
PROBABILITY IN PDES

KRZYSZTOF BOGDAN

Abstract. Below we present probabilistic notions and tools that can be useful for elliptic and parabolic (nonlocal) PDEs. These are abridged lecture notes of Parts 2 and 3 of the course:
Probability in PDEs, given at the conference Probabilistic and game theoretical interpretation of PDEs, held 20-24 November 2023 in Madrid.

1. Review and complements of Part 1

1.1. The Gaussian kernel. Let g be the Gaussian kernel

(1.1) gt(x) := (4πt)−d/2e−|x|2/(4t) , t > 0, x ∈ Rd .

Below, as usual, f ∗ h(x) :=
∫
Rd f (x − y)h(y)dy, x ∈ Rd, the convolution of functions f, h :

Rd → R, defined if the integral is convergent.
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Exercise 1.1. Prove that the function pt(x, y) := gt(y − x), t > 0, x, y ∈ Rd, is symmetric:
pt(x, y) = pt(y, x), and satisfies the Chapman–Kolmogorov equations:∫

Rd
ps(x, y)pt(y, z)dy = ps+t(x, z), x, z ∈ Rd, s, t > 0.

In short, pt(x, y) is a transition density on Rd. Further,
∫
Rd pt(x, y)dy = 1 for x ∈ Rd, t > 0,

so pt(x, y) is a probability transition density.

1.2. The isotropic α-stable semigroup. A comprehensive reference is [32]. Let

ν(z) := cd,α|z|−d−α, z ∈ Rd,

where 0 < α < 2, d ∈ N, and the constant cd,α is such that∫
Rd

(
1 − cos(ξ · z)

)
ν(z)dz = |ξ|α, ξ ∈ Rd.
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Note that the measure ν(z)dz satisfies the so-called Lévy-measure condition:∫
Rd

(1 ∧ |x|2)ν(z)dz < ∞.

Further, it is homogeneous of degree −α:
∫
kA ν(z)dz = k−α

∫
A ν(z)dz, k > 0, A ⊂ Rd, and it is

invariant upon (linear) unitary transformations T : Rd → Rd (to wit, T ∗T = TT ∗ = I) because
ν(Tz) = ν(z).

Exercise 1.2. Prove that, indeed, for some c ∈ (0,∞),∫
Rd

(
1 − cos(ξ · z)

)
|z|−d−αdz = c|ξ|α, ξ ∈ Rd.

Remark 1.3. It is known that c = cd,α = 2αΓ
(
(d + α)/2

)
π−d/2/|Γ(−α/2)|.

For t > 0, we let

pt(x) := (2π)−d

∫
Rd

e−t|ξ|αe−iξ·xdξ, x ∈ Rd.



4 K. BOGDAN

By the celebrated Lévy-Khintchine formula, pt is a probability density and

p̂t(ξ) :=

∫
Rd

eiξ·x pt(x)dx = e−t|ξ|α, ξ ∈ Rd, t > 0.

For α = 1, we get the Cauchy convolution semigroup (aka Poisson kernel in Harmonic Analysis):

pt(z) = Γ((d + 1)/2)π−(d+1)/2 t(
|z|2 + t2)(d+1)/2

.

Exercise 1.4. Prove that for every α ∈ (0, 2),

pt(z) = t−d/αp1(t−1/αz) , t > 0 , z ∈ Rd .

Remark 1.5. It is known that pt(x)/t → ν(x) for x ∈ Rd as t → 0.

Exercise 1.6. Check this directly for α = 1.

Apart from obvious similarities, there exist important differences between p (hence 0 < α < 2)
and g (hence α = 2). E.g., the decay of p in space is polynomial (see, e.g., [18] for a proof):
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Lemma 1.7. There exists c = c(d, α) such that, for all z ∈ Rd, t > 0,

c−1

(
t

|z|d+α
∧ t−d/α

)
≤ pt(z) ≤ c

(
t

|z|d+α
∧ t−d/α

)
.

1.3. Subordination. There is a convolution semigroup ηt, t > 0, of probability densities
concentrated on (0,∞), that is, such that ηt(s) = 0, s ≤ 0 and ηr ∗ ηt = ηr+t for r, t > 0, which
satisfy

(1.2)

∫ ∞

0

e−usηt(s) ds = e−tuα/2
, u ≥ 0.

We have, using Bochner subordination,

pt(x) :=

∫ ∞

0

gs(x)ηt(s) ds,

where g is the Gaussian kernel defined in (1.1). This is a great tool to analyze pt...

Exercise 1.8. Find p̂t using (1.2).
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Below we denote

ν(x, y) := ν(y − x)

and

pt(x, y) := pt(y − x).

1.4. Fractional Laplacian and friends. Recall d ∈ N := {1, 2, . . .}, α ∈ (0, 2), and

ν(x) := cd,α|x|−d−α, x ∈ Rd.

The constant cd,α is such that

|ξ|α =

∫
Rd

(1 − cos ξ · x)ν(x)dx , ξ ∈ Rd.
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Recall ν(x, y) := ν(y−x) = cd,α|y−x|−d−α. We interpret ν(x, y)dy as intensity of jumps of the
isotropic α-stable Lévy proces on Rd, which we will now denote (Xt, t ≥ 0). For u ∈ C2

c (Rd),

∆α/2u(x) = lim
ϵ→0+

∫
{|y−x|>ϵ}

[
u(y) − u(x)

]
ν(x, y)dy

= 1
2

∫
Rd

[
u(x + z) + u(x− z) − 2u(x)

]
ν(z) dz, x ∈ Rd.

