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A few words about the Exercises

This file contains solutions of almost all exercises inctliohethe book. There are three
exceptions: 3.10, 8.6 and 12.5. The first one instructs ttevercomputer program. |
think, even if | presented such a program, nobody would yeathd the code or want
to see it work. The only way to enjoy is this exercise is to altjudo it. Exercise
8.6 is completely trivial. As to the last skipped exerciséhaugh | am sure what |
claim there is true, | have never done it before. | see a numibastacles where the
standard approach could break and some ingenuity mightdsede | decided to leave
this challenge open; it might turn out worth a separatelarticshould have formulated
this as a question rather than an exercise.

| confess, there are several exercises that | never botheractually do before | put
them in the book. | just had a rough idea how to proceed. Whekingon this file,
it happened more than once that | encountered unexpecfeulilfiés. Some solutions
turned into pieces of work comparable to writing a smallceti(7.3, 8.9, 8.14, 9.5,
12.2). In some cases | needed to slightly alter the fornutadif the exercise or add
an assumption. In such cases the alternation is clearlgateti at the beginning of
the solution (search for “Attention!”). In exercise 6.3 lt@polated a property typical
for smooth interval map to all systems, which is an evidem@pm of tiredness. |
apologize for all these errors. Some of them result from #uot that many exercises
have been added after completing and proofreading the noaliy &f the book.

Moreover, this work lead me to discovering a few more imgsiecis in the book. All
resulting corrections are included in the file “Errata”.

| encourage the readers of the book (and of the solutionayir@e bothers) to send me

information of any discovered further errors, or any comtagvia e-mail. They will
be welcome. The book cannot be corrected, but the erratawagsabe updated.

Tomasz Downarowicz



Part 1

1 Exercisesin Chapter 1

Exercise 1.1.

We have

r= 04 Szt y),

hence, by concavity,

AV
‘@

F(@) 2 25 - F0) + 325 - fe +y).

Analogously,

F@) 2 22 F0) + 224 fla+y).
Summing both sides, we gétz) + f(y) > f(0) + f(z +y) > f(z +y).
Exercise 1.2.

Convergence inf! obviously implies coordinatewise convergence for any aecin

£'. The converse holds only with a constraint, for example fobpbility vectors. Let
p = (p1,p2,...) be a probability vector and lég be so large, thaEM0 pi < /4.

Letp’ = (pi,ph, ... ) be another probability vector such that — p}| < /44, for all

1 < 1g. Then

Zpgzl—ngzl—z:pi-f—z:(pi—p;)SZpi+2|pi—p§\<§

i>ig i<ig i<io i<io i>ig i<io
and thus
i =pil =Y Ipi—pil+ D> pi+ > pi<e
i>1 i<ig i>ig i>ig
Exercise 1.3.
H(aVbl|c) =

H(avbVve)—H(c)=H(aVbVve)—HOVe)+ HbVce)—H(c) =
H(albV c) + H(ble),
and
H(aVblc)=H(aVbVe)—H(c) > H(aVc)— H(c) = H(alc).
With the further assumptions,

H(aVblc)=H(albVc)+ H(blc) < H(alc) + H(b|c);
H(aVvb)=H(avbVe)=H(aVble)+ H(e) < H(ale) + H(ble) + H(e)
— H(a) + H(b) — H(e) < H(a) + H(b):
H(aVvdlbvd)<H(albVvV)+ H(d|bVvb) < H(alb) + H(a'|b);
H(ale) < H(aVblc) < H(albV c)+ H(blc) < H(alb) + H(b|c). ™



SupposeH (alc) > H(b|c). Then|H(a|c) — H(b|c)| = H(alc) — H(blc) and (¥)
implies |H (alc) — H(blc)| < H(alb) < max{H(a|b), H(bla)}. The other case is
symmetric.

Similarly, supposed (a|c) > H(alb). Then|H (a|b) — H(a|c)| = H(a|c) — H(alb)
and (*) implies|H (a|b) — H(a|c)| < H(b|c) < max{H (b|c), H(c|b)}. The other case

is symmetric.

Finally, |H (a) — H (b)| = [H(ale) + H(e) — H(ble) — H(e)| = |H (ale) — H(ble)| <
max{H (alb), H(b|a)}.

Exercise 1.4.

This is a very crude estimate. Suppgsés the minimal term irp, Ietq =1-—p;, and
define two new probability vectois= (p;, ¢) andq = (%2, %3, cn B BL). Then

l
== pilogp; = —pilogpr —q ) Z(log & +loggq) =
= 1=2
—pilogpr —qlogq+qH(q) = H(r) + ¢H(q) <1+ (1 —p1)logl.
Exercise 1.5.
Pick m; so large thap] is close enough to 1 to satisfy{p;) < /2 andn(1 — p1) <
¢/4. No matter how we pickn, we will havep, < 1 — p; and since; increases near
zero, we will have)(ps) < /4. We pickms, large enough to make, + p, so close to
1 thatn(1 — p; — p2) < /8. No matter how we pickns, we will haven(ps) < /8.
And so on. Eventually, we get

=> ) <D /2 =
i>1 i>1

Exercise 1.6.
Take the partition®, Q andR as in the proof of Fact 1.9.1 (they produce the vector
(1,1,1,2,2,2,2)). ThenI(PV Q;R) = HPV QA + HR) —HPVAVR) =
2+ 1 -2 =1, while bothI(P; R) andI(Q;R) are zeros, because the partitions are
pairwise independent (see Fact 1.8.2).
Exercise 1.7.

