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Did you know that William Shakespeare

was a mathematician

involved in difference equations?

Here is how WE know about that:





Actually, he never solved this equation.....



Monotone nets of nonnegative functions

fκ : X → [0,∞), {fκ} is a net (κ ranges over a directed family K).

∀ι > κ fι ≥ fκ (a nondecreasing net - we will say increasing)

fκ ↗ f : X → [0,∞] (pointwise convergence)

We will assume that f is finite everywhere.

This convergence is either uniform, i.e.,

for every ε there is κ such that fκ ≥ f − ε,

or not. Can we distinguish between non-uniform convergences?

The non-uniformity is measured by

DX = lim
κ∈K

↓ sup
x∈X

(f(x)− fκ(x)) (the global defect of uniformity)

Motivation - entropy theory in topological dynamics. DX = h∗.



If X is a metric space, we can localize this parameter:

Dx = inf
ε>0

lim
κ∈K

↓ sup
y∈B(x,ε)

(f(y)− fκ(y)) =

lim
κ∈K

↓ inf
ε>0

sup
y∈B(x,ε)

(f(y)− fκ(y)).

For a function f : X → R, the function f̃(x) := inf
ε>0

sup
y∈B(x,ε)

f(y) is

called the upper-semicontinuous envelope of f . Thus,

Dx = lim
κ∈K

↓ ˜(f − fκ)(x).



Upper semicontinuous functions

A function f : X → R is upper semicontinuous if one of the following
equivalent conditions holds
1. ∀x ∈ X lim sup

y→x
f(y) ≤ f(x) (f is u.s.c. at x);

2. ∀a ∈ R f−1((−∞, a)) is open (or f−1([a,∞)) is closed);

3. the area above the graph is open
(or the area below and on the graph is closed);

4. f is a pointwise infimum of a family of continuous functions.

5. f is a pointwise limit of a decreasing net of continuous functions.

6. f = f̃



The upper semicontinuous envelope has already been introduced:

f̃(x) = lim sup
y→x

f(y).

We also have: f̃ = inf{g : g ≥ f, g is continuous}.

For a function f : X → R we also define
...

f = f̃ − f

and we call it the defect of upper-semicontinuity function (or just
defect).



On a compact domain every u.s.c. function is bounded above. More-
over, we have the following exchange of suprema and infima state-
ment

Fact 1: If gκ is a decreasing net of nonnegative u.s.c. functions on
a compact metric domain X, then

sup
x∈X

lim
κ

↓ g(x) = lim
κ

↓ sup
x∈X

g(x).

We will also need this:

Fact 2: A net of u.s.c. functions decreasing to a continuous limit
on a compact domain converges uniformly.

Proof: The sets fκ − f ≥ ε are closed (hence compact) and de-
crease, their intersection is empty, so only finitely many of them are
nonempty. ¤



We go back to the increasing net fκ. Recall, that we have

Dx = lim
κ∈K

↓ ˜(f − fκ)(x).

We easily see that Dx ≤ DX .

If Dx = 0 for all x then we say that the convergence is locally uniform.
In general, this does not imply uniform convergence. However,

Theorem 1: If X is compact, then DX = sup
x∈X

Dx.

Proof: We have DX = lim
κ∈K

↓ sup
x∈X

(f − fκ)(x) ≤

lim
κ∈K

↓ sup
x∈X

˜(f − fκ)(x) = sup
x∈X

lim
κ∈K

↓ ˜(f − fκ)(x) = sup
x∈X

Dx. ¤



It suffices to study the net of tails {θκ}, where θκ = f − fκ.
This net decreases to zero: θκ ↘ 0.

The global defect of uniformity DX or the defect function Dx do not
distinguish all possible types of convergence.

Example 1: The “pick-up sticks game”. Top figure: Order all the
red sticks anyhow by the naturals. Let θn be the function obtained
by removing the first n sticks. Bottom figure: The same game with
red and green sticks together. Middle picture: the defect function is
the same in both games.

The first (top) example restricted to the set of points with positive
defect (the black points) has no defect (all the functions are zero).
The second (bottom) example restricted to the same set generates
the defect of the second order at the rightmost point. It is clear that
the two examples represent different “types” of nonuniformity.



