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1. GENERALLY ON SYMBOLIC EXTENSIONS

Let (X, T ) be a topological dynamical system, i.e., a continuous map on a compact metric space.

QUESTION 1: Is (X, T ) a factor of a subshift?
In other words, does there exist a symbolic extension of (X, T )?

QUESTION 2: If yes, what is the infimum entropy of such a subshift?
Is this infimum attained?

A symbolic extension can be thought of as a lossless “digitalization” of the system.
In ergodic theory finite entropy is the only restriction to get an isomorphic symbolic
representation (Krieger’s Generator Theorem).
In topological dynamics this problem is much more complicated.
Finite partition coding usually destroys the topology and leads to loss of information.
Symbolic extension is the only solution that preserves everything (but adds “unwanted” dynamics).
Existence of symbolic (equivalently of an expansive) extension depends on subtle entropy properties.



Define

hsex(X, T ) = inf{htop(Y, S) : (Y, S) is a two-sided subshift extension of (X, T )}
hsex(X, T ) = ∞ if (X, T ) has no symbolic extensions

Let PT (X) denote the set of all T -invariant measures µ on X.
Let π : (Y, S) → (X, T ) be a factor map.
Define

hπ(µ) = sup{hν(S) : ν ∈ PS(Y ), π∗(ν) = µ}
Define

hsex(µ) = inf{hπ(µ) : π is a two-sided subshift extension of (X, T )}
hsex ≡ ∞ if (X, T ) has no symbolic extensions

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PROBLEM 1.
Compute (or estimate) hsex and hsex for a given system (X,T ) using its internal properties.

PROBLEM 2.
Estimate hsex and hsex for smooth maps on manifolds (Cr, 1 ≤ r ≤ ∞).



2. HISTORY

1. Every expansive T has a symbolic extension (W. Reddy, 1968)
2. Not every finite entropy homeomorphism admits a symbolic extension
(M. Boyle ∼1990, published with D. Fiebig and U. Fiebig, 2002)
3. Formula for hsex in dimension zero (T.D., 2001), in particular asymptotically h-expansive zero
entropy systems have symbolic extensions with the same topological entropy.
4. Asymptotically h-expansive systems have symbolic extensions with the same entropy for every
measure, i.e., hsex ≡ h (principal symbolic extension) (Boyle-Fiebig-Fiebig 2002)
This applies to C∞ maps on manifolds (J. Buzzi, 1997).
5. Complete general description of hsex in terms of “superenvelopes” and the “transfinite sequence”
(M. Boyle, T.D., 2004)
in particular:
Sex entropy variational principle

hsex(X, T ) = sup{hsex(µ) : µ ∈ PT (X)}.

And also:
Attainment criterion (existence of a symbolic extension π realizing hπ ≡ hsex):
if and only hsex is affine.
6. Theory of entropy structures (T.D., 2005)
(we will refer to it later)



State of art for smooth systems

1. C∞ implies asymptotic h-expansiveness which is equivalent to the condition hsex ≡ h
(implying hsex = htop).

Successful application of entropy structures to smooth systems in dimension ≥ 2
(T.D., S. Newhouse, 2005):
2. C1 admits systems with no symbolic extensions (hsex = ∞) – such systems are typical
among area preserving non-Anosov diffeomorphisms.

3. Cr (1 < r < ∞) admits systems where hsex > htop, typically hsex ≥ htop + R(f)
r−1

(R(f) = lim sup 1
n log ||Dfn||)

CONJECTURE: hsex ≤ htop + R(f)
r−1 .

In particular, every Cr map with r > 1 has a symbolic extension (is a factor of a subshift).

4. (David Burguet, 2008): Cr examples on the interval with hsex ≥ htop + R(f)
r−1 .



3. LATEST PROGRESS

(T.D., A. Maass) The conjecture holds in dimension 1 (interval, circle).

More precisely, the following estimate holds

Theorem
If X denotes the interval or the circle and f : X → X is a Cr map (1 ≤ r ≤ ∞),
then for every µ ∈ Pf (X),

hsex(µ) ≤ hµ(T ) +
χ̄0(µ)
r − 1

(χ0(µ) for ergodic µ equals the maximum of 0 and the Lyapunov exponent;
for other measures χ̄0 is the average of χ0 over the ergodic decomposition).

In particular,
every C1+ε interval or circle map is a factor of a subshift.



4. INTRODUCTION TO ENTROPY STRUCTURES

I will NOT give the general definition of the entropy structure.

There are, however, many “particular” entropy structures.
Each is a sequence of functions hk : PT (X) → [0,∞), such that hk ↗ h pointwise.
Sometimes it is better to consider the tails θk = h− hk. We have θk ↘ 0 pointwise.

The derivation of hsex from the entropy structure is via the “transfinite sequence”.

Step 0: u0 ≡ 0

Step α + 1: uα+1 = limk
˜uα + θk (recall that f̃(x) = lim supy→x f(y) )

Step β (limit ordinal): uβ = ˜supα<β uα

Theorem
There exists a countable ordinal α0 such that uα = uα0 for every α ≥ α0, and

hsex = h + uα0 , hsex = sup
PT (X)

(h + uα0).

By the way, the famous Misiurewicz parameter h∗ equals the pointwise supremum
of the function u1.



The Newhouse entropy structure

Definition. (Newhouse, 1989)

(a) H(n, δ|x, F,V) := log max{#E : E is an (n, δ)-separated set in F ∩ V n
x };

(b) H(n, δ|F,V) := supx∈F H(n, δ|x, F,V);

(c) h(δ|F,V) := lim supn
1
nH(n, δ|F,V);

(d) h(X|F,V) := limδ→0 h(δ|F,V);

(e) for an ergodic measure ν, hNew(X|ν,V) := limσ→1 inf{h(X|F,V) : ν(F ) > σ}.

We extend the function hNew(X|·,V) to all of PT (X) by averaging over the ergodic decomposition.
This function is called the local entropy function given the cover V.

The Newhouse entropy structure is obtained as the sequence

θk(µ) = hNew(X|µ,Vk),

where Vk is a sequence of open covers, each finer than the preceding one,
and with the maximal diameters of their elements decreasing to zero.
This is indeed an entropy structure (T.D. 2005).



5. KEY INGREDIENT IN THE ONE-DIMENSIONAL RESULT:

The Antarctic Theorem

Let f be a Cr transformation of the interval or of the circle X, where r > 1.
Let µ ∈ Pf (X) and fix some γ > 0.
Then there exists an open cover V of X and a neighborhood of µ in Pf (X)
such that for every ergodic ν in this neighborhood,

hNew(X|ν,V) ≤ χ0(µ)− χ0(ν)
r − 1

+ γ,

where
χ(µ) =

∫
log |f ′(x)| dµ, χ0(µ) = max{0, χ(µ)}

How one proves such a thing?





One needs to cleverly choose the cover V and the set F of measure ν close to 1:

V consists of one open set containing all critical points and finitely many intervals
on which f is monotone.

F is the set where for n large enough the Cesaro means of the function log |f ′|
are close to χ(ν).

Then the key calculation is in the following lemma:

Lemma
There exists a constant c such that for every s > 0, the number of monotone branches
where |f ′| exceeds s is at most

c · s− 1
r−1



6. Deducing the main result from the Antarctic Theorem

First, using a lot of functional analysis, we get rid of the assumption that ν is ergodic
replacing the function χ0 by χ̄0 (this is The Passage Theorem): for ν near µ,

hNew(X|ν,V) ≤ χ̄0(µ)− χ̄0(ν)
r − 1

+ γ.

Observe that also

hNew(X|ν,V) ≤ h(ν) ≤ χ̄0(ν),

hence

hNew(X|ν,V) ≤ min{χ̄0(ν),
χ̄0(µ)− χ̄0(ν)

r − 1
+ γ}



Together this implies

hNew(X|ν,V) ≤ χ̄0(µ)
r

+ γ

(which is a refinement of Yomdin’s global estimate by R(f)
r ).



