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1 Introduction

In this note we describe a relatively new result – a consequence of positive dynami-
cal entropy of a process. It concerns the behavior of the return time random variables
Rn(x) for largen (the same as treated by the Ornstein–Weiss Return Times Theorem in
[Ornstein and Weiss, 1993], but in a complementary manner).The theorem has a very
interesting interpretation, easy to articulate in a language accessible also to nonspecial-
ists. Yet, as usually at such occasions, one has to be very cautious and not get enticed
into pushing the conclusions too far. We begin this chapter with a short historical note
concerning the debate on the Law of Series in the colloquial meaning. We explain how
theErgodic Law of Seriescontributes to this debate. Then we pass to the mathematical
proof preceded by introducing a number of ergodic-theoretic tools.

2 History of the Law of Series

In the colloquial language, a “series” happens when a randomevent, usually extremely
rare, is observed surprisingly often throughout a period oftime. Even two repetitions,
one shortly after another, are often interpreted as a “series”. The Law of Series is the
belief that such series happen more often than they should by“pure chance” (whatever
that means). This belief is usually associated with another; that there exists some
unexplained force or rule behind this “law”. A number of idioms, such as “run of good
luck” or “run of misfortune”, or proverbs like “misfortune never comes alone”, exist
in nearly all languages, which confirms that people have beennoticing this kind of
mystery since a long time. The most commonly known examples of “series” are runs
of good luck in gambling with the famous case of Charles Wellstaking the lead (see
e.g.Charles Wells (gambler)on Wikipedia).

Serial occurrences of certain types of events is perfectly understandable as a result
of physical dependence. For example, volcanic eruptions appear in series during pe-
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riods of increased tectonic activity. Another good examplehere are series of people
falling ill due to a contagious disease, or very simply, returns of certain motifs in fash-
ion design. The dispute around the Law of Series clearly concerns only such events for
which there are no obvious clustering mechanisms, and whichare expected to appear
completely independently from each-other, and yet, they doappear in series. With this
restriction the Law of Series belongs to the category of unexplained mysteries, such as
synchronicity, telepathy or even Murphy’s Law, and is oftenconsidered a manifesta-
tion of paranormal forces that exist in our world and escape scientific explanation. This
might be the reason why, after the first burst of interest, serious scientists and journals
refused to get involved in the investigations of this and related topics. Below we review
the list of selected scientists involved in the debate.

Kammerer. An Austrian biologistPaul Kammerer(1880-1926) was the first scien-
tist to study the Law of Series (law of seriality, in some translations). His bookDas
Gesetz der Serie[Kammerer, 1919] contains many examples from his and his nears’
lives. Richard von Mises in his book [von Mises, 1981] describes that Kammerer con-
ducted many (rather naive) experiments, spending hours in parks noting occurrences
of pedestrians with certain features (glasses, umbrellas,etc.), or in shops, noting pre-
cise times of arrivals of clients, and the like. Kammerer “discovered” that the number
of time intervals (of a fixed length) in which the number of objects under observation
agrees with the average is by much smaller than the number of intervals, where that
number is either zero or larger than the average. This, he argued, provided evidence
for clustering. From today’s perspective, Kammerer merelynoted the perfectly normal
spontaneous clustering of signals in the Poisson process. Nevertheless, Kammerer’s
book attracted some attention of the public, and even of someserious scientists, toward
the phenomenon of clustering. Kammerer himself lost authority due to accusations
of manipulating his biological experiments (unrelated to our topic), which eventually
drove him to suicide.

Pauli and Jung. Examples of series are, in the popular culture, mixed with examples
of other kinds of “unbelievable” coincidences. Pioneer theories about coincidences (in-
cluding series) were postulated not only by Kammerer but also by a noted Swiss psy-
chologist Carl Gustav Jung (1875-1961) and a Nobel prize winner in physics, Austrian,
Wolfgang Pauli (1900-1958). They believed that there existundiscovered physical “at-
tracting” forces driving objects that are alike, or have common features, closer together
in time and space (so-called synchronicity) [see e.g. Jung and Pauli, 1955; Jung, 1977].