Another approach:

We have

Dx = lim
κ
↓ θ̃k(x) = lim

κ
↓ θ̃k(x)− lim

κ
↓ θk(x)

= lim
κ

(θ̃k − θκ)(x) = lim
κ

...

θκ(x)

Thus, we can call Dx the persistent defect of upper-semicontinuity
at x.

But this persistent defect is insufficient to capture the complexity of
the convergence.



Asymptotic upper-semicontinuity

For a single function f we have
............
...

f + f =
....

f̃ = 0, so by adding the
defect function

...

f we have repaired the function f (made it u.s.c.).

We will say that a function u repairs the net {θκ} if
...........

u + θ κ −→
κ

0.

(i.e., the net {u + θκ} is asymptotically upper-semicontinuous).

Notice that θκ ↘ 0 locally uniformly if and only if
...

θκ −→
κ

0, so the
net requires no reparation. By repairing a net we create a net which
is in a sense closer to being (locally) uniformly convergent.

A good candidate to be a “repair function” seems to be the persistent
defect, i.e., the function u1(x) = Dx.



It is so in the first example, but not in the second example:

An attempt to repair the net {θκ} by adding the function

u1(x) = Dx.

It is succesful in the first example, and fails in the second one. The
bottom picture shows the persistent defect of the net {u1 + θκ}.

(We will call it the defect of the second order).



Finding the smallest possible repair function u is the most important
issue in this talk. The task is equivalent to “solving” the “difference
equation” for the unknown function E ≥ f :

(1)
............

E − fκ −→
κ

0.

Any function E with this property is called a superenvelope of the net
{fκ}. We are looking for the smallest superenvelope. The smallest
repair function for {θκ} then equals u = E − f , simply because

u + θκ = (E − f) + (f − fκ) = E − fκ.

Note that a finite such function E (equivalently u) need not exist.
If it doesn’t, we say the the net is unrepairable.

If the net {fκ} (equivalently {θκ}) has the property of upper-semicontinuous
differences, i.e.,

∀ι > κ fι − fκ (= θκ − θι) is upper-semicontinuous,

then (by an easy exercise) the condition (1) takes on a simpler form:

............

E − fκ = 0 for every κ ∈ K.



We will solve the equation (1) using transfinite induction.



Before we proceed, we introduce an equivalence relation which clas-
sifies monotone nets by the type of convergence.

Definition 1: Two increasing nets of functions
{fκ} (κ ∈ K) and {gι} (ι ∈ J) are uniformly equivalent if

∀ε>0, κ∈K, ι∈J ∃κ′∈K, ι′∈J fκ′ ≥ gι − ε and gι′ ≥ fκ − ε

(for decreasing nets: fκ′ ≤ gι + ε and gι′ ≤ fκ + ε).

For example, a monotone net converges uniformly to the limit func-
tion f if and only if it is uniformly equivalent to the constant net
{f} (n ∈ N).

Two uniformly equivalent nets have common:
1. limit function f ,
2. global defect of uniformity DX ,

and, if X is a metric space, also
3. the defect function Dx,
4. all the superenvelopes E (hence also the smallest one).



Proof of 4.: Let E be a superenvelope of {fκ}. The condition that
E ≥ the limit function is satisfied for both nets. Fix a point x ∈ X
and a γ > 0. Let κ be such that both

fκ(x) > f(x)− γ and
.............

(E − fκ)(x) < γ.

Let ι′ be such that gι′ > fκ − γ, i.e.,

fκ − gι′ < γ (at all points).

Then ˜fκ − gι′ ≤ γ. Since gι′(x) ≤ f(x), we also have

gι′(x)− fκ(x) < γ.

Now we have
..............

(E − gι′)(x) ≤
.............

(E − fκ)(x) +
...............

(fκ − gι′)(x) =
.............

(E − fκ)(x) + ˜(fκ − gι′)(x)− (fκ(x)− gι′(x)) ≤ 3γ.

We have proved that E is a superenvelope of {gι}. ¤



Subnets and sub-nets

If {fκ} (κ ∈ K) is a net, and J ⊂ K satisfies

∀κ∈K ∃ι∈J κ < ι

then J isa directed family and {fι} (ι ∈ J) is called a subnet of {fκ}.