If a=00rb=0o0rc=a+ b, the problem is trivial. Otherwise, letc (0,1) be
such thatd (p,1 — p) < min{a,b,a + b — ¢}. Divide the space in two partd and
B of measurep and1 — p, respectively. Then Iek be a partition ofA with (relative)
entropy%(a +b—c— H(p,1—p)). Let? andQ’ be two independent partitions of
B with (relative) entropiesli—p(c —b) andﬁ(c — a), respectively. The partitiof®
be defined a® on A and?®’ on B, and analogously) is defined ask on A andQ’
on B. Letting Ry = {4, B} we evaluate each entropy conditioning it fg, e.g.,
H(P)=H(PVRy) =H(P|Ro) + H(Rp). And so, using (1.4.4),

H(P) =pHA(R)+ (1 —p)Hp(?')+ H(p,1 —p) = a,
H(P) =pHA(R)+ (1 -p)Hp(Q)+ H(p,1 —p) =b,
H(PV Q) =pHA(R)+ (1 —p)(Hp(P)+ Hp(Q)) + H(p,1 —p) =c,



where, in the last case, we have used relative independdngeamd P’ on B and
Fact 1.6.16.

2 Exercisesin Chapter 2

Exercise 2.1.

It is clear thatr is onto (both for the unilateral and bilateral shift space) aach(x,,)
has the same image undems(x},), wherez! = z,, + 1 (addition is modulo 2). So
the mappingr is exactly 2 to 1. The preimage byof a block B = (b, ...,b,—1)
equalsC' U C’, where

C:(O,bo,bo—Fbl,bo—Fbl +b2,...,b0+b1+"'+bn_1) and
C'=(1,14+bg, 1 +bg+by,1+byg+by+bo,....,1+bg+b+--+b, 1)

Each of these blocks (as cylinder) has meagare ! and since they are disjoint, their
union has measurg ", the same a#3. We have proved that sends the Bernoulli
measure to itself. In other words, the factor process isdhgesBernoulli shift and so
the identity map (notr) provides an isomorphism between the process and its factor

Exercise 2.2.

Note that forn € N, the past of the power proce§X, P, u, T™,S) equals the past
P~ of the original process. By the power rule we have

H(P™P7) =h(p, T, P") = nh(p, T,P) (= nh(P)).
Exercise 2.3.

In the Bernoulli shift on two symbols with equal measutg¢g,1/2 let R denote the
zero-coordinate partition. Consid@r= R{13} andQ = R{92}, These partitions are
independent, s&l (P|Q) = H(P) = 2. Next,P? = R{1:2:34} andQ? = R{0:1.2:3} and
only one coordinate in the definition 6fdoes not occur i, so H(P?|Q%) = 1. ltis
seen that{ (P"|Q™) = 1 for alln > 2. The sequenc®, 1,1,1,... is not increasing,
the increments are-1,0,0,0, . ..) and do not decrease.

To have increments increasing for a longer time take &g= R{1347.89} and
Q = R{0:2:56.10} Then the sequendd (P"|Q")),, equals(6,3,1,0,0,0,...) and
the increments are-3, —2,—1,0,0,0,...).

Exercise 2.4.

Although the sequence, = H(P"|Q™ Vv %) need not have decreasing increments, it
has decreasingths and any sequen¢e,,) with convergeniths satisfies

1 R .
lim —an = lim - z;(ai —a;—1) <limsup(an+1 — ay).
i



In our case we have

Ans1 — ap = H(P"TH Q" v B) — H(P"|Q" v B) =
H(PHHQmH v 8) — H(THP™)|T~H(Q™) v T~ (B)).

We haveT'~1(Q") < Q"*! and, by subinvariancd,~!(%8) < 9B, hence the right hand
side does not exceed

H(PrHH Q™+ v 8) — H(T~H(P")|Q"F! v B) = H(P[P™ v ot v ),
The expressions on the right decreasélt@|P+ v Qo v 8), so we have proved that
h(P|Q,B) = lim 2H(P"|Q" v B) < H(P|PT v Qo v B).
Exercise 2.5.

Let (X, P, u,T,S) be any process with positive entropy TakeQ to be the trivial
partition and se®8 = P*. Thenh(P|Q,B) = lim L H(P"|PT) = lim L H(P|PT) =
lim %h =0, while H(P|P+ v QYo v B) = H(P|P+ v P+) = H(P|P+) = h > 0.

Exercise 2.6.

Sinceh(Q) < h(QV P) = h(Q|P) + h(P), it suffices to show that(Q|P) = 0. By
(2.3.11) (for trivial®B), and sincel < P, we do haver(Q|P) = H(Q|Q* v P%) = 0.

Exercise 2.7 ([Downarowicz—Serafin, 2002, Example 1])

Let X C {0,1,2}° consist of sequences in whi¢happears every other position
(and not in between, e@01020102... or 1010201020...). LetP denote the zero-
coordinate partition and let be the (shift-invariant) measure determined by saying that
cylinders of even lengtBn have equal masses”~!. The partitionQ = {0,1 U 2}

is shift-invariant, so it determines a two-point factdf, Q, v, S, S) of (X, P, i, T, S).
For ergodicity of( X, P, u, T, S) notice thatT™? is ergodic (in fact Bernoulli) on both
and1 U 2 so everyT'-invariant function (being2-invariant) is constant on either set.
Now T' exchanges these sets, so the two constants must match. uSlgvidu|v) =
h(p) = 1/2. On the other hand, the fiber entropy is not constant’onwe have
h(P|0) = lim H (19, P|P*") = 0 (becausé is trivial on the fiber o). Now, since
h(ulv) = 5(h(P|0) + A(P|1 U 2)) it must be thak(P|1 U 2) = 1.