1.5. Transition semigroup. Recall that, by the Lévy–Khinchine formula, there are smooth
probability densities with pt ∗ ps = pt+s and∫

Rd
eiξ·xpt(x)dx = e−t|ξ|α, ξ ∈ Rd.

We denote pt(x, y) := pt(y − x), for t > 0, x, y ∈ Rd. Then,

pt(x, y) = t−d/αp1(t−1/α(x− y)) ≈ t−d/α ∧ t

|x− y|d+α
.
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We get a Feller semigroup of operators (on C0(Rd)), see [35] or [22], denoted

Ptf (x) :=

∫
Rd

f (y)pt(x, y)dy, x ∈ Rd, t ≥ 0,

with ∆α/2 as generator. Of course, PtPs = Pt+s, s, t > 0.

1.6. The isotropic α-stable Lévy process in Rd. Consider the space D([0,∞)) of cádlág
functions ω : [0,∞) → Rd. On D([0,∞)), we denote Xt(ω) := ωt, t ≥ 0; Xt− := lims↑tXs. We
also define measures Px, x ∈ Rd, as follows:
For x ∈ Rd, 0 < t1 < t2 < . . . < tn and A1, A2, . . . , An ⊂ Rd,

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) = Px(ωt1 ∈ A1, . . . , ωtn ∈ An)

:=

∫
A1

dx1

∫
A2

dx2 . . .

∫
An

dxn pt1(x, x1)pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn).

We let Ex be the corresponding integration. We call (Xt,Px) the isotropic α-stable Lévy process
in Rd. It is strong Markov.



PROBABILITY IN PDES 9

1.7. The first exit time. We fix D, a nonempty open bounded Lipschitz subset of Rd.1 The
time of the first exit of X from D is

τD := {t > 0 : Xt /∈ D}.

We will consider the random variables τD, XτD− and XτD. We have Px(τD = 0) = 1 for x ∈ ∂D.
Also, Px(XτD ∈ ∂D) = 0 for x ∈ D.

1.8. Killed semigroup and Ikeda-Watanabe formula. For t > 0, x ∈ D, and suitable
functions f , we let

PD
t f (x) := Ex

[
t < τD; f (Xt)

]
=:

∫
D

f (y)pDt (x, y)dy.

This killed semigroup (PD
t ) is (strong) Feller: PD

t Bb(D) ⊂ C0(D).

1In Part 3 below we attempt to reflect Xt at t = τD back to D. Then the geometric assumptions will matter.
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Figure 1. Trajectory of the isotropic α-stable Lévy process; α = 1.8; the unit disc.

The I-W formula describes the law of (τD, XτD−, XτD), for x ∈ D:

Px[τD ∈ J,XτD− ∈ A,XτD ∈ B] =

∫
J

∫
B

∫
A

pDu (x, y)ν(y, z)dydzdu.

Here J ⊂ [0,∞), A ⊂ D, B ⊂ Dc. We may interpret pDu (x, y) as occupation time density.
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2. Handling Schrödinger operators and Hardy inequalities by
Feynman-Kac semigroups and superharmonic functions

This Part 2 of the course is based on [8], but we also like to mention [13], [14], [17].

2.1. Goals and motivation. We construct explicit supermedian functions for symmetric sub-
Markov semigroups to obtain Hardy inequality or ground-state representation (Hardy identity)
for their quadratic forms.

A general rule stemming from the work of Fitzsimmons [27] is this: If L is the generator of a
symmetric Dirichlet form E , h ≥ 0 and Lh ≤ 0, then E(u, u) ≥

∫
u2(−Lh/h). Below we make

a similar connection in the setting of symmetric transition densities p. When p is integrated
against increasing weight in time and any weight in space, we obtain a supermedian function h.
We also get a weight, q, an analogue of the Fitzsimmons’ ratio −Lh/h, which yields the Hardy
identity or inequality.

We simultaneously prove non-explosion results for Schrödinger perturbations p̃ of p by q.
Namely, we verify that h is supermedian and integrable for p̃, if finite. E.g., we recover the
famous critical non-explosion result of Baras and Goldstein for ∆ + (d/2− 1)2|x|−2; see [2], [34].
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Current applications of our methods involve detailed analysis of “critical” Schrödinger per-
turbations and some analogues in the Lp setting; see [13], [17], and [14], respectively. The latter
will be discussed in Part 4 of the course.

2.2. Supermedian functions. Let (X,M,m) be a σ-finite measure space. Let B(0,∞) be the
Borel σ-field on the half-line (0,∞). Let p : (0,∞) ×X ×X → [0,∞] be B(0,∞) ×M×M-
measurable and symmetric:

pt(x, y) = pt(y, x) , x, y ∈ X , t > 0 .

Let p satisfy the Chapman–Kolmogorov equations:

(2.1)

∫
X

ps(x, y)pt(y, z)m(dy) = ps+t(x, z), x, z ∈ X, s, t > 0,

and assume that for all t > 0 and x ∈ X , pt(x, y)m(dy) is a σ-finite measure.
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Let f : R → [0,∞) be increasing and f := 0 on (−∞, 0]. We have f ′ ≥ 0 almost everywhere
(a.e.), and

(2.2) f (a) +

∫ b

a

f ′(s)ds ≤ f (b), −∞ < a ≤ b < ∞.