Moisset. The Law of Series and synchronicity interests the investigators of spirituality,
magic and parapsychology. It fascinates with its potentialto generate “meaningful
coincidences”. A Frenchman Jean Moisset (born 1924), a self-educated specialist in
parapsychology, wrote a number of books on synchronicity, Law of Series, and similar
phenomena. He connects the Law of Series with psychokinesisand claims that it is
even possible to use it for a purpose [Moisset, 2000].

Skeptics: Weaver, Kruskall, Diaconis and others. In opposition to the theory of
synchronicity is the belief, represented by many statisticians, among others by Warren
Weaver (closely collaborating with Claude Shannon), that any series, coincidences and
the like, appear exclusively by pure chance and that there isno mysterious or unex-
plained force behind them. People’s perception has the tendency to ignore all those
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sequences of events which do not posses the attribute of being unusual, so that we
largely underestimate the size of the sample space, where the “unusual events” are ob-
served. Human memory registers coincidencies as more frequent simply because they
are more distinctive. This is the “mysterious force” behindsynchronicity.

With regard to series of repetitions of identical or similarevents, the skeptics’ ar-
gumentation refers to the effect of spontaneous clustering. For an event, to repeat in
time by “pure chance” means to follow a trajectory of a Poisson process. In a typi-
cal realization of a Poisson process the distribution of signals along the time axis is
far from being uniform; the gaps between signals are sometimes bigger, sometimes
smaller. Places where several smaller gaps accumulate (which obviously happens here
and there along the time axis) can be interpreted as “spontaneous clusters” of signals.
It is nothing but these natural clusters that are being observed and over-interpreted
as the mysterious “series”. Richard von Mises clearly indicates that it is this kind of
“seriality” that has been seen by Kammerer in most of his experiments.

Yet another “cool-minded” explanation of synchronicity (including the Law of Se-
ries) asserts that very often events that seem unrelated (hence should appear indepen-
dently of each-other) are in fact strongly related. Many “accidental” coincidencies or
series of similar events, after taking a closer look at the mechanisms behind them, can
be logically explained as “not quite accidental”. Ordinarypeople simply do not bother
to seek the logical connection. After all, it is much more exciting to “encounter the
paranormal”. This point of view is neatly described by Robert Matthews in some of
his essays. Criticism of the ubiquitous assumption of independence in various experi-
ments can be found in works of William Kruskal [e.g. Kruskal,1988]. Percy Diaconis
is famous for proving that coin tosses in reality do not represent an i.i.d. process [e.g.
Diaconis et al., 2007].

Summarizing, the debate concentrates around the major question:

• Does there indeed exist a Law of Series or is it just an illusion, a matter of our
selective perception or memory?

So far, this debate has avoided strict scientific language; even its subject is not pre-
cisely defined, and it is difficult to imagine appropriate repetetive experiments in a
controlled environment. Thus, in this approach, the dispute is probably fated to remain
an exchange of speculations.

3 The ergodic law of series

We will describe a rigorous approach embedded in the ergodictheory. Surprisingly,
the study of stochastic processes supports the Law of Seriesagainst the skeptic point
of view, of course, subject to correct interpretation.

We begin with definitions ofattractingandrepelling, the tools allowing to formal-
ize the subject of study. Using the entropy theory we prove that in nondeterministic
processes, for events of certain type (long cylinder sets),attracting prevails, while re-
pelling (almost) does not exist – this is exactly how we understand the Ergodic Law of
Series.
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One has to be very wary about the applicability of this theoryin reality. It concerns
only events of a specific form (long cylinders) and it gives noquantitative lower bound
on the time perspective at which the phenomenon becomes observable. Perhaps, it
might be applied in genetics, computer science, or in data transmission, where one
deals with really long blocks of symbols, but again, with extreme caution. The theory
does not explain “runs of good luck”, or why “misfortune never comes alone”, because
such “series” are not repetitions of one and the same long cylinder set. Nonetheless it
contributes to the general debate at the philosophic level:Properly understood Law of
Series is neither an illusion nor a paranormal phenomenon, but a rigorous mathematical
law.

3.1 Attracting and repelling in signal processes

By asignal processwe will understand a continuous time (also discrete time, when the
increment of time is very small) stochastic process(Xt)t≥0 defined on a probability
space(Ω,A, µ) and assuming integer values, such that X0 = 0 a.s., and with nonde-
creasing and right-continuous trajectoriest 7→ Xt(ω). We say that (for givenω ∈ Ω) a
signal (or several simultaneous signals) occurs at timet if the trajectory Xt(ω) jumps
by a unit (or several units) att.

