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PRELIMINARIES ON AMENABLE GRUOPS

A group G is amenable if there exists a finitely additive

left-invariant probability measure on G. Abelian groups,

nilpotent groups, solvable groups, groups with polynomial

or subexponential growth are amenable. A group that con-

tains the free subgroup with two generators is not amenable.

Here we will use this equivalent definition:

DEFINITION 1. A countable, infinite, discrete group

G is called amenable if it has a Følner sequence i.e., a

sequence (Fn)n≥1 of finite sets Fn ⊂ G (n ≥ 1) satisfying,

for every g ∈ G, the condition

|Fn ∩ gFn|

|Fn|
−→
n→∞

1.

• gF = {gf : f ∈ F}

• | · | denotes the cardinality of a set
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A related very important notion is this:

DEFINITION 2: Let E be a finite subset of G

and choose δ ∈ (0, 1). We will say that a finite set F is

(E, δ)-invariant if

|F△EF |

|F |
≤ δ,

• EF = {ef : e ∈ E, f ∈ F}

• △ denotes the symmetric difference
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Some trivial observations

• If E contains the unity of G then (E, δ)-invariance is

just the condition

|EF | ≤ (1 + δ)|F |.

• If a set F is (E, δ)-invariant, so is Fg, for every g ∈ G.

• It is clear, that if (Fn) is a Følner sequence then for

every finite set E ⊂ G and every δ > 0, Fn is eventually

(i.e., for sufficiently large n) (E, δ)-invariant.

• If (Fn) is a Følner sequence and E is a finite set then

both (EFn) and (E ∪ Fn) are Følner sequences as well.

(In this manner we can easily produce a Følner sequence

containing the unity.)
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DEFINITION 3: Fix an arbitrary (usually infinite) set

H ⊂ G. For every finite set F we will denote

DF (H) = inf
g∈G

|H ∩ Fg|

|F |

(notice that the multiplication by g is now on the right)

and we define

D(H) = sup{DF (H) : F ⊂ G, |F | < ∞}.

D(H) will be called the lower Banach density of H.

LEMMA 1: If (Fn) is a Følner sequence then for every

set H ∈ G we have

D(H) = lim
n→∞

DFn
(H).
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Proof. Fix some δ > 0 and let F be a finite set such that

DF (H) ≥ D(H) − δ. Let n be so large that Fn is (F, δ)-

invariant. Given g ∈ G, we have

|H ∩ Ffg|

|F |
≥ DF (H),

for every f ∈ Fn. This implies that there are at least

DF (H)|F ||Fn| pairs (f ′, f) with f ′ ∈ F, f ∈ Fn such that

f ′fg ∈ H. This in turn implies that there exists at least

one f ′ ∈ F for which there are not less than DF (H)|Fn|

corresponding fs in Fn (see figure),

i.e., |H ∩ f ′Fng| ≥ DF (H)|Fn|.
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Since f ′ ∈ F and Fn is (F, δ)-invariant (and hence so is

Fng), we have

|H ∩ f ′Fng| ≤ |H ∩ FFng| ≤ |H ∩ Fng| + δ|Fn|,

which yields

|H ∩ Fng| ≥ (DF (H) − δ)|Fn|.

We have proved that DFn
(H) ≥ DF (H) − δ ≥ D(H) − 2δ,

which ends the proof. �
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DEFINITION 4: Let {Aα} be a (possibly infinite) family

of finite sets. We will say that this family is ε-disjoint if

there exist pairwise disjoint sets A′
α ⊂ Aα such that, for

every α,

|A′
α| ≥ (1 − ε)|Aα|.

The following lemma plays the key role in many dynam-

ical constructions (entropy, topological entropy, symbolic

extensions, etc.)
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LEMMA 2: Let (Fn) be a Følner sequence. Then for ev-

ery ε ∈ (0, 1
2) and n0 ∈ N there exist k ≥ 1 and some num-

bers nk ≥ nk−1 ≥ · · · ≥ n1 = n0+1, and sets Ck, Ck−1, . . . , C1

contained in G such that the family

{Fni
c : 1 ≤ i ≤ k, c ∈ Ci}

is ε-disjoint, and its union

H =
k

⋃

i=1

Fni
Ci

has lower Banach density larger than 1 − ε.

Proof. Too long!
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SUBADDITIVITY

Let us consider a a non-negative function f defined on finite

subsets of G.

We say that f is monotone if F ⊂ F ′ =⇒ f(F ) ≤ f(F ′).

We say that f is left-invariant if f(F ) = f(Fg) for any

g ∈ G.

We say that f is subadditive if f(F ∪F ′) ≤ f(F )+f(F ′).

EXAMPLES:

• Given a subset H ⊂ G, the function f(F ) = supg |H∩Fg|

is non-negative, monotone, left-invariant and subadditive.

This function is used to define upper Banach density.

• In a classical dynamical system (X, T ) the functions

f(F ) = H(UF )

or

f(F ) = Hµ(P
F )

are non-negative, monotone, left-invariant and subadditive.
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THEOREM 1: Let f be a non-negative, monotone, left-

invariant, subadditive function on finite subsets of G. Then

the limit

lim
n→∞

f(Fn)

|Fn|

exists for every Følner sequence (Fn) and does not depend

on that sequence.
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Proof. Take two Følner sequences (Fn) and (F ′
n). It suffices

to show that

lim inf
n→∞

f(F ′
n)

|F ′
n|

≥ lim sup
n→∞

f(Fn)

|Fn|
.

