E R R A T A Entropy in Dynamical Systems

Tomasz Downarowicz

 \star page 8, line -8: ¹ satisfies $I_{\mathcal{P}}(\omega) \leq N(\omega) \leq I_{\mathcal{P}}(\omega) + 1$ for μ -almost every ω . The difference $\mathsf{E}(I_{\mathcal{P}}) \leq \mathsf{E}(N)$ (where E denotes the expected value) and * page 97, line 6: Throughout this section A data compression algorithm in information theory is an algorithm (described Λ denotes a finite alphabet. \star page 98, lines -13 to -9: **Theorem 3.5.1** Let ϕ be a compression algorithm that applies to all suffi- $(\Lambda^{\mathbb{S}}, \mu, \sigma, \mathbb{S})$ ciently long blocks appearing in some ergodic process $(X, \mathcal{P}, \mu, T, \mathbb{S})$ of entropy $h = h(\mu, T, \mathcal{P})$. Let n be so large that $H(\mu, \mathcal{P}^n) < n(h + \varepsilon)$. $h(\mu, \Lambda)$ Then the joint measure of all blocks B of length m whose compression rate is smaller than $\frac{H_n(B)}{\log \# \Lambda}$ tends to zero with m. $(h-\epsilon)$ * page 101, line 8: n exceeds $2^{n(\log l - \varepsilon)}$. Hint: Choose carefully a block W which cannot eventually * page 111, line 7: equals $\Pi_{\mathcal{P}}$, where $\mathcal{P} = \bigvee_{i=1}^{k} \mathcal{P}_i$. By Theorem 3.2.2 again, $h(\mathcal{Q}') = 0$ and, by is inscribed in * page 131, line -5: 4.9 Prove that every automorphism $(X, \mathfrak{A}, \mu, T, \mathbb{Z})$ of finite entropy admits, ergodic * page 131, line -3: 4.10 Use the Sinai Theorem to show that every system $(X, \mathfrak{A}, \mu, T, \mathbb{S})$ admits ergodic * page 199, line –14: 6.3 Show that if T is Lipschitz, i.e., $d(Tx, Ty) \leq cd(x, y)$ for some constant Is it true * page 199, line -4: $\mathbf{h}(T^n, \mathcal{U}^{|n|}|\nu) = |n|\mathbf{h}(T, \mathcal{U}|\nu), \ \mathbf{h}(T^n|\nu) = |n|\mathbf{h}(T|\nu)_{\mathbf{k}}$ (attention, some equalities hold only for $n \ge 0$). * page 216, lines 1 and 2: • For every n the projections onto X of the cells of $\mathcal{A}_{\mathcal{F}_k}$ labeled $y_{k,n}$ have and k and $\mathcal{A}_{\mathcal{F}_{k+1}}$, and $y_{k+1,n}$, respectively, \star page 216, lines 3 and 4: Since the diameters of these cells decrease to zero with k (for n fixed), the If we arrange that sufficiently fast above intersection is a single point in X. We denote this point by $\pi_{X,n}(y)$. projections converge to \star page 219, lines -2 and -1: satisfies the column condition; the projections of the cells corresponding to the in rows k and k + 1both symbols in column n of this rectangle all contain the point $T^n x_D$.

¹ I thank Krzysztof Przesławski for this correction.

* page 237, line 2: or it is finite everywhere. Clearly, the transfinite sequence u_{α} is increasing. and upper semicontinuous * page 260, line -14: F'say that G' is a fiber saturation of F. Since F' is compact and π is continuous, * page 261, line 7: \mathcal{W}^n $\mathbf{H}(\mathcal{U}|\mathcal{F},\mathcal{W}) \leq \mathbf{H}(\mathcal{U}|\mathcal{F},\mathcal{V}) + \mathbf{H}(\mathcal{V}|\mathcal{W})$. We apply the above to $\mathcal{U}^n, \mathcal{V}^n$ and \mathcal{V}^n , * page 261, line -14: $\in \mathcal{V}^n$ not disjoint of (The points in *G* should satisfy the above for a generating sequence of partitions \mathcal{P} (each with possibly different threshold number n_{σ}).) generated by the partitions \mathcal{P} and \mathcal{Q} . Consider a cell $V \in \mathcal{V}^n$ not disjoint of * page 270, line -14: 8.5 (David Burguet) Check that the superenvelopes of \mathcal{H} are precisely the repair functions of the tails \star page 270, lines -10 and -9: Theorem [Tarski, 1955] to deduce the existence of the smallest superenrepair function velope. * page 290, line -11: combination $\sum_{k=1}^{\infty} 2^{-k} \mu_{k+1}$ (like the points b_k in Example 8.2.17, which are now $\mu_{(B_{k+1})}$ * page 299, line -11: the functions. By monotonicity, each function can streph at most $1/\delta$ of these t * page 323, line 1: belong to $L^1(\mu)$ Lemma 11.2.10 Let f, g be two bounded measurable functions on X. For * page 323, line 11:

g

$$\int T^{n+1}f \wedge T^{n+1}g \, d\mu \ge \int T^n f \wedge T^n f \, d\mu,$$

* page 391, line -12: Toepilitz system, 225, **363**, 363–364

2