Further, let µ be a positive σ-finite measure on (X,M). We put

psµ(x) :=

∫
X

ps(x, y)µ(dy),(2.3)

h(x) :=

∫ ∞

0

f (s)psµ(x) ds.(2.4)
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We also denote pth(x) :=
∫
X pt(x, y)h(y)m(dy). By Tonelli and Chapman-Kolmogorov, for

t > 0 and x ∈ X ,

pth(x) =

∫ ∞

t

f (s− t)psµ(x) ds

≤
∫ ∞

t

f (s)psµ(x) ds

≤ h(x).(2.5)

In this sense, h is supermedian for the kernel p. In fact, it is excessive since pth → h as t → 0;
see [29] for some nomenclature of potential theory.
We then define q : X → [0,∞] as follows: q(x) := 0 if h(x) = 0 or ∞, else

q(x) :=
1

h(x)

∫ ∞

0

f ′(s)psµ(x) ds.
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Hence for all x ∈ X ,

(2.6) q(x)h(x) ≤
∫ ∞

0

f ′(s)psµ(x) ds.

Exercise 2.1. Calculate h and q for the Gaussian semigroup, µ the Dirac measure, and f (t) :=

tβ. For which β we get (the largest) q(x) = (d−2)2

4 |x|−2?

2.3. Schrödinger perturbation.

Exercise 2.2. Of course, exp(x) :=
∑∞

n=0 x
n/n! for x ∈ R. Prove directly that exp(x + y) =

exp(x) exp(y), x, y ∈ R.

Definition 2.3. [11] We define the Schrödinger perturbation of our p by q:

(2.7) p̃ :=

∞∑
n=0

p(n),
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where p
(0)
t (x, y) := pt(x, y), and

(2.8) p
(n)
t (x, y) :=

∫ t

0

∫
X

ps(x, z) q(z)p
(n−1)
t−s (z, y)m(dz) ds, n ≥ 1.

Lemma 2.4. p̃ is a transition density.

This is indeed similar to Exercise 2.2. For details, see [11].
Recall that h is supermedian for p. Here is a deeper (non-explosion) result.

Theorem 2.5 ([8]).We have p̃th ≤ h for all t > 0.

In the next subsection, q will double as a weight in a Hardy inequality.

2.4. Hardy inequality. Let p, f , µ, h and q be as defined above.
Additionally, we shall assume that

∫
X pt(x, y)m(dy) ≤ 1 for all t > 0 and x ∈ X . Since the

semigroup of operators (pt, t > 0) is self-adjoint and weakly measurable,

⟨ptu, u⟩ =

∫
[0,∞)

e−λtd⟨Pλu, u⟩,
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where Pλ is the spectral decomposition of the operators, see [30, Section 22.3]. For u ∈ L2(m)
and t > 0, we let

E (t)(u, u) :=
1

t
⟨u− ptu, u⟩.

In the theory of Dirichlet forms, it is usually argued by the spectral theorem that t 7→ E (t)(u, u)
is positive and decreasing [28, Lemma 1.3.4], allowing to define the quadratic form of p,

E(u, u) := lim
t→0

E (t)(u, u), u ∈ L2(m).(2.9)

Exercise 2.6. Check the monotonicity.

Here comes a Hardy inequality with a remainder (2.10) and a Hardy identity, or ground-state
representation (2.11) of E , obtained by considering E (t)(hu/h, h u/h), or Doob conditioning.
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Theorem 2.7 ([8]). If u ∈ L2(m) and u = 0 on {x ∈ X : h(x) = 0 or ∞},

E(u, u) ≥
∫
X

u(x)2q(x)m(dx)(2.10)

+ lim inf
t→0

∫
X

∫
X

pt(x, y)

2t

(
u(x)

h(x)
− u(y)

h(y)

)2

h(y)h(x)m(dy)m(dx).

If f (t) = tβ+ with β ≥ 0 in (2.4) or, more generally, if f is absolutely continuous and there
are δ > 0 and c < ∞ such that

[f (s) − f (s− t)]/t ≤ cf ′(s) for all s > 0 and 0 < t < δ,

then for every u ∈ L2(m),

E(u, u) =

∫
u(x)2q(x)m(dx)(2.11)

+ lim
t→0

∫
X

∫
X

pt(x, y)

2t

(
u(x)

h(x)
− u(y)

h(y)

)2

h(y)h(x)m(dy)m(dx).
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Here is a resulting Hardy-type inequality.

Corollary 2.8. For every u ∈ L2(m) we have E(u, u) ≥
∫
X u(x)2q(x)m(dx).

We are interested in quotients q as large as possible. This calls for explicit formulas or lower
bounds of the numerator and upper bounds of the denominator. For instance, Exercise 2.1 yields
the classical Hardy inequality:

Corollary 2.9. The quadratic form of u ∈ L2(Rd, dx) for the Gaussian semigroup is
bounded below by (d/2 − 1)2

∫
Rd u(x)2|x|−2dx.

Below we discuss further applications. To this end we use the Fourier transform (in the
version consistent with the characteristic function):

f̂ (ξ) :=

∫
Rd

eiξ·x f (x)dx for (a.e.) ξ ∈ Rd,

where ξ · x := ξ1x1 + . . . + ξdxd. For instance,

ĝt(ξ) = e−t|ξ|2, t > 0, ξ ∈ Rd.
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According to Plancherel theorem, for f, g ∈ L2(dx),∫
Rd

f̂ (ξ)ĝ(ξ)dξ = (2π)d
∫
Rd

f (x)g(x)dx.

