:

If £ is the generator of £, h > 0 and Lh < 0 (superharmonic), then

E(u,u) > /uQ_sh
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Fractional Laplacian

Once and for all let d € N and « € (0,2). Consider
A*Pu(z) = —(=2)*Pu(z) = lim (u(y) — u(z)) v(z—y) dy,
where v(2) = Ag_a|2|77%, 2 € R? (Lévy measure density),

Ad—a = 2°T((d + @) /2) 72 /|T(~a/2)],

and, say, u € C2(R%). Let

Elu] == E(u,u) = / / u(z) — u(y))?v(z —vy) dy dz,
Rd JRd

and D(€) := {u € L?(RY) : £[u] < oo}
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Hardy identity on L?(RY)

By[6],ifa<d 0<B<d—a anduc€ LQ(Rd), then

u(z)?
5[u]:n5/R (z) dx

@ |alo

s L ,f;?y))rhmsc)hﬁ(y)u(x—y) dy dz,

where hg(x) = |z|7#, and

kg =

see earlier Frank, Lieb and Seiringer [22] for u € C2°(RY).
Note that k5 = Kg—a—s (Symmetry w/r to 6 = (d — «)/2).
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Hardy(-Rellich) inequality (in L?*(RY))

Figure: The function 3 — rg.

B o dad da B

o (d+a\?  (d—a\?
H(d_a)p:?F( 1 )F< 1 ) )

The following fractional Hardy inequality is optimal in L?:

u\xr 2
Elu] > H(da)/Z/R (=)

a |z
see Herbst [25], Beckner [5] and Yafaev [40].

dx,



The LP(R?) setting: the Sobolev-Bregman form

Forp € (1,00) and w : R? — R we define the p-form,

/ / u(z)—u(y)) (u(z) P~ —u(y) PN (z—y) dy dz.
R4 JRA

k) —

Here and below af la|" sgn a. We have (nearly optimal)

4<Ppgl>(b<p/2>_a<p/2>)2 < (b—a) (B — a1} < 2(plP/) _q(#/2y2.
see Liskevich, Perelmuter and Semenov [32]. Thus, for u € LP(R?),

4(p—1) ( 4(p—1) / |u(z)|P
Ep [u] — Ealu ] 5 K(d—a)/2 . ol dx

The inequality is given, e.g., in Cialdea and Maz'ya [18].

Our goal is, among others, to improve the constant.
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Bregman divergence

Recall (the French power):
<" = |z|" sgn(x), kK,r €R.
Eg., 2 = sgn(x), ¢/z = /% and 2 # 22 as functions on R.

We have (|z]*) = kz<""'> and (<) = kx|~ for z # 0.

Krzysztof Bogdan Probability in PDEs



Bregman divergence

Recall (the French power):

<" = |z|" sgn(x), kK,r €R.
Eg., 2 = sgn(x), ¢/z = /% and 2 # 22 as functions on R.
We have (|z]*) = kz<""'> and (<) = kx|~ for z # 0.
Recall that p € (1,00). Define (Bregman divergence),

Fy(a,b) = |b]? — |a]P —pa=P~'>(b—a), a,beR.

E.g., Fy(a,b) = (b—a)? and Fy(a,b) = (b — a)?(b* + 2ab + 3a?).
Note that F),(a,b) is the second-order Taylor remainder of |x|P.
It is an example of Bregman divergence, see, e.g., Sprung [37].
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Estimates and algebra of F,

Recall that Fj(a,b) = |b|P — |a|P — pa<P~1>(b — a). By the
convexity of |z[P, we have F}, > 0. Moreover,

Fy(a,b) = (b—a)*(la] + [b))*™2, a,beR,

see Pinchover, Tertikas, Tintarev [35], Bogdan, Dyda, Luks [7] and
Bogdan, Wiecek [15]. Again, we also have [32]

Fy(a,b) ~ (a<p/2> — b<p/2>)2.