Exercise 2.8.

By the Ergodic Theorem, the probability vecters 5, () assinging values to the ele-
ments ofP™ converge almost surely to the vects(i:, P™). For finite partitior(P the as-
sertion now follows from the definitiond.,, (B,,,(z)) = %H(mem(w)), H(p,P) =
H(p(p, P™)) combined with continuity of static entropy on finite-dimersl proba-
bility vectors.

There is slight difficulty with countable partitions. By lewsemicontinuity of the static
entropy (Fact 1.1.8) we only haven,, H,(By,(z)) > +H(u, P"). Note however,
thatp,, z,,(«) iS the same as the vector of masses assigned to the ceits loy the



average measure M ,,d,. Integrating these probability vectors with respect to the
invariant measurg we get

/ Pu5o () () = D1, P).

Now we invoke the supharmonic property &f(Fact 1.1.10):

H(p(p, P")) > / H(Dop, (o)) dis(x),

i.e., after dividing byn, L H(u,P") > [ H,(By(z))du(z), for everym, and, by
Fatou’s Lemma,

CH D) 2 [t (B () du(o)

n
This, together with the:-almost sure converse inequality implies equalitalmost
everywhere.

3 Exercisesin Chapter 3

Exercise 3.1.

Givene > 0, we have, for large: LH(P") < h(P) +¢,i.e.,
H(P") < nh(P) + ne = h(u, T", P") + ne,

which is exactly the desiredz-entropy independence. It is not trivial wheneyex
h(w, T,P) (thenne < h(u, T™,P™)). Sincen is selected after fixing, the “error
term” ne need not be small, so this does not translate to gerisindependence.

Exercise 3.2

In an independent proce$X’, P, u, T,S) let Q = T~Y(P). ThenH(P") = nH(P)
andH (P"|Q") = H(P), so1 (H(P™)— H(P"|Q")) = (1— 1)H(P) whichincreases
to its limit H(P).

Note thatH (P™) — H(P™|Q™) = I(P™; Q™). Exercise 1.6 shows lack of subadditivity:
I(Py Vv P2;91 vV Qo) may exceed (Pq; Q1)+I(P2; Qy) (Exercise 1.6 shows failure
for Q; = Q). So, we cannot expect the sequence examined in this exédrrise
subadditive. Now we have shown it need not even have deswenttis.

Exercise 3.3.
This follows directly from the Kolmogorov 0-1 law.
Exercise 3.4.

We have families\; consisting ofr;. blocks of lenthsy;,. We have recursive relations
nig+1 = rxng andrg; = ri!. The key observation is that there is in fact a unique
shift-invariant measurg on our systemX. It is so, because each blodk € Ay



appears exactly once in every block fralm ;. Since everyr € X is an infinite
concatenation of the blocks frory, 1, the ergodic theorem impligg B) = ﬁﬂ for
any ergodic measure. This determines the measure to beauniqu

In order to compute the entropy, we will anticipate a bit asd the variational prin-
ciple, which allows, in uniquely ergodic systems, to repla¢u) by the easier topo-
logical entropy. Thus, we need to prove that the sequgﬂgd@ #B,,, has a positive
limit, where B,,, is the family of all blocks of lengtm,;, appearing inX. Clearly,
#B,, > #A, = ri, so it suffices to examine the sequeqﬁelog r. It starts with

A= % log #A, which we may assume much larger than 1. Then, by Stirlirayinéla,
1 . — 1 1

10g i1 A TR1O8Tk =Tk _ —logry — —.

Nkg+1 TENg Nk ng

So, we have (roughlylim % logry = A= 7, nik The sequence/n;, starts with
1/2 and decreases much faster than exponentially, so its sumaiies than 1. This
shows tha% log i, has indeed a positive limit.

Exercise 3.5.

In any proces$ X, P, u, T,S) with positive entropy takés, = P>, ThenB =
N, B is the Pinsker sigma-algebra ah@P|B) = h(P) > 0. On the other hand, for
eachk, h(P|By,) = lim,, L H(P"|PF-)) < lim,, L H(P*) = 0.

Exercise 3.6.

Let (AS, i, 0,S) be a Bernoulli shift, i.e.;, = p°, wherep is a probability distri-
bution onA. On the probability spacéX, i) consider the sequence of random vari-
ablesX,,(z) = —log u(Asns), WhereA, -, is the cell of P, containinge™z. They
are independent and identically distributed with expecstede H (p) (which equals
h(1)). The Law of Large Numbers asserts that the averdﬁgE;:l X; converge al-
most everywhere to this expected value. It suffices to ncﬂezwz_ol X;(z) equals
—log (A7), i.e., the information functiodpr ().

Exercise 3.7.