Exercise 2.10. Check this for g1/2.

Exercise 2.11. The classical Hardy inequality in Rd may be stated as∫
Rd

|ξ|2|û(ξ)|2dξ ≥
(
d− 2

2

)2

(2π)d
∫
Rd

u(x)2|x|−2dx, d ≥ 3.

Check this. Find a formulation that does not use the Fourier transform û.

We will return to this case below.

2.5. Fractional Hardy inequality. Regarding the setting of Subsection 2.4, we will have
m(dx) = dx, the Lebesgue measure on Rd. For u ∈ L2(Rd, dx), we let

(2.12) E(u, u) :=
1

2

∫
Rd

∫
Rd

[u(x) − u(y)]2ν(x, y) dy dx.
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The following statement on self-dominated convergence is quite useful.

Lemma 2.12. [14, Lemma 6] If f, fk : Rd → [0,∞] satisfy fk ≤ cf and f = limk→∞ fk,
k = 1, 2, . . ., then for each measure µ, limk→∞

∫
fk dµ =

∫
f dµ.

Exercise 2.13. Prove that (2.12) is the Dirichlet form of p.

Proposition 2.14 ([8]). If 0 < α < d, 0 < β < (d− α)/α, u ∈ L2(Rd),

E(u, u) = C

∫
Rd

u(x)2

|x|α
dx +

∫
Rd

∫
Rd

(
u(x)

h(x)
− u(y)

h(y)

)2

h(x)h(y)ν(x, y) dy dx ,

where h(x) = |x|α(β+1)−d and

C = 2αΓ(
d

2
− αβ

2 )Γ(
α(β + 1)

2
)Γ(

d

2
− α(β+1)

2 )−1Γ(
αβ

2
)−1.

We get a maximal C = 2αΓ(d+α
4 )2/Γ(d−α

4 )2 if β = (d− α)/(2α).

Exercise 2.15. Prove this ground-state representation using Theorem 2.7.
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2.6. Further information about the classical Hardy identity. For completeness we
state Hardy identities for the Dirichlet form of the Gaussian semigroup on Rd. Namely, (2.14)
below is the optimal classical Hardy equality with remainder, and (2.13) is its slight extension,
in the spirit of Proposition 2.14.

Proposition 2.16. Suppose d ≥ 3 and 0 ≤ γ ≤ d− 2. For u ∈ W 1,2(Rd),∫
Rd

|∇u(x)|2dx=γ(d− 2 − γ)

∫
Rd

u(x)2

|x|2
dx +

∫
Rd

∣∣∣h(x)∇u

h
(x)

∣∣∣2 dx,(2.13)

where h(x) = |x|γ+2−d. In particular,

(2.14)

∫
Rd

|∇u(x)|2 dx =
(d− 2)2

4

∫
Rd

u(x)2

|x|2
dx +

∫
Rd

∣∣∣∣|x|2−d
2 ∇ u(x)

|x|(2−d)/2

∣∣∣∣2 dx.
The result has some ad-hoc elements (like gradient, ∇), so we refer to [8].
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2.7. Schrödinger perturbations. The plan of this Subsection 2.7 is to discuss details of
Schrödinger perturbations from [11], results on nonlocal Schrödinger perturbations from [19], and
nonlocal boundary conditions in [16]. It would also be nice to mention gradient perturbation [12],
general Schrödinger perturbations [15], special considerations for the Gaussian kernel [20], [7],
[9], and critical Hardy-type Schrödinger perturbations [10], but... Let us first make a probability
connection.

2.8. A Feynman-Kac formula. Here we follow [11]. Let g(s, x, t, y) := gt−s(y − x) be the
Gaussian kernel in Rd, s, t ∈ R, x, y ∈ Rd. (We let g = 0 if s ≥ t.) Let q : R×Rd → [0,∞] (or
C). Here is the perturbation of g by q on X = Rd without the time-homogeneous corset: Let
g̃ :=

∑∞
n=0 g

(n), where g(0)(s, x, t, y) := g(s, x, t, y), and for n ≥ 1,

g(n)(s, x, t, y) :=

∫ t

s

∫
X

g(s, x, u, z) q(z, u)g(n−1)(u, z, t, y)m(dz) du.
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Let Es,x and Ps,x be the expectation and the distribution of the Brownian motion Y (here
Yt = B2t) starting at the point x ∈ Rd at time s ∈ R. So,

Ps,x[Yt ∈ A] =

∫
A

g(s, x, t, y) dy, t > s, A ⊂ Rd.

Y has transition probability density g(u1, z1, u2, z2), where s ≤ u1 < u2. Thus, the finite
dimensional distributions have the density functions

g(s, x, u1, z1)g(u1, z1, u2, z2) · · · g(un−1, zn−1, un, zn) .

Further, for y ∈ Rd, t > s, we let Et,y
s,x and Pt,y

s,x denote the expectation and the distribution of
the process starting at x at time s and conditioned to reach y at time t (Brownian bridge). The
bridge, also denoted Y , has transition probability density

r(u1, z1, u2, z2) =
g(u1, z1, u2, z2)g(u2, z2, t, y)

g(u1, z1, t, y)
,
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where s ≤ u1 < u2 < t and z1, z2 ∈ Rd. Thus, its finite dimensional distributions have the
density functions

(2.15)
g(s, x, u1, z1)g(u1, z1, u2, z2) · · · g(un, zn, t, y)

g(s, x, t, y)
.