This implies

u1(µ) ≤ χ̄0(µ)
r

≤ χ̄0(µ)
r − 1

Suppose

uα ≤ χ̄0(µ)
r − 1

Then, near a measure µ

uα(ν) + hNew(X|ν,V) ≤ χ̄0(ν)
r − 1

+ min
{

χ̄0(ν),
χ̄0(µ)− χ̄0(ν)

r − 1
+ γ

}
≤ χ̄0(µ)

r − 1
+ γ



which implies

uα+1 ≤ χ̄0(µ)
r − 1

For limit ordinals the passage is trivial: if uα ≤ χ̄0(µ)
r−1 for all α < β then

uβ = s̃up
α<β

uα ≤ χ̄0(µ)
r − 1

,

because the function on the right is u.s.c.

Eventually, uα ≤ χ̄0(µ)
r−1 for all ordinals including α0.

Using the transfinite formula we get the desired result:

hsex(µ) = h(µ) + uα0(µ) ≤ h(µ) +
χ̄0(µ)
r − 1

. ¤
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PROOF OF THE ANTARCTIC THEOREM

hNew(X|ν,V) ≤ χ0(µ)− χ0(ν)
r − 1

+ γ,

(4.1) Lemma. Let g : [0, 1] → R be a Cr function, where r > 0. Then there exists a constant
c > 0 such that for every 0 < s < 1 the number of components of the set {x : g(x) 6= 0} on which |g|
reaches or exceeds the value s is at most c · s− 1

r .

Proof. If g has a constant sign then there is only one component and the lemma holds with c = 1.
Otherwise we proceed inductively, as follows: For 0 < r ≤ 1, g is Hölder, i.e., there exists a constant
c1 > 0 such that |g(x)− g(y)| ≤ c1|x− y|r. If |g(x)| ≥ s and y is a zero point for g then

|x− y| ≥ c1
− 1

r · s 1
r .

The component containing x is at least that long and the number of such components is at most
c · s− 1

r , where c = c1
1
r .



Now take r > 1 and suppose that the lemma holds for r − 1. Let g be of class Cr. We count the
components I = (aI , bI) of {x : g(x) 6= 0} where |g| exceeds s. Unless aI = 0 or bI = 1, I contains a
critical point. Let xI denote the largest critical point x ∈ I satisfying |g(x)| ≥ s. Unless I is the last
or last but one component, there is a critical point larger than or equal to bI . Let yI be the smallest
such critical point. So, except for at most three components, I determines an interval (xI , yI).

Notice that these intervals are disjoint for different I. There are two possible cases: either
a) yI − xI > s

1
r , or

b) yI − xI ≤ s
1
r .

Clearly, the number of components I satisfying a) is smaller than s−
1
r . If a component satisfies b)

then, by the mean value theorem, |g′| attains on (xI , bI) a value at least s/s
1
r = s

r−1
r . This value

is attained on a component of the set {x : g′(x) 6= 0} contained in (xI , yI). Because g′ is of class
Cr−1, by the inductive assumption, the number of such intervals (xI , yI) (hence of components I

satisfying b)) does not exceed c · (s r−1
r )−

1
r−1 = c · s− 1

r . Jointly, the number of all components I is
at most 3 + (c + 1) · s− 1

r ≤ (c + 4) · s− 1
r . ¤



Letting g = f ′ we obtain the following

(4.2) Corollary. Let f : [0, 1] → [0, 1] be a Cr function, where r > 1. Then there exists a constant
c > 0 such that for every s > 0 the number of branches of monotonicity of f on which |f ′| reaches
or exceeds s is at most c · s− 1

r−1 .

(4.3) Definition. Let f be as in the formulation of Corollary (4.2). Let I = (I1, I2, . . . , In) be a
finite sequence of branches of monotonicity of f , (i.e., any formal finite sequence whose elements
belong to the countable set of branches, admitting repetitions). Denote

(4.4) ai = min{−1, max{log |f ′(x)| : x ∈ Ii}}.

Choose S ≤ −1. We say that I admits the value S if

(4.5)
1
n

n∑

i=1

ai ≥ S.

Clearly, if there exists a sequence of points yi ∈ Ii with log |f ′(yi)| ≤ −1 for each i and satisfying
1
n

∑n
i=1 log |f ′(yi)| ≥ S, then I admits the value S.

For t ∈ (0, 1) we will use the notation H(t) = −t log t − (1 − t) log(1 − t). Recall that this positive
function approaches zero both at 0 and at 1. The standard application of Stirling’s formula yields
that for m ≥ n the logarithm of the binomial coefficient

(
m
n

)
is bounded above by mH( n

m ) + 1.



(4.6) Lemma. Let f : [0, 1] → [0, 1] be a Cr function, where r > 1. Fix γ > 0. Then there exists
Sγ ≤ −1 such that for every n and S < Sγ the logarithm of the number of sequences I of length n
which admit the value S is at most

(4.7) n
−S

r − 1
(1 + γ).

Proof. Without loss of generality assume that S is a negative integer. Let I be a sequence of n
branches of monotonicity which admits the value S. Denote ki = baic. Then (−ki) is a sequence of
n positive integers with sum at most n(1−S). The number of such sequences (ki) is bounded above
by

(
n(1−S)

n

)
, and the logarithm of this number is dominated by n(1−S)H( 1

1−S )+1. Now, in a given
sequence (ki), each value ki may be realized by any branch of monotonicity on which max log |f ′|
lies between ki and ki + 1 (or just exceeds −1 if ki = −1). From Corollary (4.2) it follows that

there are no more than ce
−ki
r−1 such branches. Jointly the logarithm of the number of sequences

of branches of monotonicity corresponding to one sequence (ki) is at most n log c − 1
r−1

∑n
i=1 ki ≤

n log c + n
r−1 (1− S), and the logarithm of the number of all sequences of branches of monotonicity

which admit the value S is at most

n log c + n
r−1 (1− S) + n(1− S)H( 1

1−S ) + 1.

If S is close enough to minus infinity then the last expression does not exceed n −S
r−1 (1 + γ) for any

n. ¤



Let us return to the transformation T of the interval or of the circle. In both cases the derivative
f ′ of the associated function f can be regarded as a function defined on the interval [0, 1]. Let
C = {x : f ′(x) = 0} be the critical set. Fix γ > 0. Fix some open neighborhood U of C on which
log |f ′| < Sγ . Notice that U c can be covered by finitely many open intervals on which f is monotone.
Let V be the cover consisting of U and these intervals.



(4.8) Lemma. Let T be a Cr transformation of the interval or of the circle X, where r > 1. Let
U and V be as described above. Let ν be an ergodic measure and let

(4.9) S(ν) =
∫

U

log |f ′| dν.

Then

(4.10) hNew(X|ν,V) ≤ −S(ν)
r − 1

(1 + γ).

Proof. It suffices to consider the case of S(ν) finite. For σ < 1 there exists nσ ∈ N such that the set
F has measure larger than σ, where F is the set of points y satisfying, for every n ≥ nσ, that the
nth Cesaro mean at y of the function 1U log |f ′| equals S(ν) up to the error 1 − σ. Let x ∈ F and
n ≥ nσ. Consider a set

(4.11) V n
x = V0 ∩ T−1(V1) ∩ · · · ∩ T−n+1(Vn−1)

containing x, with Vi ∈ V (as in the definition of local entropy). Consider the finite subsequence of
times 0 ≤ ij ≤ n−1 when Vij

= U . Let nζ denote the length of this subsequence and assume ζ > 0.
For a fixed δ let E be an (n, δ)-separated set in V n

x ∩ F and let y ∈ E. The sequence (ij) contains
only (usually not all) times i when f i(y) ∈ U . Thus, since y ∈ F , we have



(4.12) S(ν) ≤ 1
n

(∑

j

log |f ′(T ij (y))|+ A
)

+ 1− σ,

where A is the similar sum over the times of visits to U not included in the sequence (ij). Clearly
A ≤ 0, so it can be skipped. Dividing by ζ we obtain

(4.13)
S(ν)− (1− σ)

ζ
≤ 1

nζ

∑

j

log |f ′(T ij (y))|.

The right hand side of (4.13) is smaller than Sγ . This implies that along the subsequence (ij) the
trajectory of y traverses a sequence I (of length nζ) of branches of monotonicity of f admitting the
value S(ν)−(1−σ)

ζ smaller than Sγ . By Lemma (4.6), the logarithm of the number of such sequences
I is dominated by

(4.14) n
−S(ν) + (1− σ)

r − 1
(1 + γ).