Note [b — alP < Fp(a,b) if p> 2, Fp(a,b) S |b—alP if p<2.
In general Fy(a,b) # F,(b,a), but (the symmetrization yields)

! Fy(a,b) + Fy(b,a)) = Q(b —a) (P~ — glP=1)),
o\ P p 2
Thus, &Eylu] = E[u<7’/2>],
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Hardy identity and inequality on L”

Recall hg(x) = |z 7, 2,8 € R%.

Ifo<a<dAn2,0<pB<(d-—a)AN(d—a)/(p—1), h =hg and
u € LP(RY), then

Kp-1)s + (P — kg u(x)[?
Sp[u] —_ (p—1)B /l‘{d‘ ’i‘g‘ dr

p
5 B (50 i) 7 0ta

In particular, for 5 = (d — «)/p we obtain

v

dz,  ue€ LP(RY).

Ep[u] > li(d—a)/p/ |U($)|p

Rd |T|*
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Optimality

Recall,

dz,  ue LP(RY). (1)

Ep[u] > K'J(d—oz)/p/ |U(37)|p

Rd ||

It turns out (by calculus) that for p # 2 we have

sp—1) 2T (2)°
r(4e)’

K(d—a)/p =

Here is a deeper result.

The constant in (1) is sharp.
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Comparison of the constants for d =3, a =1
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Results: Applications

Let P, be the F-K semigroup generated by A%/2 4 x5]x|~2.

Llet0<a<d, 1<p<ooand0<t<oo. Theoperator P, is a
contraction on LP(R?) if and only if ks < K{(d—a)/p-

Recall that (for a = 2) A + k|x|~2 generates a contraction
semigroup on LP(RY) iff k < F(a—2)/p = (d —2)*(p — 1)p~?, see
Kovalenko, Perelmuter and Semenov [29], Liskevich and Semenov
[34] and Arendt, Goldstein and Goldstein [1].

Theorem (4)

Let1 < p< oo and0 <t < oo. The operator P, is bounded on
LP(RY) if and only if § < d/p*, where p* = max{p,p/(p — 1)}.
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lllustration: The range of admissible p in Theorem (3) is

marked in red, and in Theorem (4) — in blue.
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Insights for Theorem (1): Scaling, estimates of p;(x,y)
Let ps(x,y) ~ A2 We have pi(x,y) = ps(x — y) and (scaling):

pi(z) = t_gpl(t_iz), t>0 zeR?,
It is well known that p;(z,y) ~ min (t*d/o‘,t|x — y\*d*“) , hence
pi(zy)/t <ev(z—y), t>0, =zyeR
Also, py(z,y)/t > v(z —y) ast — 0.

and t > 0, let

~—

For u € LP(R%), v € LP/(P~1)(R?

ED(u,v) := = (u — P, v).

~ | =

Then, for u € LP(R?), u € D,(A*/?) (respectively),

Eylu] = lim €0 (u, u® 1) ") _(A0/2y, 4, 070),

t—0
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The a-stable convolution semigroup

Recall d € {1,2,...}, 0 < @ < 2 and
v(2) = Ag_alz| ™%, zeRY.
In a connection to the Lévy-Khintchine formula,
[ = cose ) vllahde = ¢, € R
and for every t > 0 there is a smooth function p; > 0 such that
/Rd €Ty (z)de = e " £ e R

Of course, ps * pr = psy¢. We can also treat p; by subordination:

pe(z) = / gs(x)m(s)ds, t>0, z¢€ R,
0
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Superharmonic functions

For o < d and 5 € (0,d), we let
faty =l e R

Here ¢ € (0,00) is a normalizing constant so chosen that

/ faOpe(@)dt = |2 = hg(z), =eR%

By [6], P:hg < hg (superharmonic!). For 5 € (0,d — a) we also let
1 oo
qp(x) :== / fa(t)ps(x)dt, =€ R
’ hs(x) Jo pe

