“JEWETT-KRIEGER” TYPE THEOREMS FOR
NON-UNIQUELY ERGODIC AND NON-INVERTIBLE SYSTEMS

T. DOWNAROWICZ

Let (X, X, 1) be a standard probability space and let T' be a measurable measure-
preserving transformation from X into itself, i.e., such that u(A) = u(T~1(A)) for
every A € ¥. Then (X, %, 1, T) is called a measure-theoretic dynamical system. A
measure-theoretic dynamical system is ergodic if all T-invariant sets (i.e., A € ¥
satisfying T'(A) C A) have either measure 1 or 0. Two measure-theoretic dynamical
systems (X, 3, u, T) and (X', X/, ', T") are said to be isomorphic if there exists a
measurable bijection 9 : Xg — X{), where Xy € &, X € ¥, u(Xo) = p/(X{) = 1,
which sends the measure p to p' (i.e., u(A) = p'(A’) whenever A" = ¢p(A), A € ),
and which is equivariant, i.e., 9 o T = T’ o) u-almost everywhere. A system
isomorphic to an ergodic one is ergodic.

By an assignment we will mean a function ¥ defined on an abstract metrizable
Choquet simplex P, whose “values” are measure-theoretic dynamical systems, i.e.,
for p € P, U(p) has the form (X, Z,, pp, Tp). Two assignments, ¥ on a simplex P,
and ¥’ on a simplex P’, are said to be equivalent if there exists an affine homeo-
morphism of Choquet simplexes 7 : P — P’ such that for every p € P the systems
U(p) and ¥’'(p'), where p’ = 7(p), are isomorphic.

By a topological dynamical system we shall mean a pair (X,T), where X is a
compact metric space and 7T is a continuous map of X into itself. A topological
dynamical system (X, T) is minimal if for every = € X the orbit {T"(x) : n € N} is
dense in X. In the context of a topological dynamical system (X, T'), by a measure
we will always mean a probability measure on the Borel sigma-field ¥. By Pr(X)
we will denote the collection of all T-invariant measures on X, i.e., measures u
preserved by T, in other words such that (X, 3, u, T) becomes a measure-theoretic
dynamical system. It is well known that Pr(X) is a nonempty compact, for the
weak® topology of measures, metrizable Choquet simplex whose extreme points are
precisely the ergodic invariant measures. A topological dynamical system (X, T) de-
termines a natural assignment on the simplex Pr(X) by the rule: p—(X, %, u, T).

This note contributes to the investigation of the following abstract problem:
Characterize the assignments equivalent to the matural assignments arising from
minimal topological dynamical systems? The renowned Jewett-Krieger theorem
solves the problem for trivial (one-point) simplexes and invertible maps; every
assignment of an invertible ergodic measure-theoretic dynamical system can be
equivalently realized by a minimal (strictly ergodic) invertible topological system.
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For nontrivial simplexes or noninvertible maps there is no known answer in full
generality. Though, there are some obvious restrictions on the available assign-
ments:

(R1) ¥ assigns ergodic systems to all extreme points;

(R2) ¥ is affine, i.e., the system (X, X, u,T) assigned to a convex combination
ap1 + (1 —a)pz (0 < a < 1) is non-ergodic and admits a decomposition
= apy+(1—a)ue with both pq and ps preserved by the transformation T,
and such that (X,%, u1,T) and (X, X, poe, T) are isomorphic to the systems
U(p;) and W(py) assigned to p; and pe, respectively;

(R3) the assigned measure-theoretic dynamical systems must be nonatomic;

The restictions (R1) and (R2) apply to assignments arising from any (not necessar-
ily minimal) topological dynamical systems and follow from the basics of ergodic
theory. Condition (R3) in minimal systems is immediate; an atomic invariant mea-
sure is supported by finitely many periodic points, so, by minimality, the whole
system would be one periodic orbit. Such systems have trivial simplex of invariant
measures.

