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Abtract: In 1989 (Annals of Math.) Sheldon Newhouse proved (among other
things) that his notion of local entropy provides an upper bound of the defect of
upper semicontinuity of the entropy function h. Then, using a result of Yomdin
(Israel J. 1987), he provided an upper estimate (let us denote it by S) of local en-
tropy, which turns zero in C∞ systems, implying upper semicontinuity of h. Eight
years later Jérome Buzzi argued in a similar way, replacing Newhouse’s estimate
by a different parameter. By definition, Buzzi’s parameter is precisely the Mis-
iurewicz’s topological conditional entropy h∗. At that time this equality escaped
the author’s attention, so, while he only claimed to have obtained a new proof of
upper semi-continuity of h in C∞ systems, Buzzi actually proved much more: all
C∞ maps on compact manifolds are asymptotically h-expansive. My more recent
studies of so-called entropy structure reveal that Newhouse’s upper bound S of the
defect of h also equals h∗, and hence his C∞ result in Annals is also equivalent to
asymptotic h-expansiveness. In the lecture I will try to present a “shortcut way”
to prove asymptotic h-expansiveness of C∞ maps using Yomdin’s estimate and the
theory of entropy structure.

1



2

Let (X,T ) be a topological dynamical system. The topological entropy is defined
(after Bowen) as

h(T ) = lim
ϵ→0

↑ lim
n

↓ 1

n
log r(n, ϵ),

where r(n, ϵ) is the minimal number of (n, ϵ)-balls needed to cover X.

It measures the rate of the exponential growth of the number ϵ-distinguishable
n-orbits as n-grows.

For example, a “k-fold horseshoe” in the system generates entropy at least log k
(FIGURE 1).

Suppose for a moment that the system is expansive with the expansive constant ϵ0.
Then, in the definition of h(T ) we can replace ϵ by ϵ0 and skip the first limit. This is
because for every ϵ there is m such that every (m, ϵ0) ball has radius smaller than ϵ
(by compactness). Thus h(ϵ, Tm) ≤ mh(ϵ0, T ) (and h(ϵ, Tm) = mh(ϵ, T )). In other
words, the “resolution” ϵ0 suffices to detect all “entropy generating dynamics”.
Expanive systems are known to have the following property: the entropy function
µ 7→ hµ(T ) is upper semicontinuous, hence at least one measure µ0 of maximal
entropy hµ0(T ) = h(T ) exists.

Similar property have systems which are not necessarily expansive, but asymptot-
ically h-expansive as defined by Misiurewicz. Let us explain this notion starting
with examples.
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EXAMPLE 1. Let the system consist of a sequence of expansive subsystems
(Xn, Tn) with diameters of Xn decreasing to zero (hence their expansive constants
ϵn also decrease to zero) and accumulating at a fixpoint (FIGURE 2). Assume that
the entropies h(Tn) also decrease to zero. The whole system is clearly not expan-
sive. However, if we look at it with resolution ϵ (small) we miss only the dynamics
near the fixpoint, which generates small entropy. Such system is asymptotically
h-expansive and has u.s.c. entropy function.

EXAMPLE 2. In the previous example assume that h(Tn) are bounded but do not
converge to zero (for example all equal log 2). Then, although the entropy h(T )
is finite the system is not asymptotically h-expansive. If we see it with any given
resolution ϵ > 0 we miss the essential dynamics near the fixpoint. Although we see
dynamics that generates the maximal entropy, we miss equally important dynamics
for many invariant measures. The entropy function has a “bad jump” from log 2 to
zero at the pointmass measure at the fixpoint, so it is not u.s.c.

Asymptotic h-expansiveness is defined via topological tail entropy, as follows:

h∗(T ) = lim
ϵ→0

↓ lim
δ→0

↑ lim
n

↓ 1

n
log r(n, δ|ϵ),

where r(n, δ|ϵ) is the minimal number of (n, δ)-balls sufficient to cover every (n, ϵ)-ball.
The system is asymptotically h-expansive if h∗(T ) = 0. For small ϵ there are few
δ-distinct n-orbits inside any (n, ϵ)-ball.

In EXAMPLE 2, the ϵ-ball around the fixpoint is in fact an (n, ϵ)-ball for any n. Yet
with resolution δ << ϵ we can distinguish lots of large entropy generating dynamics
inside this ball.
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Asymptotically h-expansive systems are important not only for the existence of
measure of maximal entropy. They are characterized as systems “digitalizable with-
out loss or gain of information”. What does that mean?

A system (X,T ) is “digitalizable without loss of information” if it admits an ex-
pansive (equivalently symbolic) extension, i.e., there is a subshift (Y, S) of which
(X,T ) is a topological factor: ∃π : (Y, S) → (X,T ).

