BASIC FACTS CONCERNING ACTIONS OF AMENABLE GROUPS ON COMPACT SPACES

TOMASZ DOWNAROWICZ

based on the seminal paper by

D. Ornstein and B. Weiss Entropy and isomorphism theorems for actions of amenable groups J. d'Anal. Math., 48 (1987), 1–141.

and a joined work with GuoHua Zhang

A group G is **amenable** if there exists a finitely additive left-invariant probability measure on G. Abelian groups, nilpotent groups, solvable groups, groups with polynomial or subexponential growth are amenable. A group that contains the free subgroup with two generators is not amenable. Here we will use this equivalent definition:

DEFINITION 1. A countable, infinite, discrete group G is called **amenable** if it has a **Følner sequence** i.e., a sequence $(F_n)_{n\geq 1}$ of finite sets $F_n \subset G$ $(n \geq 1)$ satisfying, for every $g \in G$, the condition

$$\frac{|F_n \cap gF_n|}{|F_n|} \underset{n \to \infty}{\longrightarrow} 1.$$

•
$$gF = \{gf : f \in F\}$$

• $|\cdot|$ denotes the cardinality of a set

A related very important notion is this:

DEFINITION 2: Let *E* be a finite subset of *G* and choose $\delta \in (0, 1)$. We will say that a finite set *F* is (E, δ) -invariant if

$$\frac{|F \triangle EF|}{|F|} \le \delta,$$

- $EF = \{ef : e \in E, f \in F\}$
- \triangle denotes the symmetric difference

4

• If E contains the unity of G then (E, δ) -invariance is just the condition

$$|EF| \le (1+\delta)|F|.$$

• If a set F is (E, δ) -invariant, so is Fg, for every $g \in G$.

• It is clear, that if (F_n) is a Følner sequence then for every finite set $E \subset G$ and every $\delta > 0$, F_n is *eventually* (i.e., for sufficiently large n) (E, δ) -invariant.

• If (F_n) is a Følner sequence and E is a finite set then both (EF_n) and $(E \cup F_n)$ are Følner sequences as well. (In this manner we can easily produce a Følner sequence containing the unity.) **DEFINITION 3:** Fix an arbitrary (usually infinite) set $H \subset G$. For every finite set F we will denote

$$D_F(H) = \inf_{g \in G} \frac{|H \cap Fg|}{|F|}$$

(notice that the multiplication by g is now on the right) and we define

$$D(H) = \sup\{D_F(H) : F \subset G, |F| < \infty\}.$$

D(H) will be called the **lower Banach density** of H.

LEMMA 1: If (F_n) is a Følner sequence then for every set $H \in G$ we have

$$D(H) = \lim_{n \to \infty} D_{F_n}(H).$$

Proof. Fix some $\delta > 0$ and let F be a finite set such that $D_F(H) \ge D(H) - \delta$. Let n be so large that F_n is (F, δ) -invariant. Given $g \in G$, we have

$$\frac{|H \cap Ffg|}{|F|} \ge D_F(H),$$

for every $f \in F_n$. This implies that there are at least $D_F(H)|F||F_n|$ pairs (f', f) with $f' \in F, f \in F_n$ such that $f'fg \in H$. This in turn implies that there exists at least one $f' \in F$ for which there are not less than $D_F(H)|F_n|$ corresponding fs in F_n (see figure),

i.e., $|H \cap f'F_ng| \ge D_F(H)|F_n|$.

Since $f' \in F$ and F_n is (F, δ) -invariant (and hence so is $F_n g$), we have

 $|H \cap f'F_ng| \le |H \cap FF_ng| \le |H \cap F_ng| + \delta|F_n|,$ which yields

$$|H \cap F_n g| \ge (D_F(H) - \delta)|F_n|.$$

We have proved that $D_{F_n}(H) \ge D_F(H) - \delta \ge D(H) - 2\delta$, which ends the proof. **DEFINITION 4:** Let $\{A_{\alpha}\}$ be a (possibly infinite) family of finite sets. We will say that this family is ε -disjoint if there exist pairwise disjoint sets $A'_{\alpha} \subset A_{\alpha}$ such that, for every α ,