At times i other than ij the set Vi contains only one branch, so if two points from V n
x ∩ F traverse

the same sequence of branches along the times (ij), they traverse the same full sequence of branches
along all times i = 0, 1, . . . , n − 1 (this takes care also of the case when ζ = 0). Now, it is easy to
see that the number of (n, δ)-separated points which, along all times i = 0, 1, . . . , n − 1, traverse
the same given sequence of branches of monotonicity is bounded above by n

δ . This, together with
(4.14), implies that the logarithm of the cardinality of E is at most

(4.15) n
−S(ν) + (1− σ)

r − 1
(1 + γ) + log n− log δ.

The proof is concluded by dividing by n, letting n →∞ and then letting σ → 1. ¤



Proof of the Antarctic Theorem. Fix an invariant measure µ and some γ > 0. We need to consider
only ergodic measures ν close to µ. If χ(µ) < 0 then, by upper semicontinuity of the function χ, for ν
sufficiently close to µ, χ(ν) < 0, so by the Ruelle inequality (and since always hNew(X|ν,V) ≤ h(µ)),
hNew(X|ν,V) = 0 and the assertion (3.2) holds.
Now suppose that χ(µ) ≥ 0. Clearly, then µ(C) = 0. Since log |f ′| is µ-integrable, for any given γ1

the open neighborhood U of C (on which log |f ′| < Sγ1) can be made so small that

(4.16)
∫

U

log |f ′(x)| dµ > −γ1.

Then

(4.17)
∫

U
c
log |f ′(x)| dµ < χ(µ) + γ1.

We define the cover Vµ as V with the above choice of the set U (the parameter γ1 will be specified
at the end of the proof). The integral in (4.17) is an upper semicontinuous function of the measure
(U

c
is an open set on which log |f ′| is finite and continuous and negative on the boundary). Thus

there exists εµ > 0 such that dist(ν, µ) < εµ implies

(4.18)
∫

U
c
log |f ′(x)| dν < χ(µ) + γ1.

The more

(4.19)
∫

Uc

log |f ′(x)| dν < χ(µ) + γ1



(we have included the boundary to the set of integration, and the function is negative on that
boundary). Then

(4.20) −S(ν) =
∫

Uc

log |f ′(x)| dν − χ(ν) ≤ χ(µ)− χ(ν) + γ1.

Substituting (4.20) into (4.10) we get

(4.21) hNew(X|ν,Vµ) ≤ χ(µ)− χ(ν) + γ1

r − 1
(1 + γ1).

Of course, χ(µ) can be replaced by a not smaller number χ0(µ). If χ(ν) < 0 then hNew(X|ν,Vµ) =
0 ≤ χ0(µ)−χ0(ν)

r−1 , so, in any case we can write

(4.22) hNew(X|ν,Vµ) ≤ χ0(µ)− χ0(ν) + γ1

r − 1
(1 + γ1).

Because χ0(µ)−χ0(ν)
r−1 is bounded above (for example by L(T )

r−1 ), given γ > 0 we can choose γ1 so small
that the assertion (3.2) holds. ¤
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PROOF OF THE PASSAGE THEOREM

For every µ ∈ PT (X) and γ > 0 there exist an open cover V such that for ANY ν ∈ PT (X)
sufficiently close to µ,

hNew(X|ν,V) ≤ χ̄0(µ)− χ̄0(ν)
r − 1

+ γ,

where χ̄0(µ) is the average of χ0 over the ergodic decomposition of µ.

(4.26) Lemma. Let P be a compact metric space (with a metric dist) and let M be the set of
all probability measures on P endowed with the weak* topology given by a metric Dist. Fix some
M ∈M and ε > 0. Then there exists ξ > 0 such that for any N ∈M, Dist(N, M) < ξ implies that
there exists a joining J of N and M (i.e., a measure on the product P × P with marginals N and
M) such that J(∆ε) > 1− ε, where ∆ε = {〈ν, τ〉 ∈ P × P : dist(ν, τ) < ε}.