A system (X,T ) is “digitalizable without loss or gain of information” if it admits
a principal symbolic extension, i.e., an extension as above which preserves entropy
of invariant measures: hν(S) = hµ(T ) whenever π

∗(ν) = µ.

• THEOREM [Boyle & D.]. A system is asymptotically h-expansive if and only if
it admits a principal symbolic extension.
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Now suppose X is an m-dimensional Riemannian manifold (with or without bound-
ary) of class C∞ and T is Cr smooth. What is known about the digitalizability
properties of such systems?
There are three important facts and one open problem:

• THEOREM 1 (Newhouse 1989, Buzzi 1997, following Yomdin 1987): If T is C∞

then (X,T ) is asymptotically h-expansive. (Both authors claimed to have proved
only that h is u.s.c., but in fact they proved as stated above. In case of Buzzi this
is quite obvious, so the result is attributed to Buzzi. As for Newhouse, to see that
his proof implies asymptotic h-expansiveness is far from obvious and follows from
the much later theory of entropy structure [D]).

• THEOREM 2. (Newhouse & D.) There are C1 maps T for which (X,T ) has NO
expansive extension (even with much larger entropy).

• THEOREM 3. (Newhouse & D.) There are Cr maps T for which (X,T ) has no
principal expansive extensions (every expansive extension has much larger topolog-
ical entropy).

QUESTION: Let 1 < r < ∞. Does every Cr map admit a symbolic extension?
(Conjecture [Newhouse & D.]: Yes)



6

We will now sketch the idea behind the proof of THEOREM 1. The key tool is
provided by Yomdin’s volume growth:

[Y] THEOREM 2.1. Let B and B′ be the balls of radius 1 and 2 around zero in
Rm, respectively. Let f : Rm → Rm be a Cr-map with ∥dsf(x)∥ ≤ M , x ∈ B′,
s = 1, . . . , r. Let σ ∈ Cr σ : Q → B′, where Q = [−1, 1] satisfy ∥dsσ(x)∥ ≤ 1,
x ∈ Q, s = 1, . . . , r. Then there exist at most κ = a(r,m)(logM)b(r,m) · M2m/r

diffeomorphisms φj : Q → Q (j = 1, . . . , κ) such that
1. the images of φj cover S = (f ◦ σ)−1(B),
2. the image of f ◦ σ ◦ φj is contained in B′ (j = 1, . . . , κ)
3. ∥ds(f ◦ σ ◦ φj)(x)∥ ≤ 1, (x ∈ Q, s = 1, . . . , r, j = 1, . . . , κ).
(FIGURE 3)
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Sketch of proof of asymptotic h-expansiveness of C∞ maps (after Buzzi). Consider
an n-orbit x, Tx, . . . , Tnx in X and the fixed “atlas” of maps from X into Rm such
that each 2ϵ-ball B′

i around T ix is fully contained in one chart (this is possible for
sufficiently small ϵ). By appropriate composition with linear maps we can assume
that the atlas maps each B′

i by some map ωi roughly onto B′ (and the ϵ-ball Bi

roughly onto B). Then on B′ we have maps fi = ωi ◦f ◦ω−1
i−1 which satisfy roughly

the same bounds on the derivatives as f . The (n, ϵ)-ball B̃ around x0 corresponds
(via the map ω0) to the intersection

V =
n∩

k=1

(fk ◦ · · · ◦ f1)−1(B).

Fix some δ. In order to estimate the cardinality of an (n, δ)-spanning set in B̃ it
suffices to estimate do the same in V (the change of δ in this passage is inessential,
because we will give the same estimate for every small δ). Here we use repeatedly
Yomdin’s Theorem: start with a δ-spanning set F inQ (of cardinality c). Eventually
there will be at most κn contacting images of Q that cover V , and the union of
images of F (of cardinality cκn will form an (n, δ)-spanning set (FIGURE 4).

We have obtained

1

n
log r(n, δ|ϵ) ≤ log c

n
+ log a(r,m) + b(r,m)(log logM) +

2m

r
logM,
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hence h∗(T ) ≤ log a(r,m) + b(r,m)(log logM) + 2m
r logM .

The same applies to Tn (now M becomes Mn, while the other constants remain),
hence

h∗(Tn) ≤ log a(r,m) + b(r,m)(log n+ log logM) +
2mn

r
logM.

Because h∗(Tn) = nh∗(T ) we divide by n and pass with n to infinity, so, eventually

h∗(T ) ≤ 2m

r
logM.

For r = ∞ this is zero and the system is asymptotically h-expansive. �


