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6. Symbolic extensions of smooth interval maps



The main result of this lecture is a joint work with Alejandro
Maass.
Latest progress is due to David Burguet and has been presented
in his talk.

In order to fully appreciate the theory of entropy structure we need
an example of an important class of systems for which this theory
allows us to compute (or at least estimate) the symbolic extension en-
tropy, while explicit construction of symbolic extensions, in the same
generality, seems inaccessible. A spectacular such example is the
class of smooth transformations of compact Riemannian manifolds,
especially those of dimension 1 and 2, for which we have a beautiful
direct dependence between hsex and the degree of smoothness. In
this case, we can not only estimate the symbolic extension entropy
function in terms of more familiar parameters, but even indicate a
concrete function that is realized as hϕ

ext in a symbolic extension.



State of art for smooth systems

1. C∞ implies asymptotic h-expansiveness (Buzzi, 1997) which is
equivalent to the existence of principal symbolic extensions (Boyle,
Fiebig, Fiebig, 2002).

2. Successful application of entropy structures to smooth systems in
dimension ≥ 2 (D. & Newhouse, 2005):
◦ examples of C1 maps with no symbolic extensions,
◦ examples with hsex(T ) ≥ htop(T ) + R(f)

r−1 ,

◦ conjecture hsex(T ) ≤ htop(T ) + dim·R(f)
r−1 .

3. Proof of the conjecture in dimension 1 (D. & Maass, 2009; the
subject of today’s lecture)

4. Cr examples on the interval with hsex(f) ≥ htop(f) + R(f)
r−1 (Bur-

guet, 2008).

5. Proof of the conjecture in dimension 2 (with adjustments of the
constant) (Burguet; the subject of his lecture)



Formulation of the result

Let f : [0, 1] → [0, 1] be a C1 transformation of the interval. For
µ ∈Mf ([0, 1]) we define

χ(µ) =
∫

log |f ′| dµ

(for ergodic measure this is the Lyapunov exponent of µ). This func-
tion is upper semicontinuous (not continuous). Let χ+ = max{0, χ}
(still upper semicontinuous) and we let χ+ denote the integral aver-
age of χ+ over the ergodic decomposition (this is an upper semicon-
tinuous and affine function on Mf ([0, 1])).

We also set R(f) = supµ χ+. It is not hard to see (using the Ergodic
Theorem), that

R(f) = lim
n

sup
x

log+ |(fn)′(x)|.

It is important that the function χ and the constant R(f) are invari-
ants of C1 conjugacy.



We define the degree of smoothness r of f inductively:
• for r ≤ 1, f is of class Cr if it is r-Hölder, i.e., there exists a
constant c such that |f(x)− f(y)| ≤ c|x− y|r.
• For r > 1 we require that f is differentiable, and f ′ is of class
Cr−1. Attention! our Cn is slightly weaker that standard.
Exception: We understand C1 in the standard sense.



Theorem 14: Let f be a Cr transformation of the interval [0, 1],
where r > 1. Then, the function

u =
χ+

r − 1

is an affine repair function of the entropy structure. Hence the func-
tion h + χ+

r−1 is an affine superenvelope, and thus it is the extension
entropy function in some symbolic extension.

Corollary: We have

hsex ≤ h +
χ+

r − 1
and hsex(f) ≤ htop(f) +

R(f)
r − 1

.

(This is exactly the conjecture in dimension 1.)

Using the Margulis-Ruelle inequality htop(f) ≤ R(f) we can also
write

hsex(f) ≤ R(f) +
R(f)
r − 1

=
r

r − 1
R(f).



Proof of Theorem 14; reformulation

Let θV denote the tail of the Newhouse entropy structure HNew, i.e.,
θV(µ) = h(µ) − h(T |ν,V), where V is an open cover. We need to
show that for each invariant measure µ, for V fine enough,

...........

u + θV(µ) < γ,

i.e., that ũ + θV(µ)− u(µ)− θV(µ) < γ. Since θV(µ) is small for fine
V, this is the same as showing

ũ + θV(µ)− u(µ) < γ.