Notice that the map: — TR+(*)(z) preserves the measure (it sends each cylinder of
lengthn to itself and on every such cylinder it is just the induced mahich pre-
serves the conditional measure). Let us abbreviate this byap. Thus, for each

i > 1 the variablest — R, (S’x) have the same distributions ag,Rn particular the

Ornstein-Weiss's assertion is fulfilletim,, 1 log R, (S*z) — h(P) p-almost every-
where. Giverk, the variables

m,(z) = max{% log R.(S'z):1<i<k}= %logmax{Rn(Six) 1 <i<k}
also converge ta(?P) y-a.e. Now
R (2) = Ry (z) + Ra(Sz) + Ry (S%2) + -+ + R, (S5 ')

lies betweemax{R,, (S%z) : 1 < i < k} andkmax{R,(S'z) : 1 <i < k}. Thus
L1ogR¥ (z) lies between m(z) and L logk + m,(z), which implies the desired
convergence.



Exercise 3.8.

Attention! In the formulation the word “eventually” is missing: ... tbardinality of
blocks of lengthn eventuallyexceed®”(logi—<),

The numberg, = W decrease to zero & — oo, so the following convex
combinations of — 1 and!

Iy =pr(l = 1) + (1 = px)l

increase td. Letk be so large thabg [, > logl — ¢.

Let 0 and1 denote two selected symbols fram Let W = 10000...0 (with & — 1
zeros). Note that any two occurrenceslfin an element ofANe are over disjoint
intervals of coordinates. L&, be the family of all blocks of length over A, ending
with W and in whichi¥” does not occur otherwise. It is obvious th#t C,, is a prefix-
free family. We need to estimatg = #C,. A block C € C,, is essentially a block
C' of lengthn — k in which W does not occur, witi” appended on the right. Se,
equals the cardinality of the famil§/, of such blocks”’ (of lengthn — k).

Letn > 2k — 1. Some of the blocks ig/, end (on the right) witH¥’ = 1000...0
(with & — 2 zeros). We can change this ending, and as long as we do nateeibie
1 by 0, we are sure that the new block still belong€fo Thus, there are at least
(I — 1)I¥=2 — 1 such changed blocks made from one block ending With This
implies that the ratio between cardinalities of blocks egdiith W’ and not ending
with Win C/ is at mosy /(1 —py). Every block ending wittW’ can be prolonged to
the right to a block belonging 16/, , , in [ — 1 possible ways (we must not addt the
end). Every block not ending witi’’ can be prolonged arbitrarily (i.e., inpossible
ways) and the prolonged block always belong€;to,. Thus

Cnt1 > cn(pe(l—1) + (1 — pr)l) = culk.

Since this is true fon > 2k — 1, we have proved that, > I72% = gn i (log Ly |
Becausdog;, is strictly larger tharlog! — ¢, so is”j—f’“(log ly;) for large enoughn,
hencee,, is eventually larger thag(°2!—<) as needed.

Remark. This family is better than prefix-free. A prefix-free famaylows to deter-
mine the cutting places in evegnilateral concatenation, but we must know where to
start cutting. In infinite bilateral concatenations we may Ine able to determine the
cuts. As it was mentioned in the exercise, a prefix-free famijust a family of disjoint
cylinders, so for example the family of all blocks of a givendithn is prefix-free. Any
sequence is now a bilateral concatenation and can be cuirbadiifferent ways.

The family constructed in the solution (according to thehias the stronger property
that the cutting places are determined in any bilateral amation (it suffices to find
the blockd¥). This is important in coding algorithms applicable to t#al sequences.

Exercise 3.9.

Attention! The formulation of Theorem 3.5.1 contains errors. It shdaddnentioned
that A is finite and thatP = P,. The second sentence should be deleted and the
assertion should read:



Then, for every > 0, the joint measure of all blockB of lengthm and compression
rate smaller thar(h — )/ log #A tends to zero withn.

Fix ane > 0. Consider the block® of lengthm and compression rate smaller than
(h — g)/log #P. Their compressed images are binary blocks of lengths enthihn
m(h — ¢), so there at most™("~¢) such blocks. In particular, the conditional entropy
of P™ on any subset of their union, denotdg,, is smaller thann(h — ). Next, fixn

so large thatt H(P") < h + &, whered is some small positive number. In order for a
block B to satisfyH,,(B) < h + § we needH, (B) to be closer to: H(P™) than the
(positive) differencér + § — %H(ﬂ’”). By continuity of entropy on finite-dimensional
vectors, it suffices that the vectpr, 5 (of frequencies inB of blocks of lengthn) is
very close to the vectop(u, ™). By the Ergodic Theorem, farn sufficiently large,
this is satisfied for block® of lengthm covering a seX,,, of measure at leagt— §.

By Lemma 2.8.2, ifn is large enough, the cardinality of blocksif,, does not exceed
2m(h+9) |n particular, the conditional entropy 6" on any subset ok, is smaller
thanm(h + 0). We divideX into three partsX,, N A,, (treated as a subset df,,),
Xm \ Ay, (a subset ofX,,) and the restX \ X’, whose measures are estimated from
above byu(A,,), 1 — u(A,,) andd, respectively. We have

mh < H(P™) < u(Am)m(h —e) + (1 — p(An))m(h + 8) + dmlog #P + log 3.

This easily implies
p(Ap) < ;‘55(1 + log #P + 83y,

mo

Passing withn to infinity we getlim sup,,, u(A4,,) < 5_%5(1 + log #%P) and since) is
arbitrarily small, we conclude théitm,,, 11(A,,) = 0.

Exercise 3.10.

We skip the solution of this exercise.

4 Exercisesin Chapter 4

Exercise4.1.

In fact, it suffices to assume that the sequefigeggeneratesinder the actionthat is,
the double sequence of partitiof® (in caseS = Ny) or ?E;"’"] (in caseS = Z)
((k,n) range ovelNy x Ny) generate$l.