Here s ≤ u1 < . . . < un < t, z1, . . . , zn ∈ Rd. We get a disintegration of Ps,x:

Ps,x (Yu1 ∈ A1 , . . . , Yun ∈ An , Yt ∈ B)

=

∫
B

Pt,y
s,x (Yu1 ∈ A1 , . . . , Yun ∈ An) g(s, x, t, y) dy ,A1, . . . , An, B ⊂ Rd.

Here comes the multiplicative functional eq(s, t) := exp
(∫ t

s q(u, Yu) du
)

[23]. Of course,

Et,y
s,x eq(s, t) =

∞∑
n=0

1

n!
Et,y
s,x

(∫ t

s

q(u, Yu) du

)n

.
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According to (2.15),

Et,y
s,x

∫ t

s

q(u, Yu) du =

∫ t

s

∫
Rd

g(s, x, u, z)q(u, z)g(u, z, t, y)

g(s, x, t, y)
dudz

=
g1(s, x, t, y)

g(s, x, t, y)
.

Furthermore,

Et,y
s,x

1

2

(∫ t

s

q(u, Yu) du

)2

= Et,y
s,x

∫ t

s

∫ t

u

q(u, Yu)q(v, Yv) dvdu

=

∫ t

s

∫ t

u

∫
Rd

∫
Rd

g(s, x, u, z)g(u, z, v, w)g(v, w, t, y)

g(s, x, t, y)
q(u, z)q(v, w) dwdz dvdu

=

∫ t

s

∫
Rd

g(s, x, u, z)g1(u, z, t, y)

g(s, x, t, y)
q(u, z) dz du =

g2(s, x, t, y)

g(s, x, t, y)
.
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Similarly, for every n = 0, 1, . . .,

1

n!
Et,y
s,x

(∫ t

s

q(u, Yu) du

)n

=
gn(s, x, t, y)

g(s, x, t, y)
,

hence we get a Feynmann-Kac formula

g̃(s, x, t, y) = g(s, x, t, y)Et,y
s,x exp

∫ t

s

q(u, Yu)du .

We may interpret g̃(s, x, t, y)/g(s, x, t, y) as the eventual inflation of mass of the Brownian
particle moving from (s, x) to (t, y). The mass grows multiplicatively where q > 0 (and decreases
if q < 0). For instance, if q(u, z) = q(u) (depends only on time), then

g̃(s, x, t, y)/g(s, x, t, y) = exp

(∫ t

s

q(u)du

)
.

2.9. Integral kernels. Here we mostly follow [19]. Let (E, E) be a measurable space. A kernel
on E is a map K from E × E to [0,∞] such that
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x 7→ K(x,A) is E-measurable for all A ∈ E , and

A 7→ K(x,A) is countably additive for all x ∈ E.

Consider kernels K and J on E. The map (E × E) → [0,∞] given by

(x,A) 7→
∫
E

K(x, dy)J(y, A)

is another kernel on E, called the composition of K and J , and denoted KJ .

Exercise 2.17. Why is composition of kernels similar to multiplication of matrices?

We let Kn := Kn−1JK(s, x, A) = (KJ)nK, n = 0, 1, . . .. The composition of kernels is
associative, which yields the following lemma.

Lemma 2.18.Kn = Kn−1−mJKm for all n ∈ N and m = 0, 1, . . . , n− 1.
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We define the perturbation, K̃, of K by J , via the perturbation series,

(2.16) K̃ :=

∞∑
n=0

Kn =

∞∑
n=0

(KJ)nK.

Of course, K ≤ K̃, and we have the following perturbation formula(s),

(2.17) K̃ = K + K̃JK = K + KJK̃.

Goals: algebra or bounds for K̃ under additional conditions on K and J .

2.10. An upper bound. Consider a set X (the space) with σ-algebra M, the real line R (the
time) with the Borel sets BR, and the space-time,

E := R×X,

with the product σ-algebra E = BR ×M. Let η ∈ [0,∞) and a function Q : R× R → [0,∞)
satisfy the following condition of super-additivity:

Q(u, r) + Q(r, v) ≤ Q(u, v) for all u < r < v.
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Exercise 2.19. Check Q(s, t) :=
∫ t

s f (u)du is superadditive if f : R → [0,∞).

Let J be another kernel on E. We assume that K and J are forward kernels, i.e., for
A ∈ E , s ∈ R, x ∈ X ,

K(s, x, A) = 0 = J(s, x, A) whenever A ⊆ (−∞, s] ×X.

It also suffices that K is forward and J is instantaneous, that is, J(s, x, dtdy) = j(s, x, dy)δs(dt).
In particular, Schrödinger perturbations are obtained when j(s, x, dy) = q(s, x)δx(dy) is local.
In what follows, we study consequences of the following assumption,

(2.18) K1(s, x, A) := KJK(s, x, A) ≤
∫
A

[η + Q(s, t)]K(s, x, dtdy),

with impulsive bound η ∈ [0,∞) and superadditive bound Q.
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Theorem 2.20. Assuming (2.18), for all n = 1, 2, . . ., and (s, x) ∈ E, we have

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)

[
η +

Q(s, t)

n

]
≤ K(s, x, dtdy)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all (s, x) ∈ E,

K̃(s, x, dtdy) ≤ K(s, x, dtdy)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then for all (s, x) ∈ E,

K̃(s, x, dtdy) ≤ K(s, x, dtdy)eQ(s,t).

