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This presentation is based on two papers: [D2, D3].

Let (X, Σ, µ) be a standard Borel probability space and let T be a measur-
able measure-preserving transformation from X into itself, i.e., such that µ(A) =
µ(T−1(A)) for every A ∈ Σ. Then (X, Σ, µ, T ) is called a measure-theoretic dy-
namical system or an endomorphism. An invertible T is often called an automor-
phism. A measure-theoretic dynamical system is called ergodic if all T -invariant
sets (i.e., A ∈ Σ satisfying T (A) ⊂ A) have either measure 1 or 0. Two measure-
theoretic dynamical systems (X, Σ, µ, T ) and (X ′, Σ′, µ′, T ′) are said to be isomor-
phic if there exists a bimeasurable bijection ψ: X0 → X ′

0, where X0 ∈ Σ, X ′
0 ∈ Σ′,

µ(X0) = µ′(X ′
0) = 1, which sends the measure µ to µ′ (i.e., µ(A) = µ′(A′) when-

ever A′ = ψ(A), A ∈ Σ), and which is equivariant, i.e., ψ ◦ T = T ′ ◦ ψ µ-almost
everywhere. A system isomorphic to an ergodic one is ergodic.

KEY DEFINITION
By an assignment we will mean a function Ψ defined on an abstract metrizable
Choquet simplex K, whose “values” are measure-theoretic dynamical systems, i.e.,
for p ∈ K, Ψ(p) has the form (Xp,Σp, µp, Tp). Two assignments, Ψ on a simplex
K, and Ψ′ on a simplex K ′, are said to be equivalent if there exists an affine
homeomorphism of Choquet simplexes π: K → K ′ such that for every p ∈ K the
systems Ψ(p) and Ψ′(p′), where p′ = π(p), are isomorphic.

By a topological dynamical system we shall mean a pair (X, T ), where X is a
compact metric space and T is a continuous map of X into itself. A topological
dynamical system (X,T ) is minimal if for every x ∈ X the orbit {Tn(x): n ∈ N} is
dense in X. In the context of a topological dynamical system (X, T ), by a “measure”
we will always mean a probability measure on the Borel sigma-field BX . By PT (X)
we will denote the collection of all T -invariant measures on X, i.e., measures µ
preserved by T , in other words such that (X,BX , µ, T ) becomes a measure-theoretic
dynamical system. It is well known that PT (X) is a nonempty compact, for the
weak* topology of measures, metrizable Choquet simplex whose extreme points are
precisely the ergodic invariant measures. A topological dynamical system (X,T )
determines a natural assignment on the simplex PT (X) “by identity”, i.e., by the
rule: µ 7→(X,BX , µ, T ).

An assignment is called topological (minimal) if it is equivalent to a natural
assignment arising from a topological (minimal) dynamical system.

1



2 T. DOWNAROWICZ

It is known ([D1]) that minimal (hence topological) assignments exist on every
metrizable Choquet simplex. We are interested in the following abstract problem:

Given a simplex K, characterize the topological (minimal) assignments on K.

The renowned Jewett-Krieger theorem solves this problem for the trivial (one-
point) simplex and automorphisms; every assignment of an ergodic automorphism
can be equivalently realized by a minimal (strictly ergodic) invertible zero-dimensional
topological system. A. Rosenthal [R] proved an analogous theorem also for ergodic
endomorphisms. Thus we restrict our investigations to nontrivial simplexes.

In this generality there is no known characterization of the minimal assignments.
Likewise, there is no characterization of the topological assignments. For example,
the following elementary question did not have an answer (until the results pre-
sented in this talk have been established):

Motivation question. Does there exist a minimal system with two ergodic mea-
sures isomorphic to two irrational rotations, or to the same irrational rotation, or
one being for example a rotation, and the other being for example Bernoulli?

Though, there are some obvious restrictions on such assignments. Let us begin
with the most general and obvious ones:

(R1) Ψ assigns ergodic systems to extreme points of K;
(R2) Ψ obeys the ergodic decomposition rule: if K 3 p =

∫
e dξp(e), where

ξp is the unique probability measure with barycenter at p, supported by
the extreme points e of K, and Ψ(p) = (Xp,Σp, µp, Tp), then µp admits
a decomposition µp =

∫
µe dξp(e) with each µe ergodic, preserved by the

transformation Tp, and such that (Xp, Σp, µe, Tp) is isomorphic to Ψ(e).

These two restrictions apply to all topological assignments and follow from the ba-
sics of ergodic theory. They allow us to focus on assignments defined only on the
extreme points of simplexes, and associating ergodic measure-preserving transfor-
mations.

In minimal assignments another restriction is obvious:

(R3) The assigned measure-theoretic dynamical systems are nonatomic.