Given any finite partitior of cardinalitym, let k andn be so large that there exists a
partition?’ < P (in caseS = No; P’ < TPL’"’”] for S = Z) also of cardinalityn, with
dr(P,P") < e (recall that in3,,, the metricdg is uniformly equivalent tai;). Then,
by (2.4.10), regardless of the conditioning sigma-algepréP|B) — h(P'|B)| < ¢,
which impliesh(P|B) < h(PE"|B) + & = h(P,|B) +  (we have also used Fact
2.4.1). Taking the (increasing) limit ovéron the right and then supremum on the left,
we geth(A|B) < limg A(Pr|B) + . Now we can remove and combine the result
with the obvious converse inequality.

10



Exercise4.2.
This is now an immediate consequence of the preceding eeesicid Theorem 2.5.1.
Exercise4.3.

We will prove the formulah(p, T"|%B) = |n|h(u, T|B) assuming® to be invari-
ant only for negativen, otherwise it works for subinvaria® (regardless of). We
copy the proof of Fact 4.1.14 almost verbatim. By Fact 2.4th® conditional ver-
sion; this is where invariance & may be needed), we have, for every partitiBn
h(u, T", P|B) < h(p, T™, P™|B) = |n|h(u, T, P|B). Now we applysup,; and get

h(p, T"(B) < In|h(p, T|B) = sup h(u,T",Q[B) < h(u, T"(B).
Q=2In|

Exercise 4.4.

We will actually prove Theorem 4.2.9 without using Remark #4.and then prove that
remark using the theorem. Given a finite partiti@rmeasurable with respect id,,
we can approximate it up toin d; (equivalently indg) by a partitionQ’ of the same
cardinality asQ, measurable with respect to a finite jdfuf:l I1p, for some partitions
P;. We do not need Remark 4.2.7 for that; the partiti®hsieed not be members of
anya priori fixed sequence of partitions. The difficulty lies in undensliag the join of
possibly uncountably many sigma-algebras. In fékt,is, by definition, the smallest
sigma-algebra containingl T (union over all finite partition$?). But every set in
II,, is obtained via countably many set operations involving asincountably many
sets in that union, so it is contained\f}~ , I1,, for some sequence of finite partitions
P;. Now we can use the usual approximation within this coumtabin. The rest
of proof of Theorem 4.2.9 is (almost) unchanged. We remdudt, without assuming
the partitionsP; to be linearly ordered by, it is no longer true that the joi\o/f=1 Iy,
equaldlyp, whereP = szl P;; itis only refined (which is very easy to see). There are
examples where the converse refining fails (perhaps thiglghxe better emphasized
in the book). Anyway, the valid direction is sufficient in theof of Theorem 4.2.9.

We shall now prove Remark 4.2.7 in a stronger version, whickudes the case of
one generating partition. Namely, we will only assume thatrefining sequencg;,
generates under the action (as we did in the solution of isercl).

Clearly,\/,-, IIp, < II,. We need to prove the converse. [&®be a partition mea-
surable with respect til,,. Then, by Theorem 4.2.%,(1:,Q,T) = 0 and hence, by
the power rule (Fact 2.4.19),(p, 7", Q) < h(u,T™,Q™) = 0 for everyn > 1. Now
we approximated by Q' up toe in dgr, whereQ' < P, for somek (here it is im-
portant thatP,, is a refining sequence). By (2.4.10) (f6f" and trivial ®8), we have
[A(p, T, Q") — h(p, T, Q)| < e, i.e.,h(u,T™, Q) < ¢ foralln > 1. Further, no-
tice thath(u, T, Q) = H(Q'|Q{m2m3n 1) > [ (Q'|Q'">)). As a consequence,
H(Q'|PI"*)) < ¢ for everyn. Now we invoke (1.7.14) and géf (Q'|I15, ) < &, all
the moreH (Q'|\/, IIp,) < . We use (1.6.36) and géf(Q|\/, IIp,) < 2e. Since
this is true for every, H(Q|\/, Iy, ) = 0 and (1.6.28) implieQ < \/, ILyp, .

11



Exercise 4.5.

We haveh(A|B) = supp h(P|B) > 0, whereP ranges over all finit€l-measurable
partitions of X. Thus, there exists a finite partitich of X such thath(P|%8) > 0.
We restrict our attention to the system generated jointlPland (Y, B, v, S,S). We
will prove that almost every has an infinite preimage already in this system. In other
words, we can assume thit= PS5 v B.

Suppose that the set of poingswith finite preimagesr—!(y) has positive measure
Fory in this set, the points in the preimageypére distinguished by theff-names, so
there is a minimah, such that all these points are in different cellspbf ™! (or
justP™ for S = Ng). Some value of:,,, Sayny must occur with positive measurg
say on a setdy. By ergodicity, the value of the time of the first visit ity is finite
almost everywhere, so it is bounded by someon a setd; of measure’ larger than

5= ?é;‘fg}. That means that relatively ofi,, P5 vV % = R v B, whereR is a finite

partition (R can beP[-""I joined with the partition determined by the entry times to
D trimmed atn,). Now, for everyn, we can write

H(P"|B) < H(P"|BV )+ H(s) < (1—68)Ha, (R|B) +0log #P" + H(5,1—46),

wheres is the partition intoA; and its complement. After dividing by and passing
with n to infinity, the left hand side converges &§2(|8). The first and last terms on
the right hand side (divided hy) decrease to zero, while the middle term becomes, by
the choice ob, strictly smaller thark(2(|98), a contradiction.