Definition 3.1. A signal process ishomogeneousif, for every t0 ≥ 0 and every finite
collection0 ≤ t1 < t2 < · · · < tn, the joint distribution of the increments

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn
− Xtn−1

(3.2)

is the same as that of

Xt2+t0 − Xt1+t0 , Xt3+t0 − Xt2+t0 , . . . , Xtn+t0 − Xtn−1+t0 .

Assume that X1 has an expected valueE(X1) = λ ∈ (0,∞), which we call thein-
tensityof the signals. Using homogeneity and a standard divisibility and monotonicity
argument, one shows that thenE(Xt) = tλ for everyt ∈ R.

With a homogeneous signal process we associate a random variable defined onΩ
and called thewaiting time:

W(ω) = min{t : Xt(ω) ≥ 1}.

The most basic example of a homogeneous signal process is thePoisson process
[see e.g. Feller, 1968]). It is characterized by two properties: 1. the increments as
described in (3.2) are independent, and 2. jumps by more thanone unit have probability
zero. These properties imply that the distribution of Xt is the Poisson distribution

with the parameterλt, i.e., P{Xt = k} = e−λt (λt)k

k! , k = 0, 1, . . . , whereλ > 0
coincides with the intensity. The waiting time in a Poisson process has the exponential
distribution with the distribution function

F(t) = 1 − e−λt.

The independence between the increments means that the signals arriving before some
fixed time do not influence the future signals, i.e., the signals arrive “independently
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from one-another”. This pattern of signal arrivals is exactly what is intuitively de-
scribed as “by pure chance”. The Poisson process is the reference point while defining
any deviation from the “by pure chance” scheme.

We will consider two such deviations:attracting and repelling. Intuitively, the
signalsattract each other if they have the tendency to occur in groups (also called
clustersor series), separated by periods of absence. Likewise, the signalsrepel each
other if they have the tendency to occur more evenly distributed along the time. We
will put this intuition into a rigorous form. It turnes out that these properties depend
solely on the distribution of the waiting time.

Definition 3.3. We say that the signalsattract each other from a distancet > 0, if

FW(t) < 1 − e−λt.

whereFW is the distribution function of the waiting time W andλ is the intensity.
Analogously, the signalsrepeleach other from a distancet, if

FW(t) > 1 − e−λt.

The difference|1 − e−λt − FW(t)| is called theforceof attracting (or repelling) att.

Why is attracting and repelling defined in this way? Consider the random variable
Xt (the number of signals in the time period(0, t]). As we know,E(Xt) = λt. On the
other hand,P{Xt > 0} = P{W ≤ t} = FW(t). Thus

λt

FW(t)
= E(Xt|Xt > 0)

represents the conditional expected number of signals in the interval(0, t] for theseω
for which at least one signal occurs there. Attracting from the distancet, as defined
above, means thatFW(t) is smaller than the analogous distribution function (att) evalu-
ated for the reference Poisson process. This implies that the above conditional expected
number is larger in our process than in the Poisson process (the numeratorsλt are the
same for both processes). This fact can be further expressedas follows: If we observe
the signal process for timet and we happen to observe at least one signal, then the ex-
pected number of all observed signals is larger than as if they arrived “by pure chance”.
The first signal “attracts” further signals (within time length t). By homogeneity, the
same happens in any interval(s, s + t] of lengtht, contributing to an increased clus-
tering effect. Repelling is the converse: the first signal lowers the expected number of
signals in the observation period, contributing to a decreased clustering, and a more
uniform distribution of signals in time (see Figure 1).

The force of attracting can be arbitrarily close to 1, which happens when the dis-
tribution functionFW remains near zero until large values oft (this implies attracting
from all distances, except very small and very large ones, where marginal repelling can
occur). SuchFW indicates that for mostω the waiting time is very long. In particular,
X1(ω) = 0. Because the intensityE(X1) is a fixed numberλ, there must be a small
part of the spaceΩ, where many signals arrive within a unit of time. In other words, we
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repelling .....|......|......|...|.....|......|.....|....|.....|....|..|....|......|..

