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5. Entropy structure in general systems



Let (X,T ) be a topological dynamical system system (continuous
transformation of a compact metric space).

We will define two notions of entropy of a measure with respect to a
topological resolution.

They will be an example of “nice cooperation”: one of the above
notions enjoys a number of useful properties, not very hard to prove,
which usually fail for the other notion. The other notion is, in turn,
useful (possible to evaluate) in many applications.

Later we will show that these two notions produce two uniformly
equivalent nets of functions defined on the simplex MT (X).

Via uniform equivalence, consequences of the “good properties” of
the first notion apply to both nets.



Entropy with respect to a family of continuous functions

In a zero-dimensional space, given a clopen partition P, the charac-
teristic functions of the “cells” A ∈ P are continuous. This is the
reason why the functions µ 7→ H(µ,P) and µ 7→ H(µ,P|Q) is con-
tinuous on probability masures, and µ 7→ h(µ,P) and µ 7→ h(µ,P|Q)
are upper semicontinuous on invariant measures.

To obtain equally good properties in general spaces, we must replace
partitions by families of continuous functions.



Definition 8. Let f : X → [0, 1] be continuous. We let Af be the
partition of X × [0, 1] int the sets “above” and “below” the graph
of f . For a finite family F of continuous functions f as above we set

AF =
∨
f∈F

Ff .

We then define
h(µ,F) = h(µ× λ,AF ),

where λ is the Lebesgue measure on [0, 1] and the action in X× [0, 1]
is by of T × id.



Finite families F form a directed family (by inclusion), so we have a
net of functions

Hfun = {hF},

where hF (µ) = h(µ,F).

The following properties of this net are obvious:

• It increases,

because F ′ ⊃ F =⇒ AF ′ < AF

• The limit is the entropy function µ 7→ h(µ),

because the partitions AF generate the sigma-algebra in X × [0, 1]
and h(µ × λ) (with respect to T × id) is the same as h(µ) (with
respect to T )

• The functions hF and differences hF ′ −hF (for F ′ ⊃ F) are upper
semicontinuous,

because this is the usual entropy and conditinal entropy wrt. to “al-
most clopen” partitions – the boundaries have zero measure for every
measure of the form µ× λ.

• Each function hF is affine,

because this is the usual entropy function wrt. to a partition.

Conclusion: Hfun is a u.s.d.a.-net



Newhouse local entropy

This notion of “local entropy” was introduced by Sheldon Newhouse
in 1989. It has two parameters: the measure and an open cover.

Definition 9. Let U be an open cover and let F denote a measurable
set. We abbreviate Un =

∨n
i=0 T

−i(U). We define successively:

(a)H(δ|F,U) :=logmax{#E :E is (n, δ)-separated in F∩U,U ∈ U};

(b) h(δ|F,U) := lim supn
1
nH(δ|F,Un);

(c) h(T |F,U) := limδ→0 h(δ|F,U);

(d) h(T |µ,U) := limσ→1 inf{h(T |F,U) : µ(F ) > σ}.

We apply (d) to ergodic measures µ, then we extend the function
µ 7→ h(T |µ,U) to all of MT (X) by averaging over the ergodic de-
composition (!)



Open covers ordered by < form a directed family, so we have defined
a net of functions of the invariant measure, indexed by open covers.
It is clear that h(T |µ,U) decreases with U , so we will denote

θU (µ) = h(T |µ,U) and HNew = {h− θU}

although it is not at all obvious that the first net decreases to zero.
Semicontinuity of h(T |µ,U) (or the differences) probably does not
hold. In fact, for a long time it was not known whether these func-
tions were measurable. Thus, in the averaging definition for non-
ergodic measure, we have used upper integral. Hence we did not
even know for sure whether the functions were affine. But... it was
no problem at all! All the missing properties will be (approxima-
tively) satisfied due to uniform equivalence with the preceding net.



Strategy

Further strategy is to

• show that the nets Hfun and HNew are preserved by principal
extensions;

• relate these nets in zero-dimensional systems to more familiar
functions;

• use principal zero-dimensional extensions to deduce that in general
systems both nets are uniformly equivalent to each-other and that
they determine symbolic extension entropies just like in the zero-
dimensional case.



Properties of the two notions

Theorem 9: Let (X ′, T ′) be a topological extension of (X,T ), F ,
U , F ′ and U ′ denote a finite family of functions on X, a finite open
cover of X, and their respective lifts to X ′. Let µ′ and µ denote an
invariant measure on X ′ and its image on X. Then

h(µ′,F ′) = h(µ,F)

and
h(T |µ,U) ≤ h(T ′|µ′,U ′) ≤ h(T |µ,U) + htop(T

′|T ),

in particular, for principal extensions, h(T ′|µ′,U ′) = h(T |µ,U).

Lemma 1: Let U and V be two covers of X. Then, for any µ ∈
MT (X) we have

h(T |µ,V) ≤ h(T |µ,U) + htop(T,U|V).

Proof: For any δ > 0 and a measurable set F we have

H(δ|F,V) ≤ H(δ|F,U) +H(U|V).

We apply the above to Vn and Un, divide by n, pass to lim sup over
n, take the limit as δ → 0, and then the infimum over all sets F with
large measure. �



In zero-dimensional systems

Theorem 10: Let (X,T ) be a zero-dimensional system. Let U
denote a finite cover of X by disjoint clopen sets and let P denote
U treated as a partition. Let FU be the family of characteristic
functions of the cells of U . Then

h(µ,FU ) = h(µ,P) and h(T |µ,U) = h(µ|P) = h(µ)− h(µ,P).