If J ⊂ K is just a directed family then we call {fι} (ι ∈ J) a sub-net
of {fκ}.

Unlike for sequences, a sub-net need not be a subnet.
A subnet of a convergent net converges to the same limit. In fact,

Theorem: All subnets of an increasing net of functions are pairwise
uniformly equivalent.

This fails for sub-nets.

Example: Fix some f : X → [0,∞) and let {fκ} be the net of
all functions 0 ≤ fκ ≤ f ordered by the usual inequality between
functions. This net converges (increases) uniformly to f :

for every ε there is κ such that fκ ≥ f − ε.

In thie example, any subnet converges uniformly to f . But there are
plenty of sub-nets converging to other limits or converging to f but
not uniformly, so they are not uniformly equivalent to the whole net.



The following theorem is a key tool to establish uniform equivalence
between some nets of functions in some specific situations.

Theorem: Let {fκ} be an increasing net of nonnegative functions
on a compact metric space X, with upper-semicontinuous differences.
Let {fι} be a sub-net. Then {fι} is uniformly equivalent to {fκ} if
and only if it has the same limit function f .

Proof: One implication is obvious, since uniformly equivalent nets
have the same limit function. It is also obvious that every element
of the net {fι} is dominated by one from the net {fκ}, namely by
itself.
For the converse, we fix some κ ∈ K and for each ι ∈ J choose an
index κ(ι) ∈ K such that

κ ≤ κ(ι) and ι ≤ κ(ι).

So, for each ι, fι ≤ fκ(ι) ≤ f , which implies that fκ(ι) −→ι f . Thus

(2) fκ(ι) − fι −→
ι

0.

Also, by assumption, these difference functions are u.s.c..
We intend to use the (already mentioned) fact:

Fact: A net of u.s.c. functions decreasing to a continuous limit on
a compact domain converges uniformly.

The convergence (2), however, need not be monotone...



To get a monotone net, with each ι we associate the function

gι = infι′≤ι(fκ(ι′) − fι′).

Now we have a net of nonnegative u.s.c. functions a decreasing to
zero on a compact domain. This convergence is already uniform.

So, for every ε > 0 there exists some ι ∈ J with gι < ε.

Since fκ(ι′) ≥ fκ and fι′ ≤ fι for every ι′ ≤ ι, we have

ε > gι ≥ fκ − fι.

(The right hand side need not be nonnegative, but it doesn’t matter.)

We have proved that fι > fκ − ε. ¤



The transfinite solution

Consider the net θκ ↘ 0 defined on a metric space X.

Definition 2: The transfainite sequence uα (α are the ordinals)
associated with the net θk is defined as follows:

uα = 0,

and for an ordinal α such that uα are already defined for all β < α
let

vα = sup
β<α

uβ .

If vα is infinite at some point, we let uα ≡ ∞. Otherwise,

uα = vα + lim
κ

............

vα + θκ.

(Notice that uα = vα + lim
κ

˜vα + θκ − vα − lim
κ

θκ = lim
κ
↓ ˜vα + θκ.)

Interpretation: u1 = lim
κ

...

θκ is the persistent defect of the first order

(= Dx). Then lim
κ

............

vα + θκ is the persistent defect of order α; the

defect of the net obtained (in the limit) by “repairing” θκ using uβ

where β < α. Thus uα is the cumulative defect of order α.



Fundamental facts:
1. The transfinite sequence uα increases. In particular, vα+1 = uα.
2. This sequence “stops” at some α0 i.e., uβ = uα0 for all β > α0.
3. If X is compact then α0 < ω1 (α0 is a countable ordinal).
4. The entire sequence is an invariant of uniform equivalence.

Theorem 2: If uα0 is finite then it is the smallest repair function
for the net θκ.

Proof: First, we will show that uα0 repairs the net θκ. Indeed,

lim
κ

..............

uα0 + θκ = lim
κ

..................

vα0+1 + θκ = uα0+1 − uα0 = 0.

Now we show that uα0 is the smallest repair function. Suppose that
u ≥ 0 repairs the net θk. We have uα ≤ u for α = 0. Suppose the
same holds for all β < α. Then vα = sup

β<α
uβ ≤ u, hence

uα = limκ
˜vα + θκ ≤ limκ ũ + θκ = limκ

..........

u + θκ + u = u.