Poisson.....|........|....|..|....|........|......|..|.......|..|.|......|......|..

attracting .....|..........|..|.|..|...........|.......||.........|.||.......|......|..

strong attracting......|.||||...................................................||.|||..|.|..

Figure 1: The distribution of signals along the time in processes with the same intensity.

observe two types of behavior: long lasting silence observed with very high probability
and rarely a swarm of signals. This kind of behavior will be called strong attracting
(we neglect to put sharp formal bounds onFW for this new term).

On the other hand, it is not hard to see that the distribution functionFW cannot
exceed the functionmin{λt, 1} (t ≥ 0), which is attained for the process in which
the signals arrive periodically in time (with gaps equal to1

λ
). This is the maximally

repelling process, and the maximal force of repelling occurs att = 1
λ

and equalse−1

(see Figure 2 below).

Figure 2: The distribution functionFW in the Poisson, strongly attracting and strongly
repelling processes.

If a given process reveals attracting from some distance andrepelling from another,
the tendency to clustering is not clear and depends on the applied time perspective.
However, if there is only attracting (without repelling), then at any time scale we shall
see the increased clustering. This type of behavior is our subject of interest:

Definition 3.4. A homogeneous signal processobeys the Law of Seriesif

FW(t) ≤ 1 − e−λt,

for all t, and the two functions are not equal.
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In other words, the Law of Series is the conjunction of the following two postulates:

1. There is no repelling from any distance, and

2. there is attracting from at least one distance.

In practice, we agree to accept the presence of some “marginal” repelling with force
much smaller than the force of the existing attracting as shown on the Figure 3. Let us
explain at this point that the distribution function of the waiting time is always concave
(this will become clear e.g. from the integral formula (3.6)), hence it cannot be drawn
as just any distribution function.

Figure 3: The distributionFW in a process that “nearly” obeys the Law of Series.

3.2 Decay of repelling in positive entropy

In an ergodic nonperiodic process(X,P, µ, T, S) (with P finite) fix a measurable setB

and consider the signal process defined on the probability space(X,µ), where signals
are occurrences of the eventB, i.e.,

Xt(x) = #{n ∈ (0, t] : Tnx ∈ B}.

This is adiscrete time homogeneous process; the homogeneity (see Definition 3.1)
holds for integert0. By the Ergodic Theorem, the intensityλ equalsµ(B), and
E(Xt) = λt holds for integert. Since every nonatomic standard probability space
is isomorphic to the unit interval (and the measure in an ergodic nonperiodic process
is nonatomic), we can drawB (equipped with the meaureµB) as the interval[0, 1] and
we can arrange that the return time RB defined forx ∈ B as

RB(x) = min{n > 0 : Tnx ∈ B}

increases from left to right. Then the graph of the return time RB coincides with the
roof of the skyscraper overB representing the entire spaceX. Now, the same graph
reflected about the diagonal represents the distribution functionGB of RB.

Notice that there is a relation betweenGB and the distribution functionFB of the
waiting time WB in this process; by an elementary consideration of the skyscraper
(which we leave to the reader) one easily verifies that, for any integert,

FB(t) = µ(B)
∑
i≤t

(1 − GB(i)) (3.5)

(thusGB(t) = 1 − FB(t)−FB(t−1)
µ(B) ). Both functions are determined by their values at

integer arguments. Thus it is completely equivalent whether we study the distribution
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of the return time variable (defined onB), or of the waiting time variable (defined on
X).

The Law of Series in occurrences of the eventB can be nicely expressed in terms
of the shape of the skyscraper aboveB; the formula (3.5) translates the inequality
FB ≤ 1 − e−λt into the following property of the shape of the skyscraper:

• At any pointt ∈ B the area above the graph of− log(1−s)
λ

and below the roof
function to the left oft (i.e., fors ≤ t) must not exceed the area below the graph
of − log(1−s)

λ
and above the roof function to the left oft.

This property is explained graphically on the Figure 4. In particular, the graph

Figure 4: The first two skyscrapers are not admitted by the Lawof Series, the last one
is. The dark-grey area must be smaller than or equal to the light-grey area to the left.

of the roof function must start at zero tangentally to or below the lines 7→ s
λ

. For
instance, the return time cannot be bounded below by a positive value.