Exercise 4.6.

By (2.3.5) and Exercise 2.4 (with trivié$), h(P|Q) < H(P|P*+ v Q%) in any case oF.
Further,

h(P|Q) < H(P|PT v Q%) < HPIPT v Qv Q)= Y u(B)Hp(P|PT v ah).
BeQ

The full futureP* v QT of the joint process, restricted #, obviously contains the
future of the process generated Bywith respect to the induced map @ denoted
by P5:* (all we need to determine the forwa®¥ +-name of anc € B is its forward

P-name and the return times & which areQ*-measurable). So, we get

h(PIQ) < D n(B)Hp(PIPPH) = Y p(B)h(pp, T, P).

BeQ BeQ

To see an example with sharp inequality, suppo$®) = h > 0, while Q generates a
periodic factor with some periogl Set? = Pf. Thenh(P|Q) = h(Py) = h. Notice
that for eachB € Q, Tp = TP. Sinceu = ) o 1(B)pp and all these measures are
TP-invariant, by affinity of the dynamical entropy and the powsde, we have

> wBYh(pp, TP, P) = h(p, T, P) = h(p, T, P5) = ph(p, T, Po) = ph > h.
BeQ

12



Exercise 4.7.

Just take any endomorphism of finite entropy that does nottadumilateral generator.
For example7 can be invertible with positive entropy, yet we considerydhk action

of Ny. If you want a genuine (not invertible) endomorphism, cdasthe direct product

of a bilateral Bernoulli shift with a unilateral Bernoulhit. If there existed a unilateral
generatorP, the bilateral Bernoulli factor would be, by invariance, aserable with
respect taPl™>°) for every positiven, and hence with respect to the Pinsker sigma-
algebra, which is impossible due to positive entropy.

Exercise 4.8.

For any pair of partition® andQ measurable with respectfand®, correspondigly,
we have

H((PVQ)"|¢') = H(P" v Q"|¢') = H(P"|¢') + H(Q"|¢).

Dividing by n and passing to the limit we gét(P v Q|¢’) = h(P|€’) + h(Q|¢') It
suffices to take supremum over all such pairs of partitiond, retice that the joined
partitions? Vv Q generate the joined sigma-algeltas 9B, to get the desired equality
h(AV B|C) = h(A|C) + h(B|C).

Exercise 4.9.

Attention! In the formulation, the ergodicity assumption is obviousiissing (other-
wise we may have no generator at all).

By Theorem 4.5.1 (Sinai), our system has a partiffomhich generates an independent
process with full entropy:. By Theorems 4.4.7, there is a partiti@rwhich generates
a process of entropy smaller thaf2 and such thaf® v Q generates everything. We
will prove that we can replace the partiti@nby anotherQ’, which generates the same
factor asQ and has static entropy smaller tharThis will end the proof, as theRv Q'

is a generator and (P v Q') < H(P?) + ¢ = h + ¢, i.e., the corresponding process is
e-independent.

Let r be so large thaf7(Q") < re/2. By a standard modification of the Rokhlin
Lemma, there is a set € Q% such that the return time td assumes only two val-
ues:r — 1 andr. Let s be the partition{ A, T'(A),...T"~2(A), B}, whereB is the
remaining set (contained ifi"~1(A4)). We have

r—2 r—2

re T T mn T 1 i

5> H(Q") > H(Q|3) = > p(T"(A) Hyn(4)(Q7) > - >~ Hon(4)(Q7).
n=0 n=0

We multiply both sides by /(r — 1) and get

2

r—2
1 E T
E Hpn Qr —
r—ln:O 7 (4)( )<2r—1

which implies that for at least one index € {0,n — 2}, Hyno(4)(27) < §--

13



LetQ’ be defined aQ" intersected wittd’ = T™°(A) and the complement of’ in one
piece. Notice that the partitid®’ generates the same procesSameaningful symbols
symbols in theQ’-name of a poinkz occur at coordinates for whichT"z € A’ and
they encode the blocks of lengtfstarting at: in the Q-name ofz, while the next such
symbol is not further than positions forward. Denoting b the partition intoA’ and
its complement, the static entropy @f can be estimated as follows

H(Q') < H(Q|R) + H(R) < u(A")Ha (Q") + 0+ H(R) <

€ 1 1
5(’/“—1)2 +H(m,1*r_1)<€

if r is chosen large enough. This concludes the construction.
Exercise 4.10.

Attention! Again, in the formulation, the ergodicity assumption is idiosly missing.

First of all, recall that the original proof of the Sinai Threm is valid also for endo-
morphisms, this is why the exercise is formulated for bottesafS. Now, it suffices
to take for® a generator of a Bernoulli factor of full entropy, which canfinite in the
finite entropy case.
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Part 2

6 Exercisesin Chapter 6

Exercise 6.1.

Consider the (unilateral or bilateral) subshift of finitpéyon three symbol§0, 1, 2},
where we prohibit repetitiong0, 11, and22. Let the coverll depend on the zero
coordinate and consist of the unions of two symbols efick: {10U1, 1U2, 0U 2}.
There are 6 admitted words of length(®;, 02, 12, 10, 20 and21 and they are covered
by two sets (for examplg) U 1) x (1U2) and(1U2) x (1U0) (in the order they are
written). So,2H(U?) = Jlog?2 = log v/2. To keepsH(U?) not increased, we need
N (U?) not larger thar2/2 (strictly smaller thar), which means that we would have
to cover all admitted blocks of length 3 by only two elemerfts®. This is impossible,
because there are 12 admitted words of length 3, while earhegit ofU? contains
at most 4 of them; in the definiton @f € U3 we must specify 3 pairs of different
symbols, so at least two symbols must be used twice, whicmsnib@tl (containing
a priori 8 words) contains at least 4 forbidden words, hemneaast 4 admitted words.