Proof. There exists a partition of P into finitely many Borel sets Fi with the following properties:
diam(Fi) < ε and M(∂Fi) = 0, for every i. (Here ∂F denotes the boundary of a set F .) Then
every N ∈ M sufficiently close to M satisfies

∑
i |N(Fi) − M(Fi)| < ε. For each i let αi =

min{N(Fi),M(Fi)} and let J ′ be the subprobabilistic measure obtained as the sum of the product
measures N |Fi ×M |Fi normalized so that J ′(Fi×Fi) = αi. The marginals of J ′ are subprobabilistic
measures M ′ and N ′ such that M −M ′ and N −N ′ are positive with equal masses β not exceeding
ε. The joining J is obtained as the sum of J ′ and of (M −M ′)× (N −N ′) normalized to have the
mass β. ¤



(4.27) Corollary. In a topological dynamical system (X,T ), let µ, νn ∈ PT (X), and νn → µ in
the weak* topology. Choosing a subsequence we can assume that Mνn

converge to some M . By
continuity of the barycenter map, bar(M) = µ. Then, given any ε > 0, for n large enough, there
exists a joining J of Mνn

and M such that J(∆ε
e) > 1− ε, where

(4.28) ∆ε
e = {〈ν, τ〉 ∈ PT (X)× PT (X) : ν is ergodic and dist(ν, τ) < ε}.

(The added condition that ν is ergodic is satisfied since each measure Mνn
is, by definition, supported

by the set of ergodic measures.)



Proof of the Passage Theorem. Suppose that there exists γ > 0 and a sequence νn converging to µ,
and which, for any choice of an open cover V and ε > 0, eventually does not satisfy the assertion
(4.25) of the theorem. By choosing a subsequence we can assume that Mνn → M with bar(M) = µ.
Let γ1 be such that γ1(1 + 3h) ≤ γ. For every τ in the support of M there is some open cover
Vτ and ετ > 0 established in the assumption applied to γ1 and τ , (so that (4.24) is fulfilled with γ
replaced by γ1 and µ replaced by τ). For each τ the Lebesgue number of Vτ is a positive number
ξτ . Let ε < γ2

1 be so small that ετ > ε and ξτ > ε for all τ belonging to a set G1 of M -measure
larger than 1− γ1. We let V be an open cover by sets of diameter smaller than ε. This cover is finer
than Vτ for each τ ∈ G1, hence (4.24) holds for such τ , V and ε. By Corollary (4.27), for n large
enough there exists a joining J of Mνn and M satisfying J(∆ε

e) > 1− ε. Let Jτ be the conditional
probability measure of J with τ fixed on the second coordinate, and let ντ denote bar(Jτ ). We have

(4.29)
∫

ντ dM(τ) = νn.

Recall that for almost every τ , Jτ is supported by ergodic measures ν. Moreover, for a set G2 of
M -measure at least 1 − √ε > 1 − γ1 of τ ’s, Jτ is up to

√
ε < γ1 supported by the ε-neighborhood

of τ . These conditions together imply that for τ ∈ G1 ∩G2 (of M -measure at least 1− 2γ1) all but
a set of Jτ -measure γ1 of measures ν are ergodic and so close to τ that they satisfy (4.24) with the
parameters (γ1,V, ε, ν, τ) in place of (γ,Vµ, εµ, ν, µ). Since local entropy is (by definition) harmonic,
integrating both sides of (4.24) with respect to Jτ we obtain (for τ ∈ G1 ∩G2)

(4.30) hNew(X|ντ ,V) ≤ g0(τ)− ḡ0(ντ )
r − 1

+ γ1 + γ1h



(on the “bad” set of ν’s the local entropy is estimated above by h). Now we integrate both sides
of (4.30) over τ with respect to M . The term g0(τ) will integrate to not more than the maximum
over all measures M with barycenter µ. Such maximum was denoted as ĝ0(µ). But recall (see Fact
(2.5), in particular (2.8)) that this maximum is achieved at Mµ and equals ḡ0(µ). The function ḡ0

is harmonic, so, by (4.29), the term ḡ0(ντ ) will integrate to ḡ0(νn). Similarly will behave the left
hand side. In this manner we obtain

(4.31) hNew(X|νn,V) ≤ ḡ0(µ)− ḡ0(νn)
r − 1

+ γ1 + γ1h + 2γ1h

(again, on the complement of G1 ∩G2 local entropy is estimated above by h). By the choice of γ1

we have contradicted the assumption that νn eventually does not satisfy the assertion (4.25) for γ,
V and ε. ¤