For a subsequence (nk), we have

lim inf
n→∞

f(F ′
n)

|F ′
n|

= lim
k→∞

f(F ′
nk

)

|F ′
nk
|

.

Since (F ′
nk

) is also a Følner sequence, it now suffices to prove

that, for arbitrary Følner sequences the following holds:

lim sup
n→∞

f(F ′
n)

|F ′
n|

≥ lim sup
n→∞

f(Fn)

|Fn|
.
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Fix an arbitrary n and find the ε-disjoint cover H =
⋃k

i=1 F ′
ni

Ci

as in Lemma 2, with D(H) > 1−ε and all ni larger than n.

There exists a finite set E such that if any set A intersects

some F ′
ni

c then EA contains it (E =
⋃k

i=1 F ′
ni

F ′−1
ni

is good).

Let n0 be such that

• Fn0
is (E, δ)-invariant

• DFn0
(H) > 1 − ε

•
f(Fn0

)

|Fn0
| ≥ lim supn

f(Fn)
|Fn|

− ε.
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Then we have

lim sup
n→∞

f(Fn)

|Fn|
.

f(Fn0
)

|Fn0
|

≤
f(EFn0

)

|Fn0
|

≈
f(EFn0

)

|EFn0
|

≤

∑k
i=1 bif(F ′

ni
) + b0f({g})

|EFn0
|

≈

∑k
i=1 bif(F ′

ni
)

∑k
i=1 bi|F ′

ni
|

∈ conv

{

f(F ′
ni

)

|F ′
ni
|

: i = 1, . . . , k

}

≤ sup
m>n

f(F ′
m)

|F ′
m|

This implies the desired inequality

lim sup
n→∞

f(Fn)

|Fn|
≤ lim sup

n→∞

f(F ′
n)

|F ′
n|

.

�
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BASICS ON ACTIONS OF AMENABLE GROUPS

THEOREM 2: Suppose a countable, discrete, amenable

group G acts by homeomorphisms (denoted φg) on a com-

pact metric space X. Then there exists a Borel probability

measure µ on X invariant under the action, i.e. which sat-

isfies φg(µ) = µ for all g ∈ G.

• φg(µ) is defined by the formula φg(µ)(A) = µ(φ−1
g (A)).

Proof. Let ξ be any Borel probability measure on X and

choose a Følner sequence (Fn). Set

Mn(ξ) =
1

|Fn|

∑

g∈Fn

φg(ξ).

Clearly, this is a probability measure on X. By compact-

ness (in the weak-star topology) of the collection of all prob-

ability measures, the sequence Mn(ξ) has an accumulation

point µ. Using the defining property of the Følner sequence,

one easily verifies that µ is invariant. �
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Elementary facts

• The set of all invariant probability measures is convex

and compact in the weak-star topology.

• The extreme points of this compact convex set are pre-

cisely the ergodic measures, i.e., measures giving to any

invariant Borel set either the value 0 or 1.

(A set A is invariant if φg(A) = A for every g ∈ G.)

• An analog of the Birkhoff Ergodic Theorem holds:

If µ is an ergodic measure and ϕ in an absolutely integrable

function then
∫

ϕ dMn(δx) =
1

|Fn|

∑

g∈Fn

ϕ(φg(x)) −→
n→∞

∫

ϕ dµ.

This holds only for Følner sequences (Fn) satisfying an ad-

ditional Shulman Condition (I’ll skip it). Every Følner se-

quence has a subsequence with this property.
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ENTROPY AND TOPOLOGICAL ENTROPY

Let U and P be a finite open cover and a finite measurable

partition of X, respectively. Set

H(U) = log N(U),

(where N(U) is the minimal cardinality of a subcover of U)

and

Hµ(P) = −
∑

A∈P

µ(A) log(µ(A)).

For a finite set F ⊂ G denote

UF =
∨

g∈F

φ−1
g (U) and PF =

∨

g∈F

φ−1
g (P).

The functions f(F ) = H(UF ) and g(F ) = Hµ(P
F ) are

non-negative, monotone, left-invariant and subadditive. By

Theorem 1, the limits

h(U) = lim sup
n→∞

H(UFn)

|Fn|
and hµ(P) = lim sup

n→∞

Hµ(P
Fn)

|Fn|

exist and do not depend on the choice of the Følner se-

quence (Fn). Finally, we define

h(G-action) = sup
U

h(U) and hµ(G-action) = sup
P

hµ(P).
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KNOWN FACTS

• If a partition P0 generates (under the action, modulo µ)

the entire Borel sigma-algebra, then

hµ(P0) = hµ(G − action).

• If the action is expansive then

h(U) = h(G − action)

for any cover U finer than the expansive constant.

• The Shannon–McMillan–Breiman Theorem holds.

• The Variational Principle holds.

• Many other important facts about entropy hold...

• Work in progress: The theory of entropy structure and

symbolic extensions extends to the actions of amenable

groups.
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That’s all, thank you!