By [6], gs(x) = kslz|=, and Pihg < hg.
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Insights for Theorem (2)

Let
w(z) = |z YV A 270, 2z e R

The function “reverses” the Hardy inequality in LP(R?) with kg if
Kg = K(d—a)/p-

We face annoying integrability issues for u and puzzling questions
about the natural domain of &,.
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Insights for Theorem (3)

Py ~ A2 4 glz|~® =1 A2 4 ¢ is given by perturbation series.
For f in the domain of A%/2? on LP(RY), let u(t,z) = P,f(z).
Then (p > 1),

d d
el Py — ol Py — HP=0 = Hd
at Jo |u(t)[Pdx /Rd dt\u(t)] x /Rd pu(t) dtu( )dx

—p [ a4 u(t)do
Rd
—p (~&luol+ [ dutlras) <o

provided Kk < K(4—q)/p-
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Insight for Theorem (4)

For pi(x,y) ~ AY? 4 kg|z|=*, where § € [0, (d — a)/2], we have

pe(z,y) ~ (1 + t5/a|x|76) (1 + ta/a]yré) <td/a A |33§/|d+°‘> ,

for all z,y € RY, t > 0. The result is given in [10].

The boundedness of P, on LP(R?) follows quite directly — it is
characterized by 6 < d/p*, where p* = max{p,p/(p — 1)}.

Note that P; is bounded on L2(R%) if 0 < 6 < (d — ) /2, and
p(z,y) = oo for K > Kg_q)/2-

We have only discussed d > «, kK > 0 and p € (1,00)...
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Some more insights

Note/recall that for, e.g., ¢ € C°(R%) we have

Epld] = — /Rd o(2) PV A 2¢(z) d

On the other hand,
Eplu] ~ E[uP/?),

but this may be a mouse trap, resulting in loss of accuracy/insight.

It seems that even the symmetrization,
1 p (p—1) (p—1)
S (Fyla,b) + Fyfb,a) = L6 — )67V — 1),

should be avoided early on.
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Connections

Davies [19] and Bakry [3] give some essential calculations with
forms and powers.

That &, captures the evolution of the L” norm of functions upon
the action of operator semigroups is known since Varopoulos [39].

The comparison of &,[u] and £[uP/?)] can be traced back to
Liskevich et al. [33] and [32]. See also [39], [4], Stroock [38] and
Carlen, Kusuoka and Stroock [17] for formulations with
nonnegative arguments or one-sided comparison.

Liskevich and Semenov [34] use the LP setting to analyze
perturbations of Markovian semigroups.

See Pinchover, Tertikas, Tintarev [35] for estimates and
applications of F}, also higher dimensions.
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Connections and Bibliography

For the semigroups of local generators see Langer and Maz'ya [31]
and Sobol and Vogt [36].

For nonlocal operators and bivariate forms see Farkas, Jacob and
Schilling [20], Jacob [27] and Hoh and Jacob [26].

See Kinzebulatov and Semenov [28] for recent developments.

For probability connection, in particular martingale connections see
KB, Dyda and Luks [7], KB and Wiecek [16] and KB, Grzywny,
Pietruska-Patuba and Rutkowski [11].

The paper [11] gives related trace and extension results for the
Dirichlet problem for nonlocal operators in the setting of LP spaces.
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(Still some time?) lkeda-Watanabe and Dynkin formulas

Ikeda-Watanabe formula: for J C R, A C D, B C (D),

P*lrp € J,Xr,— € A, X, € B :///pf(x,y)y(y,z)dydzdu.
JBA

[-W gives the law of (7p, X-,—, X-,) on {X,,_ € D}.
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(Still some time?) lkeda-Watanabe and Dynkin formulas

Ikeda-Watanabe formula: for J C R, A C D, B C (D),

P*lrp € J,Xr,— € A, X, € B :///pf(x,y)y(y,z)dydzdu.
JBA

[-W gives the law of (7p, X-,—, X-,) on {X,,_ € D}.

