# ERRATA <br> to <br> Entropy in Dynamical Systems 

Tomasz Downarowicz

$\star$ page 8 , line $-8:{ }^{1}$
satisfies $\Psi_{\mathscr{P}}(\omega) \leq N(\omega) \leq I_{\mathcal{P}}(\omega)+1$ for $\mu$-almost every $\omega$. The difference
$\star$ page 97 , line 6 :
$\mathrm{A}^{\text {A data compression algorithm in information theory is an algorithm (described }}$ * page 98 , lines -13 to -9 :

Theorem 3.5.1 Let $\phi$ be a compression algorithm that applies to all sufficiently long blocks appearing in some ergodic process $(X, \mathcal{P}, \mu, T, \mathbb{S})$ of entropy $h=h(\mu, T, \mathcal{P})$. Let $\pi$ be so large that $\#\left(\mu, \mathcal{P}^{r}\right)<n(h+\varepsilon)$. Then the joint measure of all blocks $B$ of length $m$ whose compression rate is smaller than $\#_{n t}(B) / \log \# \Lambda$ tends to zero with $m$.
$\star$ page 101 , line 8 :
$n$ exceeds $2^{n(\log l-\varepsilon)}$. Hint: Choose carefully a block $W$ which cannot
$\mathrm{E}\left(I_{\mathcal{P}}\right) \leq \mathrm{E}(N)$ (where E denotes the expected value) and

Throughout this section $\Lambda$ denotes a finite alphabet.
$\left(\Lambda^{\mathbb{S}}, \mu, \sigma, \mathbb{S}\right)$
$h(\mu, \Lambda)$
$(h-\epsilon)$
eventually
$\star$ page 111 , line 7 :
equals $\Pi_{\mathcal{P}}$, where $\mathcal{P}=\bigvee_{i=1}^{k} \mathcal{P}_{i}$. By Theorem 3.2.2 again, $h\left(Q^{\prime}\right)=0$ and, by $\quad$ is inscribed in $\star$ page 131, line -5 :
4.9 Prove that every automorphism $(X, \mathfrak{A}, \mu, T, \mathbb{Z})$ of finite entropy admits, ergodic $\star$ page 131 , line -3 :
4.10 Use the Sinai Theorem to show that every $\operatorname{system}(X, \mathfrak{A}, \mu, T, \mathbb{S})$ admits ergodic

* page 199 , line -14 :
6.3 Show that if $T$ is Lipschitz, i.e., $d(T x, T y) \leq c d(x, y)$ for some constant

Is it true
$\mathbf{h}\left(T^{n}, \mathcal{U}^{|n|} \mid \nu\right)=|n| \mathbf{h}(T, \mathcal{U} \mid \nu), \mathbf{h}\left(T^{n} \mid \nu\right)=|n| \mathbf{h}(T \mid \nu)_{\boldsymbol{k}} \quad$ (attention, some equalities hold only for $\left.n \geq 0\right)$.
$\star$ page 216 , lines 1 and 2 :

- For every $n$ 㿽
* page 216, lines 3 and 4:

Since the diameters of these cells decrease to zero with $k$ (for $n$ fixed), the If we arrange that sufficiently fast above intersection is a single point in $X$. We denote this point by $\pi_{X, n}(y)$. projections converge to
$\star$ page 219 , lines -2 and -1 :
satisfies the column condition; the projections of the cells corresponding to the symbols in column $n$ of this rectangle all contain the point $T^{n} x_{D}$.
in rows $k$ and $k+1 \quad$ both

[^0]2
$\star$ page 237, line 2 :
or it is finite everywhere, Clearly, the transfinite sequence $u_{\boldsymbol{\alpha}}$ is increasing. and upper semicontinuous

* page 260 , line -14 :
say that $G^{\prime}$ is a fiber saturation of $F$. Since $F^{\prime}$ is compact and $\pi$ is continuous, $\quad F^{\prime}$
* page 261, line 7:
$\mathbf{H}(\mathcal{U} \mid \mathcal{F}, \mathcal{W}) \leq \mathbf{H}(\mathcal{U} \mid \mathcal{F}, \mathcal{V})+\mathbf{H}(\mathcal{V} \mid \mathcal{W})$. We apply the above to $\mathcal{U}^{n}, \mathcal{V}^{n}$ and $\Downarrow^{n}, \quad \mathcal{W}^{n}$
* page 261 , line -14 :
generated by the partitions $\mathcal{P}$ and $\mathbb{Q}$. Consider a cell $V \in \mathcal{V}^{n}$ not disjoint of (The points in $G$ should satisfy the above for a generating sequence of parti-
* page 270 , line -14 : tions $\mathcal{P}$ (each with possibly different threshold number $n_{\sigma}$ ).)
8.5 (David Burguet) Check that the superenvelopes of $\mathcal{H}$ are precisely the repair functions of the tails
* page 270, lines -10 and -9 :

Theorem [Tarski, 1955] to deduce the existence of the smallest superen- repair function
*elope.
$\star$ page 290 , line -11 :
combination $\sum_{k=1}^{\infty} 2^{-k} \mu_{k+1}$ (like the points $b_{k}$ in Example 8.2.17, which are now $\mu_{\left(B_{k+1}\right)}$

* page 299, line -11 :
the functions. By monotonicity, each function can strech at most $1 / \delta$ of these $t$
* page 323, line 1 :

Lemma 11.2.10 Let $f, g$ be two bounded measurable funetions on $X$. For belong to $L^{1}(\mu)$
$\star$ page 323 , line 11 :

$$
\int T^{n+1} f \wedge T^{n+1} g d \mu \geq \int T^{n} f \wedge T^{n} f d \mu
$$

* page 391 , line -12 :

Toepilitz system, 225, 363, 363-364


[^0]:    ${ }^{1}$ I thank Krzysztof Przesławski for this correction.