Exercise 6.2.

This is a direct consequence @f")™ = U"+t™ and the convergenc@# — 1.

Exercise 6.3.

Attention! The statement is in general false. Any systekh 7', S) is topologically
conjugate to the subsystem of the unilateral shiftXot¥ consisting of the forward
orbits. In the product metric

A((n), () = 3 e )

the shift map is Lispshitz with the constant= 2, while it can have arbitrarily large
topological entropy (the same 85, T, S)).

The statement does holddf< 1 (an important application of that is, that all isometries
have entropy zero). In such case all the metitsre equal tal hence the number of
(n, e)-separated points does not grow with

For arbitrary Lipshitz constanisthe statement is valid fof'! interval maps in the
standard metric, which follows e.g. from the Margulis-Reehequality (9.4.1) (and
the Variational Principle).

Exercise 6.4.

Let? = {I,Is,...,In} be the partition of0, 1] into the branches of monotonicity

(intervals on whicHI" is monotone); = [0,a1), Iz = [a1,a2),...,Iy = [an—1,1].
Notice that for each > 1 the cellsJ € P™ are in fact intervals on which all the iterates
T, T2, ..., T"~! are monotone. We will estimate the numbe(f<)-separated points
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contained inJ. Consider the intervals between neighboringe)-separated points in
J. Each of them must be stretched to at least the leadtly one of the functions
T,T?,...,T"~!. By monotonicity, each of these functions can stretch attrps
of these intervals, because their images are disjoint. thiegeat most: /¢ intervals
can be stretched, which limits the cardinality of the poiota /e + 1. Now, the total
number of(n, £)-separated points is at mast' (2 + 1) (whereN™ bounds the number
of cells J). The desired estimate &f T) is obtained by taking the logarithm, dividing
by n, passing with: to infinity and then letting tend to zero.

Exercise 6.5.

Let T v S denote the joining of" and.S within the common extension. Fact (6.4.13)
applied twice (first tdI’ vV S and S, then toT" v S andT) and the triangle inequality
yield

Ih*(S) —h*(T)| < h(T Vv S|S) + h(T Vv S|T).

By (6.5.8),h(T" v S|S) = h(T|S) andh(T vV S|T) = h(S|T).
Exercise 6.6.

First taken > 0. Notice that(U™)™, where the exponent refers to the action ¢f'”,
equalsu™™ (in the action off’). So,

h(T", U™ V") = lim LHQU™ [V"™) = nh(T, U[V)

(since the limit defininga (7, U|V) exists, it is achived along the subsequence).
Further,

h(T"V") = suph(T", W|V") > sup h(T" U"|V") =
%Y w=un

supnh(T,U|V) = nh(T|V).
u
On the other hand, sind¢™ = U, we also have
h(T™|V") = suph(T",U|V") < suph(T",U"|V") = nh(T|V).
u u
We have proved the equality(7"|V") = nh(T'|V). We proceed similarly with the
conditioning covers:
* mn — 3 n < M n mn — 3 — *
h*(T") 1%fh(T W) 7\/\712%" h(T" V™) 1r¢fnh(TW) nh*(T),
and, sinc&V™ =V,
h*(T") = i%f h(T™|V) > i%f h(T™|V") = nh*(T).
It remains to show that for homeomorphisrhs(7T—1) = h*(T'). Note thafll”, where
the exponent refers to the actionBf !, equalsl{—"*+1-9] (in the notation referring to

T). SinceT is a homeomorphism, we had@(Ul~"+1.0|V[=n+1.01) — F(U?|V™),
This equality passes via all intermediate definitions legdoh*(7~!) = h*(T).
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Exercise 6.7.

Forn > 0 we use again thgf(™)™, where the exponent refers to the action of"™,
equalsu™™. We have

h(T",U"|y) = limsup %H(U""ﬂy) =n - limsup ﬁH(umﬂy) < nh(T,Uly).
This time we have no subadditivity to deduce the existencieflimit. Instead, to
prove the converse inequality, we will use monotonicity.eBvpositive integer can
be written asi = m;n — r; with m; > 1 and0 < r; < n — 1. ThenH(U'|y) <
H(U™"[y), 50

nh(T, Uly) < nlimsup 1H(U' |y) < 22 L HU™™

. mq
1—00

y) =h(T",U"[y),

because™* — 1. Further, the definition oh(T’|y) involves the supremum ovef,

which is handled identically as in the preceding exercise $kip rewriting). If we
replace the conditioning by a measure, the only essential difference in the defini-
tions is the presence aif rather tharlim sup. So now we first derivé (7", U"|v) >
nh(T,U|v), and we use monotonicity for the converse inequality (weesgnt; as
m;n + r;, SO thatt > my;n).

We remark that for an invariant measur&ve can alternatively use Corollary 6.7.4 (c)
and (d), and power rules passi@r’, U|v) andh(7'|v) via integration.