By the definition of the upper semicontinuous envelope, we must
show that if ν is sufficiently close to µ then

u(ν) + θV(ν)− u(µ) < γ,

which we rewrite as

h(T |ν,V) ≤ χ+(µ)− χ+(ν)
r − 1

+ γ.



We will show the above in case ν is ergodic. (Dropping ergodicity
requires some general technical work.) Assuming ergodicity of ν, by
easy convexity arguments it suffices to prove the simpler inequality:

h(T |ν,V) ≤ χ(µ)− χ(ν)
r − 1

+ γ

(known as the Antarctic Theorem).



Proof of the Antarctic Theorem, Counting Lemma

Lemma 2: Let g : [0, 1] → R be a Cr function, where r > 0. Then
there exists a constant c > 0 such that for every 0 < s < 1 the
number of components of the set {x : g(x) 6= 0} on which |g| reaches
or exceeds the value s is at most c · s− 1

r .

Proof. If g has a constant sign then there is only one component
and the lemma holds with c = 1. Otherwise we proceed inductively,
as follows: For 0 < r ≤ 1, g is Hölder, i.e., there exists a constant
c1 > 0 such that |g(x) − g(y)| ≤ c1|x − y|r. If |g(x)| ≥ s and y is a
zero point for g then

|x− y| ≥ c1
− 1

r · s 1
r .

The component containing x is at least that long and the number of
such components is at most c · s− 1

r , where c = c1
1
r .



Now take r > 1 and suppose that the lemma holds for r − 1. Let
g be of class Cr. We count the components I = (aI , bI) of {x :
g(x) 6= 0} where |g| exceeds s. Unless aI = 0 or bI = 1, I contains a
critical point. Let xI denote the largest critical point x ∈ I satisfying
|g(x)| ≥ s. Unless I is the last or last but one component, there is a
critical point larger than or equal to bI . Let yI be the smallest such
critical point. So, except for at most three components, I determines
an interval (xI , yI).

Notice that these intervals are disjoint for different I.



There are two possible cases: either

a) yI − xI > s
1
r , or

b) yI − xI ≤ s
1
r .

Clearly, the number of components I satisfying a) is smaller than
s−

1
r . If a component satisfies b) then, by the mean value theorem,

|g′| attains on (xI , bI) a value at least s/s
1
r = s

r−1
r . This value

is attained on a component of the set {x : g′(x) 6= 0} contained in
(xI , yI). Because g′ is of class Cr−1, by the inductive assumption, the
number of such intervals (xI , yI) (hence of components I satisfying
b)) does not exceed c · (s r−1

r )−
1

r−1 = c · s− 1
r . Jointly, the number of

all components I is at most 3 + (c + 1) · s− 1
r ≤ (c + 4) · s− 1

r . ¤



Letting g = f ′ we obtain the following

Corollary: Let f : [0, 1] → [0, 1] be a Cr function, where r > 1.
Then there exists a constant c > 0 such that for every s > 0 the
number of branches of monotonicity of f on which |f ′| reaches or
exceeds s is at most c · s− 1

r−1 .

Definition 11: Let f be as in the formulation of the above Corol-
lary. Let I = (I1, I2, . . . , In) be a finite sequence of branches of
monotonicity of f , (i.e., any formal finite sequence whose elements
belong to the countable set of branches, admitting repetitions). De-
note

ai = min{−1, max{log |f ′(x)| : x ∈ Ii}}.
Choose S ≤ −1. We say that I admits the value S if

1
n

n∑

i=1

ai ≥ S.

Clearly, if there exists a sequence of points yi ∈ Ii with log |f ′(yi)| ≤
−1 for each i and satisfying 1

n

∑n
i=1 log |f ′(yi)| ≥ S, then I admits

the value S.