8

$$|A'_{\alpha}| \ge (1-\varepsilon)|A_{\alpha}|.$$

The following lemma plays the key role in many dynamical constructions (entropy, topological entropy, symbolic extensions, etc.) **LEMMA 2:** Let (F_n) be a Følner sequence. Then for every $\varepsilon \in (0, \frac{1}{2})$ and $n_0 \in \mathbb{N}$ there exist $k \geq 1$ and some numbers $n_k \geq n_{k-1} \geq \cdots \geq n_1 = n_0+1$, and sets $C_k, C_{k-1}, \ldots, C_1$ contained in G such that the family

$$\{F_{n_i}c: 1 \le i \le k, \ c \in C_i\}$$

is ε -disjoint, and its union

$$H = \bigcup_{i=1}^{k} F_{n_i} C_i$$

has lower Banach density larger than $1 - \varepsilon$.

SUBADDITIVITY

Let us consider a a non-negative function f defined on finite subsets of G.

We say that f is **monotone** if $F \subset F' \implies f(F) \leq f(F')$. We say that f is **left-invariant** if f(F) = f(Fg) for any $g \in G$.

We say that f is **subadditive** if $f(F \cup F') \leq f(F) + f(F')$.

EXAMPLES:

• Given a subset $H \subset G$, the function $f(F) = \sup_{g} |H \cap Fg|$ is non-negative, monotone, left-invariant and subadditive. This function is used to define **upper Banach density**.

• In a classical dynamical system (X, T) the functions

$$f(F) = \mathbf{H}(\mathcal{U}^F)$$

or

$$f(F) = H_{\mu}(\mathcal{P}^F)$$

are non-negative, monotone, left-invariant and subadditive.

THEOREM 1: Let f be a non-negative, monotone, leftinvariant, subadditive function on finite subsets of G. Then the limit

$$\lim_{n \to \infty} \frac{f(F_n)}{|F_n|}$$

exists for every Følner sequence (F_n) and does not depend on that sequence. *Proof.* Take two Følner sequences (F_n) and (F'_n) . It suffices to show that

$$\liminf_{n \to \infty} \frac{f(F'_n)}{|F'_n|} \ge \limsup_{n \to \infty} \frac{f(F_n)}{|F_n|}.$$

For a subsequence (n_k) , we have

$$\liminf_{n \to \infty} \frac{f(F'_n)}{|F'_n|} = \lim_{k \to \infty} \frac{f(F'_{n_k})}{|F'_{n_k}|}.$$

Since (F'_{n_k}) is also a Følner sequence, it now suffices to prove that, for arbitrary Følner sequences the following holds:

$$\limsup_{n \to \infty} \frac{f(F'_n)}{|F'_n|} \ge \limsup_{n \to \infty} \frac{f(F_n)}{|F_n|}.$$

Fix an arbitrary n and find the ε -disjoint cover $H = \bigcup_{i=1}^{k} F'_{n_i} C_i$ as in Lemma 2, with $D(H) > 1 - \varepsilon$ and all n_i larger than n. There exists a finite set E such that if any set A intersects some $F'_{n_i}c$ then EA contains it $(E = \bigcup_{i=1}^{k} F'_{n_i} F'_{n_i}^{-1}$ is good).

Let n_0 be such that

- F_{n_0} is (E, δ) -invariant
- $D_{F_{n_0}}(H) > 1 \varepsilon$
- $\frac{f(F_{n_0})}{|F_{n_0}|} \ge \limsup_n \frac{f(F_n)}{|F_n|} \varepsilon.$

Then we have

$$\begin{split} \limsup_{n \to \infty} \frac{f(F_n)}{|F_n|} \lesssim \frac{f(F_{n_0})}{|F_{n_0}|} \le \frac{f(EF_{n_0})}{|F_{n_0}|} \approx \frac{f(EF_{n_0})}{|EF_{n_0}|} \le \frac{\sum_{i=1}^k b_i f(F'_{n_i}) + b_0 f(\{g\})}{|EF_{n_0}|} \approx \\ \frac{\sum_{i=1}^k b_i f(F'_{n_i})}{\sum_{i=1}^k b_i |F'_{n_i}|} \in \operatorname{conv} \left\{ \frac{f(F'_{n_i})}{|F'_{n_i}|} : i = 1, \dots, k \right\} \le \sup_{m > n} \frac{f(F'_m)}{|F'_m|} \\ \end{split}$$

This implies the desired inequality

$$\limsup_{n \to \infty} \frac{f(F_n)}{|F_n|} \le \limsup_{n \to \infty} \frac{f(F'_n)}{|F'_n|}.$$

and the

14

THEOREM 2: Suppose a countable, discrete, amenable group G acts by homeomorphisms (denoted ϕ_g) on a compact metric space X. Then there exists a Borel probability measure μ on X invariant under the action, i.e. which satisfies $\phi_g(\mu) = \mu$ for all $g \in G$.