Proof: The first equality is obvious. The second is much harder. It
uses the Shannon–McMillan–Breiman Theorem.



Theorem 11: Let (X,T ) be a zero-dimensional system. The nets
Hfun and HNew are uniformly equivalent to the “standard” entropy
structure H = {hk}, where hk(µ) = h(µ,Pk) for a refining sequence
of clopen partitions Pk.

(The “standard” entropy structure in dimension zero was introduced
by Mike in his talks.)

Proof: The partitions Pk, treated as as open covers Uk, form a se-
quence which is a subnet of the net of all covers U . Their corre-
sponding families FUk

of characteristic functions is a sub-net of the
net F . By the preceding theorem, we obtain that H is a subnet of
HNew, hence these two are uniformly equivalent.

Also, we obtain that H is a sub-net of Hfun. But since the latter net
has upper semicontinuous differences and both nets converge to the
entropy function, yesterday’s Theorem 6 implies they are uniformly
equivalent. �



From zero-dimensional to general

Theorem 12: Let (X ′, T ′) be a principal extension of (X,T ). Then
the nets Hfun and HNew defined for the system (X,T ) and lifted

to MT ′(X ′) are uniformly equivalent to the nets H′fun and H′New

defined for the system (X ′, T ′), respectively.

Proof: The proof is easy for Hfun. By Theorem 9, this net, lifted,

becomes a sub-net of H′fun. Since the extension is principal, so
obtained sub-net has the same limit function. Yesterday’s Theorem
6 completes the proof.

For HNew, Theorem 9 also implies that this net, lifted, becomes a

sub-net of H′New
. So it is uniformly dominated. For the converse

domination, let V ′ be a cover of X ′. Since the extension is principal,
htop(T

′|T ) = 0, which means that for every cover of X ′ (in particular
for V ′), there exists an open cover U ofX, such that htop(T

′,V ′|U ′) <
ϵ, where U ′ is the lift of U . Then, by Lemma 1,

h(T ′|µ′,U ′) ≤ h(T ′|µ′,V ′) + htop(T
′,V ′|U ′),

i.e.,
h(µ′)− h(T |µ′,U ′) ≥ h(µ′)− h(T ′|µ′,V ′)− ϵ.

�



Entropy structure in general systems

We are in a position to prove a theorem allowing to introduce the
key notion of the theory.

Theorem 13: Let (X,T ) be an arbitrary system. The nets Hfun

and HNew are uniformly equivalent to each-other.

Proof: This is now an immediate consequence of the preceding two
theorems. �

Definition 10: The entropy structure of (X,T ) is defined as the
uniform equivalence class containing Hfun and HNew.
The term entropy structure will also denote each element of this
equivalence class.

Remark: Many other familiar entropy notions with a topological pa-
rameter belong here. For example, the Katok entropy of a measure
computed by counting (n, ϵ)-balls needed to cover a set of certain
positive measure, the Brin-Katok entropy imitating the S-M-B The-
orem for the (n, ϵ)-balls, a version of the Ornstein–Weiss entropy
estimate based on the first return time to the (n, ϵ)-ball, and more
recently, Romagnoli’s entropy of a measure given an open cover using
partitions inscribed in the given cover.



Symbolic extension entropy theorem - general

Theorem: Let (X,T ) be a dynamical system. Let E be a function
defined on MT (X).

TFAE:

(1) E is a superenvelope of the entropy structure

(2) E = hφ
ext for a symbolic extension φ : (Y, S) → (X,T ).

In particular hsex = Emin and hsex = minµ∈MT (X) E(µ).

There exists a symbolic extension with hφ
ext = Emin if and only if

Emin is affine (for example, when Emin = h, i.e., in the asymptotically
h-expansive case).



What is entropy structure good for

Entropy structure is a master entropy invariant, allowing to derive
most of other entropy invariants:

• The entropy function h, as the limit of H.

• Topological entropy, as supµ h(µ) = limκ ↑ supµ hκ(µ).

(Implicitly, entropy structure has been used in this role for years.)

• Symbolic extension entropies:
◦ hφ

ext in symbolic extensions (Mike) as affine superenvelopes of H,
◦ hsex as Emin (because for u.s.d.a.-nets Emin = inf EA),
◦ the residual entropy function hres = h− hsex as umin,
◦ hsex(T ) as supµ Emin(µ) (because min{supµ EA(µ)} = supµ Emin(µ)),
◦ hres(T ) = hsex(T )− htop(T ) as supµ h(µ)− supµ Emin(µ)
(there is no such thing as residual variational principle – this is the
reason why we do not use residual entropy so much).

• Entropy structure allows to decide when is hsex realized as hφ
ext

for a symbolic extension. It is so if and only if hsex is affine.

• Also the topological tail entropy h∗(T ) (known as Misiurewicz’s
topological conditional entropy) equals supµ u1(µ), which equals
supµ Dµ, which equals the global defect of the uniform convergence
of H (recall the beginning of lecture 3).

This last equality is a fairly new discovery (D. & Burguet). It pro-
vides a number of charcterizations of asymptotically h-expansive sys-
tems (by definition, with h∗(T ) = 0):

• TFAE: the system is asymptotically h-expansive, u1 = 0, α0 = 0,
H ⇒ h, hsex = h, there exists a principal symbolic extension.

Finally, entropy structure introduces some new entropy invariants,
unknown before:

• The transfinite sequence (uα) of the entropy structure,

• The order of accumulation α0 of the entropy structure, and more
(Burguet, McGoff).