Although the Ornstein-Weiss Theorem (see [Ornstein and Weiss, 1993]) provides
some information about the return time RB , whereB is a “typical” long cylinder, its
precise distribution onB, i.e., the shape of the skyscraper overB is by no means
captured. Small deviations of the value1

n
log RB(x) asx ranges overB (allowed in

the Ornstein-Weiss Theorem mean, for largen, huge deviations oflog RB(x) i.e., huge
freedom in the proportions between RB(x) (hence also of WB) at different points.
In order to be able to compare the distribution function of WB with the exponential
distribution function1 − e−λt we will need completely different tools.

First of all, it will be convenient to change the time unit to1
λ

, i.e., to replace RB
by RB = µ(B)RB (and WB by WB = µ(B)WB). We call this stepnormalization
because thenormalized return timehas expected value 1 (although thenormalized
waiting timeWB may even have infinite expected value). This trick has many advan-
tages: (1) the signal process in this new time scale has intensity 1, hence the parameter
λ disappears from the calculations, (2) the time of the signalprocess becomes nearly
continuous (the increment of time is nowλ = µ(B), which is very small), (3) the for-
mula (3.5) takes on, for the distribution functionsFB of WB andGB of RB , the integral
form

FB(t) ≈

∫ t

0

1 − GB(s) ds (3.6)

(up to accuracyµ(B)), and (4) we can compare the behaviors of signal processes ob-
tained for setsB of different measures. In particular, we can see what happens in the
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limit whenB represents longer and longer cylinders.
Rich literature is devoted to the subject of the limit distributions of the normalized

return (and waiting) time variables as the length of the cylinders grow, in specific types
of processes [see Coelho, 2000; Abadi, 2001; Abadi and Galves, 2001; Durand and
Maass, 2001; Hirata et al., 1999; Haydn et al., 2005, and the reference therein]. Here
we will be mainly interested in consequences of the sole assumption of positive entropy.
For eachx define

Repn(x) = sup
t≥0

(FAn
x
(t) − 1 + e−t),

the maximal force of repelling of the cylinderAn
x ∈ Pn containingx. The main

theorem in the area is this this [Downarowicz and Lacroix, 2010]:

Theorem 3.7(The Ergodic Law of Series). Let (X,P, µ, T, S) be an ergodic process
with positive entropy, whereP is finite. Then

Repn −→
n→∞

0 in L1(µ).

Because for functions bounded by a common bound theL1-convergence is the same
as the convergence in measure, the above can be equivalentlyexpressed as follows: for
everyε > 0 the measure of the union of all blocks of lengthn, B ∈ Pn which repel
with forceε, converges to zero asn grows to infinity.

The above theorem asserts that the majority of sufficiently long cylinders reveals al-
most no repelling, in which they satisfy the first postulate of the Law of Series (phrased
next to Definition 3.4). Examples show that arbitrarily strong attracting is admitted by
such cylinders, (and it is proved that in the majority of processes it indeed occurs; see
the last section of this chapter), hence they satisfy also the second postulate.

Question 3.8. It is unknown whether Theorem 3.7 holds also in the almost everywhere
convergence.

3.3 The idea of the proof

The formal proof of Theorem 3.7 is too large for this note. Nonetheless we will sketch
the idea behind the proof. First of all, by applying the natural extension, we will assume
that the process is invertible, i.e., its symbolic representation is bilateral. We intend to
estimate (from above, by1 − e−t + ε) the functionFB for a long cylinderB ∈ Pn.
Instead ofB, we can consider a concatenationBA ∈ P[−n,r) (i.e., the cylinder set
B ∩A with B ∈ P−n, A ∈ Pr), where the “positive” partA has a fixed lengthr, while
we allow the “negative” partB to be (sufficiently) long.

There are two key ingredients leading to the estimation. Thefirst one is the (rather
nontrivial) observation that for a fixed typicalB ∈ P−n the process induced onB (with
the conditional measureµB) generated by the partitionPr is nearly an independent
process and also nearly independent of the process on(B,Q, µB , TB , Z) generated by
the partitionQ depending on the return time (see the Figure 5). For the expository
purposes of this note we will skip the precise meaning of “nearly” and we skip any
traces of proof of this statement.
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coordinate0
↓

...
B A-1

...............
B A0

..
B A1

..........
B A2

....
B A3

....