Consider nice U CC D and ¢ : RY - R, say, C2. Then for z € U,

/ b(y)wt (dy) = /D 6(2)Pp(z, 2)dz = E* (X))

Dynkin

o) + E° /O Y Lo(X)dt = ¢(a) + /U G, y) Lo(y)dy

Say, L is a unimodal operator with scaling and C? Lévy measure,
or just let L + A%/2.

Krzysztof Bogdan Probability in PDEs



Hardy-Stein formula (explanation)

Recal that u : R — R is L-harmonic in D if for all open U cC D,

u(z) =E"uw(X,,), zeU.
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Hardy-Stein formula (explanation)

Recal that u : R — R is L-harmonic in D if for all open U cC D,
u(z) =E"uw(X,,), zeU.

Using v and Grzywny and Kwasnicki [23] we get

If u is L-harmonic on D, then u € C?(D) and Lu =0 on D.
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Hardy-Stein formula (explanation)

Recal that u : R — R is L-harmonic in D if for all open U cC D,
u(z) =E"uw(X,,), zeU.

Using v and Grzywny and Kwasnicki [23] we get

If u is L-harmonic on D, then u € C?(D) and Lu =0 on D.

Clearly, b?> — a? — 2a(b — a) = (b — a)?.
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Hardy-Stein formula (explanation)

Recal that u : R — R is L-harmonic in D if for all open U cC D,
u(z) =E"uw(X,,), zeU.

Using v and Grzywny and Kwasnicki [23] we get

If u is L-harmonic on D, then u € C?(D) and Lu =0 on D.

Clearly, b*> — a? — 2a(b — a) = (b — a)?. If u is L-harmonic,
L () = Lu?(y) = 2u() L) = | (u(z) = u(w)Pr(z.) d,

foryeU.
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Hardy-Stein formula (explanation)

Recal that u : R — R is L-harmonic in D if for all open U cC D,
u(z) =E"uw(X,,), zeU.

Using v and Grzywny and Kwasnicki [23] we get

If u is L-harmonic on D, then u € C?(D) and Lu =0 on D.

Clearly, b*> — a? — 2a(b — a) = (b — a)?. If u is L-harmonic,

L () = Lu?(y) = 2u() L) = | (u(z) = u(w)Pr(z.) d,

for y € U. Applying Dynkin to u(x)?, we get Hardy-Stein:

Bru(Xn)? = u(of + [ Guloy) [ (0(:) = ulo) iz, )dzdy,
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Some insights: Nonlinear Hardy-Stein

Recall that Fj(a,b) = |b|P — |a|P — pa=P~1>(b - a), a,b € R.
Since u is L-harmonic,

LlulP(y) = LlulP(y) — pu(y)? " Lu(y)

= lip, [ (P = @) = pu) ™ (0(z) = )2 d=

:/ Fp(u(y), u(2))v(y, 2).
Ra

To get Hardy-Stein identity we use the Dynkin formula for |u(z)|P:

Lemma ([11]; for A%/2 see [7])

Ifu= Pplg] and x € D, then [,.|g(2)|P Pp(x,z)dz equals

@+ [ Gote) [ Fuw.u(@)wls. ) dzdy.
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Some more insights

There is a Douglas identity in LP, proved by Hardy-Stein,
mysterious cancellations and the following

Let X be a random variable with E|X| < co. Then,

EF,(EX,X) =E|X[? — |[EX|P >0,

and

EF,(a,X) = Fy(a,EX) + EF,(EX, X), acR.

Note that

€8 u] = Ep(u=/*,ur2),

however our nonlinear Douglas identity is an exact equality [12],
[8], discussed by Katarzyna Pietruska-Patuba on Monday. See also
[2], [13] for Hardy-Stein for semigroups.
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