Lemma 3: Let f : [0, 1] → [0, 1] be a Cr function, where r > 1. Fix
γ > 0. Then there exists Sγ ≤ −1 such that for every n and S < Sγ

the logarithm of the number of sequences I of length n which admit
the value S is at most

n
−S

r − 1
(1 + γ).

We will skip the proof, which relies on the preceding lemma.

Let C = {x : f ′(x) = 0} be the critical set. Fix γ > 0. Fix some open
neighborhood U of C on which log |f ′| < Sγ . Notice that U c can be
covered by finitely many open intervals on which f is monotone. Let
V be the cover consisting of U and these intervals.



Lemma 4: Let T be a Cr transformation of the interval or of the
circle X, where r > 1. Let U and V be as described above. Let ν be
an ergodic measure and let

S(ν) =
∫

U

log |f ′| dν.

Then

h(T |ν,V) ≤ −S(ν)
r − 1

(1 + γ)

Sketch of the proof. It suffices to consider the case of S(ν) finite.
The key decission is the choice of the set F (of large measure). We
choose F to be the set of points on which the nth Cesaro means of
the function 1U log |f ′| are close to S(ν) for n larger than some n0.
Let x ∈ F and n ≥ n0. Consider a set

V n = V0 ∩ T−1(V1) ∩ · · · ∩ T−n+1(Vn−1)

containing x, with Vi ∈ V (as in the definition of local entropy).
Consider the finite subsequence of times 0 ≤ ij ≤ n−1 when Vij = U .
Let nζ denote the length of this subsequence and assume ζ > 0. For
a fixed δ let E be an (n, δ)-separated set in V n∩F and let y ∈ E. The
sequence (ij) contains only (usually not all) times i when f i(y) ∈ U .
Thus, since y ∈ F , we have



S(ν) ≤ 1
n

(∑

j

log |f ′(T ij (y))|+ A(y)
)

+ ε,

where A is the similar sum over the times of visits to U not included
in the sequence (ij). Clearly A ≤ 0, so it can be skipped. Dividing
by ζ we obtain

S(ν)− ε

ζ
≤ 1

nζ

∑

j

log |f ′(T ij (y))|.

The right hand side above is smaller than Sγ . This implies that
along the subsequence (ij) the trajectory of y traverses a sequence I
(of length nζ) of branches of monotonicity of f admitting the value
S(ν)−ε

ζ smaller than Sγ . By Lemma 3, the logarithm of the number
of such sequences I is dominated by

n
−S(ν) + ε

r − 1
(1 + γ)

At times i other than ij the set Vi contains only one branch of mono-
tonicity. This contributes to the cardinality of E a subexponential
term. The proof is concluded by dividing by n, letting n →∞ (then
ε tends to 0) and then letting the measure of F tend to 1. ¤



Sketch of the proof of the Antarctic Theorem.

Fix an invariant measure µ with χ(µ) > 0 and some γ > 0. Clearly,
then µ(C) = 0. Since log |f ′| is µ-integrable, The open neighborhood
U of C (on which log |f ′| < Sγ) in the definition of V can be made
so small that ∫

U

log |f ′(x)| dµ > −ε.

Then ∫

U
c
log |f ′(x)| dµ < χ(µ) + ε.

The above integral is an upper semicontinuous function of the mea-
sure (U

c
is an open set on which log |f ′| is finite and continuous

and negative on the boundary). Thus the inequality holds for any
invariant measure ν sufficiently close to ν. All the more

∫

Uc

log |f ′(x)| dν < χ(µ) + ε

(we have included the boundary to the set of integration, and the
function is negative on that boundary). Then

−S(ν) =
∫

Uc

log |f ′(x)| dν − χ(ν) ≤ χ(µ)− χ(ν) + ε.

By Lemma 4, we have

h(T |ν,V) ≤ χ(µ)− χ(ν) + ε

r − 1
(1 + γ).

Since the numerator is bounded, we can replace the multiplicative
error term γ by a small additive term as in the formulation of the
Antarctic Theorem. ¤
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