2.11. Pointwise versions (exist). Theorem 2.20 has two pointwise variants (which may be
skipped). Fix a (nonnegative) σ-finite, non-atomic measure

dt := µ(dt)
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on (R,BR) and a function k(s, x, t, A) ≥ 0 defined for s, t ∈ R, x ∈ X , A ∈ M, such that
k(s, x, t, dy)dt is a forward kernel and (s, x) 7→ k(s, x, t, A) is jointly measurable for all t ∈ R
and A ∈ M. Let k0 = k, and for n = 1, 2, . . .,

kn(s, x, t, A) =

t∫
s

∫
X

kn−1(s, x, u, dz)

∫
(u,t)×X

J(u, z, du1dz1)k(u1, z1, t, A)du.

The perturbation, k̃, of k by J , is defined as k̃ =
∑∞

n=0 kn. Assume that

t∫
s

∫
X

k(s, x, u, dz)

∫
(u,t)×X

J(u, z, du1dz1)k(u1, z1, t, A)du ≤ [η + Q(s, t)]k(s, x, t, A).
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Theorem 2.21. Under the assumptions, for all n = 1, 2, . . ., and (s, x) ∈ E,

kn(s, x, t, dy) ≤ kn−1(s, x, t, dy)

[
η +

Q(s, t)

n

]
≤ k(s, x, t, dy)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all (s, x) ∈ E and t ∈ R we have

k̃(s, x, t, dy) ≤ k(s, x, t, dy)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then
k̃(s, x, t, dy) ≤ k(s, x, t, dy)eQ(s,t).

For the finest variant of Theorem 2.20, we fix a σ-finite measure

dz := m(dz)
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on (X,M). We consider function κ(s, x, t, y) ≥ 0, s, t ∈ R, x, y ∈ X , such that κ(s, x, t, y)dtdy
is a forward kernel and (s, x) 7→ k(s, x, t, y) is jointly measurable for all t ∈ R and y ∈ X . We
call such κ a (forward) kernel density (see [15]). We define κ0(s, x, t, y) = κ(s, x, t, y), and

κn(s, x, t, y) =

t∫
s

∫
X

κn−1(s, x, u, z)

∫
(u,t)×X

J(u, z, du1dz1)κ(u1, z1, t, y) dz du ,

where n = 1, 2, . . .. Let κ̃ =
∑∞

n=0 κn. For all s < t ∈ R, x, y ∈ X , we assume

t∫
s

∫
X

κ(s, x, u, z)

∫
(u,t)×X

J(u, z, du1dz1)κ(u1, z1, t, y)dzdu ≤ [η + Q(s, t)]κ(s, x, t, y).
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Theorem 2.22. Under the assumptions, for n = 1, 2, . . ., s < t and x, y ∈ X,

κn(s, x, t, y) ≤ κn−1(s, x, t, y)

[
η +

Q(s, t)

n

]
≤ κ(s, x, t, y)

n∏
l=1

[
η +

Q(s, t)

l

]
.

If 0 < η < 1, then for all s, t ∈ R and x, y ∈ X,

κ̃(s, x, t, y) ≤ κ(s, x, t, y)

(
1

1 − η

)1+Q(s,t)/η

.

If η = 0, then

κ̃(s, x, t, y) ≤ κ(s, x, t, y)eQ(s,t).

Exercise 2.23. If κ1 ≤ ηκ with η ∈ (0, 1), then κ̃ ≤ 1
1−ηκ (Khasminski’s lemma). Explain

why this follows from the above. Also, verify it directly using perturbation series.



36 K. BOGDAN

2.12. Transition kernels. Let k as above be a transition kernel, i.e., additionally satisfy the
Chapman-Kolmogorov conditions for s < u < t, A ∈ M (we do not assume k(s, x, t,X) = 1),∫

X

k(s, x, u, dz)k(u, z, t, A) = k(s, x, t, A).

Following [11], we may show that k̃ is a transition kernel, too. Here is the first step.

Lemma 2.24. For all s < u < t, x, y ∈ X, A ∈ M, and n = 0, 1, . . .,

(2.19)

n∑
m=0

∫
X

km(s, x, u, dz)kn−m(u, z, t, A) = kn(s, x, t, A).

Lemma 2.25 (Chapman-Kolmogorov). For all s < u < t, x, y ∈ Rd and A ∈ M,∫
X

k̃(s, x, u, dz)k̃(u, z, t, A) = k̃(s, x, t, A).

The proof follows that of [11, Lemma 2], using (2.19). Thus, k̃ is a transition kernel. Similarly,
κ̃ above is a transition density, provided so is κ.
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Exercise 2.26. Prove Lemma 2.25 in analogy to Exercise 2.2.

Remark 2.27. Estimating K1 := KJK by K is crucial. Much of our research was devoted to
this goal, including proving and applying 3G Theorems for power-like kernels and 4G (4.5G)

Theorems for others. See [15, 20, 7, 9]. See [10] for cases when we get K̃ much bigger than K or
even explosion; see [12] for gradient perturbations and [14, 13] for applications.

Remark 2.28. The parametrix method a related but more difficult subject, where we do not
have an initial transition kernel to start with, but a field of transition kernels, see [21] and [33].