It is obvious that the above list of restrictions is incomplete. There must be some
kind of “measurability” or even “continuity” of the assignment involved, but due
to lack of a natural topology or measurable structure in the “world of classes” of
measure-theoretic dynamical systems modulo isomorphisms, they seem extremely
difficult to capture. A manifestation of the existence of such type of restriction is
seen in the following condition, valid without assuming minimality:

(R4) The entropy function p — h(¥(p)) := hy,(T,) must be a nondecreasing
limit of upper-semicontinuous functions (see [D-S]).

In this note we exploit the following approach: an assignment determined by
a non-minimal topological dynamical system should possess all the (undiscovered)
“measurability” and “continuity” properties. Does minimality impose any further
restrictions other than (R3)? In other words, if ¥ is an assignment determined by
an arbitrary topological dynamical system (Y,.S) having no periodic points (this
is equivalent to (R3) for such assignments), does there exist a minimal topological
dynamical system (X, 7T) whose assignment is equivalent to ¥U?

We will answer this question affirmatively in case Y is zero-dimensional. The
result then autoamltcally extends to systems with so-called small boundary prop-
erty, i.e., existence of arbitrarily fine finite open covers by sets with boundaries
having measure zero for all invariant measures. Every system with small boundary
property has a Borel*-isomorphic zero-dimensional extension. The construction is
standard.

The small boundary property has been exploited in the works of E. Linden-
strauss. Lack of periodic orbits plus any of the properties listed below suffices for
(Y, S) to have small boundary property:

e Y is zero-dimensional (includes all subshifts over finite or countable alphabets);
e (Y,S) has finitely or countably many ergodic measures;
e S is invertible and Y finite-dimensional [Kulesza];

e (Y,95) is invertible, has finite topological entropy and a nonperiodic minimal
topological factor [Lindenstrauss].



Finally, we notice that zero-dimensionality is needed only for the existence of
closed-and-open markers, which immediately implies that the theorem also extends
to the case where (Y, S) admits an infinite factor with the small boundary property.

In fact (with this assumption) we will prove more: we will conjugate the systems
(Y,S) and (X, T) in a very strong sense, implying equivalence of their assignments.
We need a definition for that.

Let (X, T) be a topological dynamical system. A Borel subset Xy C X is called a
full setif it is T-invariant and has measure 1 for every invariant measure 1 € Pr(X).

Definition. By a Borel* isomorphism between two topological dynamical systems
(X,T) and (X', T") we shall understand an equivariant Borel-measurable bijection
¢ Xo = X between full sets Xy C X and X C X’, such that the adjacent map
¢* : Pr(X) — Pr/(X') defined by the rule ¢*(u)(A) = u(¢p1(A)) (A C X) is a
homeomorphism with respect to the weak* topologies.

If ¢ is a Borel* isomorphism, then the pair ¢ and ¢* establish an equivalence
between the assignments determined by (X,T) and (X', T"); ¢* plays the role of an
affine homeomorphism between the simplexes, while, for each pair of measures p,
w = ¢*(1), ¢ provides the isomorphism between (X, ¥, u, T) and (X', X/, u/,T").
Notice that any equivariant Borel-measurable bijection ¢ between full sets provides
an affine bijection ¢* between the simplexes of invariant measures. By compactness
of these simplexes, in order to verify ¢* as a homeomorphism (and thus a Borel*
isomorphism) it suffices to check its weak* continuity.

We will exploit the notion of n-markers. The following Lemma is a non-invertible
version of Krieger’s marker lemma (see [B] for the invertible case) with absence of
periodic points.

Definition. A subset F of a topological dynamical system (Y,S) is called an
n-marker if

(a) the sets T~¢(F) (0 < i < n) are pairwise disjoint;

(b) the sets T7(F) (0 <i < m) cover Y for some m € N.
The system (X, T) is said to have the marker property if there exist closed-and-open
n-markers for all n € N. Every zero-dimensional system has the marker property.

We are in a position to state the main theorem:

Theorem 1. If (Y,S) has the marker property then it is Borel*-isomorphic to a
minimal topological dynamical system (X, T). In particular the assignment deter-
mined by (Y, S) is equivalent to the assignment determined by the minimal system

(X,T).