We have proved that uα ≤ u for all α including α0. ¤

Corollary: If θκ = f − fκ for an increasing net fκ then E = uα0 + f
is the smallest superenvelope of fκ.



The order of accumulation of the defects

Definition 3: We call α0 the order of accumulation of the defects of
the net fκ (or of θκ is one prefers). For x ∈ X we define α(x) as the
smallest ordinal α such that uα(x) = uα0(x), and call it the order of
accumulation of the defects at x.

Clearly, α0 = sup
x∈X

α(x).

In the unrepairable case α0 is the smallest ordinal such that uα ≡ ∞
and then α(x) = α0 for every x.

The ordinal α0 and the ordinal function x 7→ α(x) are invariants of
the uniform equivalence relation.

Topological order of accumulation in metric spaces.
Recall that a point x ∈ X (metric space) has the topological order of
accumulation 0 if it is an isolated point. The collection of all such
points is an open set. Suppose we have determined all points of order
of accumulation β for all β < α and their set Xα is open. A point
has topological order of accumulation α if it isolated (relatively) in
the complement of Xα. We denote by ord(x) the topological order
of accumulation of x (whenever it is defined). If ord(x) is defined
at every point then we set ord(X) = sup

x∈X
ord(x) and call it the

topological order of accumulation of X.



Theorem 3: Let fκ be an increasing net of nonnegative functions
on a compact metric space X. Then, α(x) ≤ ord(x) whenever ord(x)
is defined. In particular, α0 ≤ ord(X), if the last is defined.

Proof: Suppose ord(x) is defined. We will show that x has an open
neighborhood Ux where uord(x)+1 ≡ uord(x). This easily implies, that
the transfinite sequence at x does not grow above uord(x).

If x is an isolated point, then Ux = {x} is a neighborhood of x and,
since θ̃κ(x) = θκ(x) for every κ, we have u1(x) = 0, i.e., uord(x)+1 ≡
uord(x) on Ux.

Suppose we have proved that every point x′ with ord(x′) < α has a
neighborhood on which uord(x′)+1 ≡ uord(x′). Then, as we know,
uα+1(x′) = uα(x′).
Now take a point x with ord(x) = α. There is a neighborhood Ux of x
which contains only x and points x′ of topological order smaller than
α, for which uα+1(x′) = uα(x′). It remains to check that uα+1 = uα

at the point x. We have



uα+1(x) = lim
κ
↓ ˜(uα + θκ)(x) = inf

κ
inf
V

sup
y∈V

(uα + θκ)(y) =

inf
V

inf
κ

sup
y∈V

(uα + θκ)(y),

where V ranges over all neighborhoods of x such that V ⊂ Ux.

Consider two cases:
(a) If for some V there is a subnet along which the last supremum
is attained at x. Restricting to this V and this subnet, we can write

uα+1(x) ≤ inf
κ

(uα + θκ)(x) = uα(x).



(b) Otherwise, for every V and all sufficiently large κ, we can replace
the supremum over V by the supremum over V \ {x}. On this set
uα = supβ<α uβ = vα. Thus

uα+1(x) ≤ inf
V

lim
κ
↓ sup

y∈V \{x}
(vα + θκ)(y)

≤ inf
V

lim
κ
↓ sup

y∈V \{x}
˜(vα + θκ)(y) ≤ inf

V
lim
κ
↓ sup

y∈V

˜(vα + θκ)(y).

Since V is compact, we can exchange lim ↓ with sup in the last
expression. This yields

uα+1(x) ≤ inf
V

sup
y∈V

lim
κ
↓ ˜(vα + θκ)(y) = inf

V
sup
y∈V

uα(y) = ũα(x) = uα(x),

because uα is upper-semicuntinuous. ¤



Final remarks:

There exist examples of nets (sequences) on countable compact spaces
of any countable order of accumulation α(X) such that

α(x) = ord(x)

at every point. These example are of the “pick-up sticks game” type.

The models where all sticks have the same length work for ord(X) ≤
ω0. They are completely analogous to the second example of the
pick-up sticks game on the space with ord(X) = 2.

Larger ord(X) requires varying lengths of the sticks. Already for
ω0 + 1 the construction is too complicated to be explained in this
talk.



That’s all, thank you.