We can describe connections with ‘generators’. For instance, let p(s, x, t, y) := pt−s(y − x)

be the transition kernel of the α-stable semigroup, aka fundamental solution of ∂t − ∆
α/2
y :

(2.20)

∫
R

∫
Rd

p(s, x, t, y)
[
∂t + ∆α/2

y

]
ϕ(t, y) dydt = −ϕ(s, x) ,

where s ∈ R, x ∈ Rd, and ϕ ∈ C∞
c (R× Rd). (Hint: Use the Fourier transform on Rd.)
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Here

∆α/2ϕ(y) := −(−∆)α/2ϕ(y) = lim
t↓0

ptϕ(y) − ϕ(y)

t

=
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|
lim
ε↓0

∫
{|z|>ε}

ϕ(y + z) − ϕ(y)

|z|d+α
dz , y ∈ Rd .

Let
(
Lϕ

)
(t, y) = ∂tϕ(t, y) + ∆

α/2
y ϕ(t, y), the parabolic operator.

We also consider kernels Q(s, x, dudz) := q(s, x)δs(du)δx(dz), the kernel of multiplication
by q, and P (s, x, dudz) := p(s, x, u, z)dudz, and

P̃ :=

∞∑
n=0

(PQ)nP .

We can interpret the fundamental solution (2.20) as

(2.21) PLϕ = −ϕ (ϕ ∈ C∞
c (R× Rd)) .
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Let us assume, e.g., that Q ≥ 0 and PQP ≤ ηP for some η ∈ [0, 1). Then

(2.22) P̃ (L + Q)ϕ = −ϕ (ϕ ∈ C∞
c (R× Rd)) .

Indeed, by (2.21),

P̃ (L + Q)ϕ =

∞∑
n=0

P (QP )n(L + Q)ϕ

= PLϕ +

∞∑
n=1

(PQ)nPLϕ +

∞∑
n=0

(PQ)n+1ϕ = −ϕ .

Here is what (2.22) means:∫
R

∫
Rd

p̃(s, x, t, y)
[
∂tϕ(t, y) + ∆α/2

y ϕ(t, y) + q(t, y)ϕ(t, y)
]
dydt = −ϕ(s, x) ,

where s ∈ R, x ∈ Rd, and ϕ ∈ C∞
c (R× Rd).
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3. Handling generators and boundary conditions by concatenation of
Markov processes

3.1. The (tentative) reflections. We want a Markov process (Yt, t ≥ 0) equal to X until
τD, but at τD we will perform a reflection: instead of z = XτD ∈ Dc, we let YτD = y ∈ D with
distribution µ(z, dy). This yields jump intensity

(3.1) γ(x, dy) := ν(x, dy) +

∫
Dc

ν(x, dz)µ(z, dy) on D.

(1) Is there such a thing?

(2) How to construct the corresponding semigroup (Kt, t > 0) and describe its long-time
behavior?

(3) What about the generator and boundary conditions?

3.2. Tightness assumption. The outcome of [16] is (just) a conservative exponentially asymp-
totically stable Markovian semigroup (Kt, t ≥ 0), with γ as the integro-differential kernel of
generator. For this we make the following assumptions on D and µ:
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D is open nonempty bounded Lipschitz set in Rd. Let µ : Dc × B(D) → [0, 1] be such that
µ(z, ·), z ∈ Dc, are Borel probability measures on D weakly continuous at ∂D and there are
ϑ > 0 and H ⋐ D with |H| > 0 such that µ(z,H) ≥ ϑ for z ∈ Dc.

We will use the notation

ν1Dcµ(v,W ) :=

∫
Dc

ν(v, z)µ(z,W )dz , v ∈ D,W ⊂ D.

3.3. Some background on “reflecting”. Similar “reflections” appeared first in Feller [25]
for one-dimensional diffusions, called instantaneous return processes with non-local bound-
ary conditions. Ikeda, Nagasawa, Watanabe [31], Sharpe [36], Werner [39] deal with “piecing
together”, “resurrection”, “concatenation”.

Further (multidimensional) developments: Ben-Ari and Pinski [4], Arendt, Kunkel, and Kunze
[1], Taira [37].

For jump processes, one can make YτD depend on XτD− and XτD:
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E.g., KB, Burdzy and Chen [6] propose the censored processes, with the reflection back to
XτD−. Barles, Chasseigne, Georgelin and Jakobsen [3] discuss geometric reflections depending
on (XτD−, XτD) for the half-space.

Dipierro, Ros-Oton and Valdinoci [24] essentially postulate µ(z, dy) = ν(z, dy)/ν(z,D).
However, they discuss Neumann-type problems, not the semigroup or Markov process. See also
Felsinger, Kassmann and Voigt [26]. Vondraček [38] proposes a variant of [24, 26].

Palmowski, Grzywny, Szczypkowski study “resetting” (forthcoming).
KB, Fafu la, Sztonyk deal with the Servadei-Valdinoci model (forthcoming).
Bobrowski [5] describes (a limiting case of) “concatenation” in “geometric graphs”.

3.4. Objects related to X. The Green function:

GD(x, y) :=

∫ ∞

0

pDt (x, y) dt, x, y ∈ D.

The expected exit time:

ExτD =

∫
D

GD(x, y) dy, x ∈ D.
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The survival probability :

Px(τD > t) =

∫ ∞

t

ds

∫
D

dv

∫
Dc

dz pDs (x, v)ν(v, z)

=

∫
D

pDt (x, y) dy, t > 0, x ∈ D.