• $\phi_g(\mu)$ is defined by the formula $\phi_g(\mu)(A) = \mu(\phi_g^{-1}(A)).$

Proof. Let ξ be any Borel probability measure on X and choose a Følner sequence (F_n) . Set

$$M_n(\xi) = \frac{1}{|F_n|} \sum_{g \in F_n} \phi_g(\xi).$$

Clearly, this is a probability measure on X. By compactness (in the weak-star topology) of the collection of all probability measures, the sequence $M_n(\xi)$ has an accumulation point μ . Using the defining property of the Følner sequence, one easily verifies that μ is invariant.

Elementary facts

• The set of all invariant probability measures is convex and compact in the weak-star topology.

• The extreme points of this compact convex set are precisely the ergodic measures, i.e., measures giving to any invariant Borel set either the value 0 or 1.

(A set A is invariant if $\phi_g(A) = A$ for every $g \in G$.)

• An analog of the Birkhoff Ergodic Theorem holds:

If μ is an ergodic measure and φ in an absolutely integrable function then

$$\int \varphi \, dM_n(\delta_x) = \frac{1}{|F_n|} \sum_{g \in F_n} \varphi(\phi_g(x)) \underset{n \to \infty}{\longrightarrow} \int \varphi \, d\mu.$$

This holds only for Følner sequences (F_n) satisfying an additional *Shulman Condition* (I'll skip it). Every Følner sequence has a subsequence with this property.

ENTROPY AND TOPOLOGICAL ENTROPY

Let \mathcal{U} and \mathcal{P} be a finite open cover and a finite measurable partition of X, respectively. Set

$$\mathbf{H}(\mathcal{U}) = \log N(\mathcal{U}),$$

(where $N(\mathcal{U})$ is the minimal cardinality of a subcover of \mathcal{U}) and

$$H_{\mu}(\mathcal{P}) = -\sum_{A \in \mathcal{P}} \mu(A) \log(\mu(A)).$$

For a finite set $F \subset G$ denote

$$\mathcal{U}^F = \bigvee_{g \in F} \phi_g^{-1}(\mathcal{U}) \text{ and } \mathcal{P}^F = \bigvee_{g \in F} \phi_g^{-1}(\mathcal{P}).$$

The functions $f(F) = \mathbf{H}(\mathcal{U}^F)$ and $g(F) = H_{\mu}(\mathcal{P}^F)$ are non-negative, monotone, left-invariant and subadditive. By Theorem 1, the limits

$$\mathbf{h}(\mathcal{U}) = \limsup_{n \to \infty} \frac{\mathbf{H}(\mathcal{U}^{F_n})}{|F_n|} \quad \text{and} \quad h_{\mu}(\mathcal{P}) = \limsup_{n \to \infty} \frac{H_{\mu}(\mathcal{P}^{F_n})}{|F_n|}$$

exist and do not depend on the choice of the Følner sequence (F_n) . Finally, we define

$$\mathbf{h}(G ext{-action}) = \sup_{\mathcal{U}} \mathbf{h}(\mathcal{U}) \quad \text{and} \quad h_{\mu}(G ext{-action}) = \sup_{\mathcal{P}} h_{\mu}(\mathcal{P}).$$

KNOWN FACTS

• If a partition \mathcal{P}_0 generates (under the action, modulo μ) the entire Borel sigma-algebra, then

$$h_{\mu}(\mathcal{P}_0) = h_{\mu}(G - \operatorname{action}).$$

• If the action is *expansive* then

$$\mathbf{h}(\mathcal{U}) = \mathbf{h}(G - \operatorname{action})$$

for any cover \mathcal{U} finer than the expansive constant.

- The Shannon–McMillan–Breiman Theorem holds.
- The Variational Principle holds.
- Many other important facts about entropy hold...
- Work in progress: The theory of **entropy structure** and **symbolic extensions** extends to the actions of amenable groups.

That's all, thank you!