Indeed, the atomic part of an invariant measure is supported by finitely many peri-
odic points, so that the only assignments involving atomic measures and realizable
in minimal systems are those on trivial simplexes assigning a measure supported
by a single periodic orbit. But we have agreed to exclude trivial simplexes from
our considerations.

It is obvious that the above list of restrictions is incomplete. There must be some
kind of regularity (“measurability” or even “semicontinuity”) of the assignment in-
volved, but due to lack of a natural topology or measurable structure in the “class of
classes” of measure-theoretic dynamical systems modulo isomorphisms, they seem
extremely difficult to capture. A manifestation of the existence of such type of
restriction is seen in the following condition, valid for all topological assignments:

(R4) The entropy function p 7→ h(Ψ(p)) := hµp(Tp) must be a nondecreasing
limit of upper-semicontinuous functions (see [D-S]).

In this talk we exploit the following approach:
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1. A topological assignment determined by a non-minimal topological dynamical
system should possess all the “mysterious” regularity properties. Does minimal-
ity impose any restrictions other than (R3)? In other words, if Ψ is a topologi-
cal assignment determined by an arbitrary topological dynamical system (Y, S)
having no periodic points (this is (R3) for such assignments), does there exist a
minimal dynamical system (X, T ) whose assignment is equivalent to Ψ?

2. Suppose we have a topological assignment Ψ on a simplex K. Let K ′ be a face
of K, i.e., a subsimplex of K whose extreme points are extreme in K. Is the
restriction of Ψ to K ′ also topological? It should be so, because the restriction
should inherit all the “mysterious” regularity properties from Ψ.

We will answer the first question affirmatively in the case of Y zero-dimensional
and the second question if Y is zero-dimensional and, in addition, the restriction
Φ|K′ contains no periodic measures.

Theorem 1. If Y is zero-dimensional and (Y, S) has no periodic points then the
assignment determined by (Y, S) is equivalent to an assignment determined by some
minimal system (X, T ).

Theorem 2. Let (X,T ) be a zero-dimensional dynamical system, and let K ′ be a
face in the simplex K of the invariant measures of (X, T ). Assume that K ′ contains
no periodic measures. Then there exists another zero-dimensional dynamical system
(Y, S), whose natural assignment is equivalent to the identity assignment on K ′.

The superposition of the above two results characterizes all minimal assignments
arising in Cantor minimal systems:

Every nonperiodic face of any zero-dimensional topological assignment
is itself a minimal zero-dimensional assignment (and obviously vice-versa).

Although it seems to be merely a reduction statement (because it character-
izes minimal assignments using topological assignments), it has very strong con-
sequences and allows for practical classification of a large class of assignments as
minimal (and Cantor). We will provide examples soon.

Recall that Cantor minimal systems are among the most extensively studied in
topological dynamics. They appear naturally in many areas; first of all in symbolic
dynamics, also in smooth dynamics, for example as attractors for unimodal maps
(and interval maps in general), they have a well developed theory of Bratteli-Vershik
diagram representations and the theory of orbit equivalence.

Let us discuss briefly the consequences of the above theorems.
1. Theorem 1 above allows one to immediately see that if K has finitely many

extreme points, then any assignment of ergodic nonperiodic measure-theoretic
systems to the extreme points is minimal. Here is why: such assignment is
obviously topological: take the disjoint union of Jewett-Krieger or Rosenthal
realizations for the assigned ergodic measures. Moreover, these realizations can
be made zero-dimensional. By nonperiodicity, Theorem 1 provides a Cantor
minimal model for the same assignment. We have answered affirmatively the
“motivation question” posed at the beginning of the exposition.

2. One can ask the same question for simplexes with countably many extreme
points: is every nonperiodic ergodic assignment on the extreme points of such a
simplex minimal? Here, the situation is much less trivial, because the (no longer
discrete) topology of the set of extreme points may impose additional restrictions.
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However, the restriction (R4) turns out to be void on such simplexes. Thus
such a question remains reasonable. And indeed, using some elementary facts
concerning the so-called universal zero-dimansional system (the full shift on the
Cantor alphabet) one deduces that every such assignment appears as a face of
the natural assignment of this universal system, hence by Theorems 1 and 2 it
is minimal.