In particular, for all t > 0, x ∈ D,

(3.2)

∫
D

pDt (x, y)dy +

∫ t

0

ds

∫
D

dv

∫
Dc

dz pDs (x, v)ν(v, z) = 1.

3.5. Construction of the semigroup (Kt, t > 0). This follows [11] and [19], as discussed
above: For t > 0, x, y ∈ D, n ∈ N, we let kt(x, y) :=

∑∞
n=0 pn(t, x, y), where

p0(t, x, y) := pDt (x, y),

pn(t, x, y) :=

∫ t

0

ds

∫
D

dv

∫
D

pn−1(s, x, v)ν1Dcµ(v, dw)p0(t− s, w, y).
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In our notation of nonlocal Schrödinger perturbations (of kernels operating on space-time),

K =

∞∑
n=0

(PD ν1Dcµ)nPD.

Corollary 3.1.
∫
D kt(x, y)ks(y, z)dy = kt+s(x, z) for all t > 0, x, y ∈ D.

For f ∈ Bb(D), we let Ktf (x) :=
∫
D f (y)kt(x, y)dy, where t > 0, x ∈ D.

3.6. Main results.

Theorem 3.2.
∫
D kt(x, y)dy = 1 for all t > 0, x ∈ D.

Hints: The easy part: Kt1(x) = kt(x,D) :=
∫
D kt(x, y)dy ≤ 1.

Indeed, p0(t, x,D) :=
∫
D pDt (x, y)dy ≤ 1. Then,

p1(t, x,D) :=

∫ t

0

ds

∫
D

dv

∫
D

pDs (x, v)ν1Dcµ(v, dw)pDt−s(w,D)

≤
∫ t

0

ds

∫
D

dvpDs (x, v)ν(v,Dc),
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so, by (3.2), p0(t, x,D) + p1(t, x,D) ≤ 1. Similarly, for all n ∈ N,

n∑
k=0

pn(t, x,D) ≤ 1.

For deeper results we use there lower bounds for fixed t > 0:

p0(t, x,D) + p1(t, x,D) ≥ c > 0, x ∈ D,

kt(x, y) ≥ δ > 0, x ∈ D, y ∈ H.

They follow from known bounds of pD.
The second bound is a Dobrushin-type condition, which yields exponential egodicity, as follows.

Theorem 3.3. There is a unique stationary distribution κ for (Kt). Moreover, there exist
M,ω ∈ (0,∞) such that for every probability measure ρ on D,

∥ρKt − κ∥TV ≤ Me−ωt, t > 0.
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3.7. Generator and boundary conditions. Given a function f ∈ Cb(D), we let

fµ(x) :=

{
f (x), for x ∈ D,

µ(x, f ), for x ∈ Dc,

where

(µf )(z) := µ(z, f ) :=

∫
D

µ(z, dy)f (y), z ∈ Dc.

We define the space Cµ(D) by

Cµ(D) := {f ∈ Cb(D) : fµ ∈ Cb(Rd)}.

Proposition 3.4.Ktf → f uniformly as t → 0 if, and only if, f ∈ Cµ(D).

We consider the Laplace transform (resolvent) Rλ of Kt, defined by

Rλ :=

∫ ∞

0

e−λtKtdt, λ > 0,
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and relate it to the Laplace transform RD
λ of PD. By perturbation formula,

Kt = PD +

∫ t

0

Psν1DcµKt−sds = PD +

∫ t

0

Ksν1DcµPD
t−sds,

which leads to

Rλ = RD
λ + RD

λ ν1DcµRλ = RD
λ + Rλν1DcµRD

λ .

The generator A of Kt is defined on D(A) := Rλ(Cb(D)) by A := λ−R−1
λ .

Theorem 3.5. For u, f ∈ Cb(D), the following are equivalent:

(1) u ∈ D(A) and Au = f .

(2) u ∈ Cµ(D) and, with γ := ν + ν1Dcµ as kernels on D, given by (3.1),

f (x) = lim
ϵ→0+

∫
{|y−x|>ϵ}∩D

(u(y) − u(x))γ(x, dy), x ∈ D.



48 K. BOGDAN

3.8. Issues.

(1) (Kt) is a Cb-semigroup and has the strong Feller property, but it is not Feller (on C0(D))
nor symmetric nor bounded on L2(D) in general.

(2) The existence of (Yt) requires a separate approach. (Not yet done, but concatenation of
right processes applies.) Also called piecing-out, resetting, resurrection, instantaneous re-
turn, Neumann-type conditions.

(3) Test functions C∞
c (D) are not in the domain of the generator.

(4) The range of the resolvent is a specific function space with boundary condition expressed
via µ.

(5) It is convenient to use the Dynkin operator as generator.

(6) This is about constructing new semigroups by positive nonlocal perturbations of PD
t . The

perturbing kernel “defines” boundary conditions.

(7) Reflected trajectories in models without tightness can accumulate at the boundary.
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3.9. Summary. We propose in [16] a framework for constructing semigroups with specific re-
flection mechanism from the killed semigroup. The restriction to ∆α/2 can be easily relaxed, but
the tightness condition is more tricky.

This area of research is motivated by the Neumann-type boundary-value problems [3, 24]
and by the problem of piecing-out or concatenation of Markov processes in the sense of Ikeda,
Nagasawa and Watanabe [31], Sharpe [36] and Werner [39].

Besides construction, questions arise on large-time and boundary behavior of the semigroup
(process) and on applications to nonlocal differential equations with those boundary conditions.
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