Figure 5: The process. . . A−1A0A1A2 . . . of blocks of lengthr following the copies
of B is a nearly independent process, nearly independent of the positioning of the
copies ofB.

The second key observation is explained below. We assume, for simplicity, full
independences in the preceding statement. Then, it is easy to show, that the strongest
repelling forBA occurs when the repelling ofB is the strongest, i.e., whenB occurs
periodically. But ifB does appear periodically, the return time ofBA has nearly the
geometric distribution, because it is a return time in aβ-independent process (only the
increment of time is now equal to the constant gap between theoccurrences ofB). If p

is small, this geometric distribution, after normalization, is nearly the exponential law
1 − e−t. (The smallness ofp is regulated by the choice of the parameterr.)

3.4 Typicality of attracting for long cylinders

The preceding section provides evidence that in positive entropy processes the occur-
rences of a selected long cylinder, in principle, do not repel. This corresponds to the
first postulate in the interpretation of Definition 3.4 of theLaw of Series. As to the
second postulate (presence of attracting), of course, it cannot be satisfied by long cylin-
ders in all positive entropy processes. For example, in the independent process all long
cylinders occur with neither attracting nor repelling. Thesame holds in sufficiently
fast mixing processes (see [Abadi, 2001] or [Hirata et al., 1999]). But such processes
are in fact exceptional; in a “typical” process many blocks reveal strong attracting.
We know that a fixed dynamical system(X,A, µ, T, S) gives rise to many processes
(X,P, µ, T, S), each generated by some partitionP. We can thus parametrize the pro-
cesses by the partitions and use the complete metric structure that exists on the space
of partitions to determine the meaning of “typicality”:

Definition 3.9. We say that a propertyΥ of a process istypical in a certain class of
measure-preserving transformations, if for every(X,A, µ, T, S) in this class, the set
of partitionsP of cardinalitym ≥ 2, such that the generated process(X,P, µ, T, S)
has the propertyΥ, is residual(i.e., contains a denseGδ set) in the spacePm of all
partitions into at mostm elements.

The theorem below captures the typicality of strong attracting:

Theorem 3.10.The following property of a process is typical in the class ofall ergodic
measure-preserving transformations: There exists a set oflengthsN ⊂ N with upper
density 1, such that for everyε and sufficiently largen ∈ N , with toleranceε every
block of lengthn reveals strong attracting (with force1 − ε) of its occurrences.
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Recall that strong attracting automatically eliminates repelling other than marginal.
So, this theorem alone, implies that the majority of blocks of selected lengths obey the
Law of Series. Nevertheless, blocks of other lengths may strongly repel (but only if the
entropy is zero). Examples of such systems have been built byPaulina Grzegorek and
Michal Kupsa [Grzegorek and Kupsa, 2009]. In such systems, in the overall picture,
where all long cylinders are taken into account, we can stillsee a mixed behavior
without decisive domination of attracting over repelling.

Now we involve the following fact concerning entropy:

Theorem 3.11.Positive entropy is Rokhlin-typical and typical in the class of measure-
preserving transformations with positive Kolmogorov-Sinai entropy.

Combining the above two facts (recall that the intersectionof two residual sets is
residual) with the Thoerem 3.7 of the preceding section we obtain that

• in the class of ergodic measure-preserving transformations with positive en-
tropy, in a typical finitely generated process, long cylinders reveal almost no
repelling, while many of them reveal strong attracting.

This time we do have decisive domination of attracting over repelling. This is the full
strength of the Ergodic Law of Series.

The following example shows how the Ergodic Law of Series canmanifest itself in
reality. Of course, it should be treated with due reserve.

Example 3.12. Consider the experiment of randomly generating independent ASCII charac-
ters (the monkey typing). In theory this is an independent process hence every possible long
block should appear with positive probability and it should reveal neither repelling nor attract-
ing. In reality, however, the independence of the consecutive outcomes is imperfect (there is no
perfect physical independence between any events in reality). We canthus consider the process
as being generated by a slightly perturbed partition corresponding to the alphabet. Then there are
high chances that the process falls in the class of typical processes (ofpositive entropy) described
in the above theorems. If so, then majority of blocks will obey the Law of Series and if we focus
on one particular long block (say the tex file of this note) it is quite likely that once it occurs it
will occur again very “soon” (compared with the expected waiting time, which is unimaginably
large).
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