Let us remark that I. Kornfeld and N. Ormes [K-O] have proved a beautiful
theorem, implying the above statement whenever all the systems assigned to the
countably many extreme points of the simplex are (in addition to being nonperiodic)
invertible. The authors are even able to construct a minimal realization of an
arbitrary such assignment on a simplex K within any topological orbit equivalence
class of Cantor minimal systems whose simplex of invariant measures is affinely
homeomorphic to K (the affine-topological “shape” of this simplex is an invariant
of the orbit equivalence relation, so this requirement cannot be skipped). The
methods used by the authors are completely different from those of [D2] and rely
on multitowers constructions and manipulations of the order of the floors. These
orbit techniques seem impossible to be used in the noninvertible situation, also,
any applications to simplexes with uncountable sets of extreme points seem rather
hard. Our methods, based on symbolic representations and codes, allow to deal with
nonivertible systems and uncountable extreme sets, but in turn, are completely unfit
for exploration of the orbit equivalence classes. Unfortunately, neither methods
allow excursions beyond dimension zero, further than some direct consequences of
theorems on zero-dimensional modeling.

3. Finally, let us provide an example of a class of assignments on simplexes with
uncountably many extreme points, which were hitherto unknown to be minimal,
and for which our theorems provide an evidence for minimality.

Example. For any pair of positive numbers a < b there exist a minimal Can-
tor system whose all ergodic measures are one-sided (or two-sided, if one wishes)
Bernoulli and form a topological arc parametrized by their entropies ranging lin-
early from a to b. Likewise, we can construct minimal models with all ergodic
measures being Bernoulli and arranged topologically as any preassigned metrizable
compact, and with entropy varying continuously following any preassigned positive
continuous function on this compact.

The above follows immediately, because such an arc (or compact set) of Bernoulli
measures is easily found in the simplex of invariant measures of a full (one or two-
sided) shift over a finite or countable alphabet. The spanned simplex is then a face
in the simplex of all invariant measures of the full shift. Because Bernoulli measures
are nonperiodic we can thus obtain a minimal realization.

Let us conclude this presentation with a number of open questions and relevant
comments. The list below is copied from the preprint [D3].

Question 1. Are the families of all topological and of all minimal assignments es-
sentially larger than the families of topological zero-dimensional and of minimal
zero-dimensional assignments, respectively?

Comment. There are many possibilities to replace a system by its zero-dimensional
extension without changing the assignment (so-called small boundary property, see
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the work of E. Lindenstrauss [L]), and for many examples of higher-dimensional
systems at least one of these possibilities is available (see [D2], the list preceding
Theorem 2). But not for all of them. Examples are presented also in [L]. On the
other hand, it seems that dimension zero imposes the weakest possible topological
constraints, allowing the highest flexibility for realizations of measure-preserving
systems. So, it is hard to expect that there exist assignments realizable only on
some connected or partly connected spaces.

Question 2. Is Theorem 1 true for any topological nonperiodic assignment (not
necessarily zero-dimensional)?

Comment. This is automatically true if Question 1 has a negative answer. In [D2],
Theorem 2, we indicate a class of higher-dimensional systems for which Theorem 1
still holds (extensions of systems with the small boundary property, in particular
extensions of zero-dimensional systems). Of course, there is no indication that the
class of topological assignments on such spaces is essentially larger than that on
zero-dimensional ones.

Question 3. Is Theorem 2 true for any topological nonperiodic assignment (not
necessarily zero-dimensional)?

Comment. Again, this is true if Question 1 is false. By the applied “marker meth-
ods”, it is not hard to see that Theorem 2 extends to at least the same class of
higher-dimensional systems as indicated in Theorem 2 of [D2].

Question 4. By a factor of an assignment Ψ on K we will mean an assignment Ψ′

on some K ′, such that there exists an affine continuous surjection π : K → K ′

and for every p ∈ K a factor map of measure preserving transformations from
Ψ(p) to Ψ′(π(p)). Is every factor of a topological (minimal) assignment topological
(minimal)?

Comment. Every topological dynamical system admits a zero-dimensional exten-
sion. Its assignment is hence a factor (in the above sense) of the assignment of this
extension. Thus, it suffices to answer the question for topological zero-dimensional
assignments. If in addition, one could prove that a factor of such an assignment is
again realizable in dimension zero, this would answer (negatively) the Question 1,
hence resolve all the other questions formulated above; minimal assignments would
coincide with topological nonperiodic assignments. This direction seems to be the
most promising for further investigations.

Question 5. Is Theorem 2 true without assuming nonperiodicity of the face?

Comment. Then the composition with Theorem 1 is not possible, but for Theorem
2 alone there are no immediate reasons why it should not hold.

Question 6. ([K-O]) Is any topological nonperiodic (perhaps zero-dimensional) in-
vertible assignment on a simplex K minimally realizable within the orbit equiv-
alence class of an arbitrary Cantor minimal system whose simplex of invariant
measures is affinely homeomorphic to K?

Comment. Answering this question requires refinements of the methods used in
[K-O], allowing to deal with uncountably many ergodic measures. See [K-O] for
more comments on such attempts.
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