Attention! For negativen the equalitie$ (7, U™ |y) = |n|h(T, UJy) andh(T"|y) =
|n|/h(T|y) may actually fail. An easy example is the subshift of finitperyon three
symbolsA = {0, 1, 2} where we prohibit the blocki) and20, the covefl equal to the
zero-coordinate partitiofi 4, and the factor map that glues together the symbatsd2

(to a symbol denoted in the factor 8s The fiber ofy = ...000111... (we underline
the coordinat®) intersect2” ! elements ot(”, while only one element dfl—"+1.0,
Henceh(T™,Uly) = log2 # 0 = h(T~! U|y). Itis not hard to see that in fact
h(T~!,Uly) = 0 for any other finite covetl, soh(T|y) > log2 # 0 = h(T~!|y).
Nevertheless, the equaliti¢gg 7™, U|v) = |n|h(T,U|v) andh(T"|v) = |n|h(T|v)
do hold whenever is invariant. It is so becaudd (U"|y) = H(UI= 100|741y,
The change of the variable vanishes after integrating veigipect to an invariant mea-
sure, saH(U"|v) = H(Ul="*+10%|), which easily implies the above two equalities
forn = —1 (and hence for alh < 0).

Exercise 6.8.
See Exercise 6.2.
Exercise 6.9.

This is nontrivial only wheth(T") < oo. Then all involved measure-theoretic entropies
are finite. By the Inner Variational Principle (Theorem 8)3.then Fact 4.1.6, and
finally the Variational Principle, we have

h(T\v)+h(v) = sup h(plv)+h(v)= sup h(p) <h(T).

per=1(v) per—1(v)
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Exercise 6.10.

Let T = ¥¢. We have, using consecutively the Inner Variational Pglegithe Varia-
tional Principle and the Conditional Variational Prinepl

h(TI) = sup h(ul¢) = sup (h(ulé(w) +h(&(w)E)) <

nen=1(8) pen=1(8)

sup h(ulé(p)) +  sup h(r|§) =h(T]S) + h(S[E).
HEMT(X) veyp—1(§)

Exercise 6.11.

Let both spaces bf0, 1,2}, let both covers b&l =V = {{0,1},{0,2},{1,2}}. We
haveN (U) = N(V) = 2, while N(U ® V) = 3 < 4 (the product space is covered for
example by{0,1} x {0,1}, {1,2} x {1,2} and{0,2} x {0,2}).

Exercise 6.12.

The inequality 2. is easy and can be derived using only thetOdatriational Principle
and (6.5.8), as follows:

h(T|€) < h(T|R) = h(SV R|R) < h(S).

(An alternative way is via the Inner Variational Principledsthe second inequality in
Fact 4.4.3. Yet another alternative is to first prove 1. aed hse Corollary 6.7.4 (d).)

The inequality 1. is a bit harder. By Definition 6.5.2, Fad.8.(and its proof), we
can think of(X, T,S) as a subsystem ¢V, S,S) x (Z, R,S) and we can restrict our
attention to product covets®V. Note thaf U V)™ (the exponent refers 6 = Sx R)
equalsi™ ® V™ (exponents refer t& and R, respectively). At any point € Z we
haveH(U™ ® V"|z) < H(U™). We divide both sides by, pass tdimsup,,, then
apply supremum over all pairs of covétsandV.

7 Exercisesin Chapter 7

Exercise7.1.
Denote our subshift by X, 7,S). The inequalitylimsup,, = log #B;, < h(T) is

obvious;B;, contains only blocks of lengthy, appearing in OLZJ)F subshift (usually not all
of them).

To derive the converse inequality consider the 4gtof points having ap,-periodic
marker at the coordinate zero. Clearly;, is compact,7P+-invariant and with the
action of TP+ it is conjugate to a subshift over the alphalgt Thus the topologi-
cal entropy of( Ay, TP+, S) does not exceelbg #5;,. The spaceX contains the dis-
joint union X’ of setsAy, T(Ag), ..., TP*~1(Ay), and the system&™(Ay), T?x,S)
are factors of( A4, TP, S) via T¢, so their topological entropies are not larger than
log #B. In addition, in the unilateral case, there maybe pointshettnging toX’
but all such point fall intaX” after less thamy, iterates. This proves th&t(77+) <
log #B,, on the entire spac& and, by the power rule for topological entropy (Fact
6.2.3),h(T) < pik log #B;,, for everyk. This implies the existence of the limit and the
desired equality.
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Exercise 7.2.

This is a standard exercise in topological dynamics, harotging to do with entropy.

In the surjective case the natural extension is conjugatbedilateral subshift with
the samdanguageas the given unilateral subshift, i.e., with the same finitecks
occurring. In the non-surjective case there are blocksroioguin the unilateral shift
which do not extend to the left within the language. We cadktinblock “dead ends”.
We append a new symbol (say to the alphabet and we enhance the language by
blocks of the form« « x-- -« (of any finite length) and x x--- x B, whereB is a
dead end. The natural extension is conjugate to the bilaghif with this enhanced
language. We skip the tedious but easy verification of thgugarties.

Exercise 7.3.

Again, this is an exercise in topological dynamics and Hh#e tio do with entropy.

We begin with the remark that the Marker Lemma 7.5.4 apphidgadt to continuous
maps, not necessarily homeomorphisms. If we replace théngtalopen covefl by

W = T-"m(U), then eaclJ € W has clopen forward images through iterates
and all the set¥’; constructed in the proof (including the marker $§tare clopen
together with thein backward and forward images. We skip further details hexe (s
[Downarowicz, 2008]).

In any zero-dimensional system without periodic points \wa mimic the odometer
factor. The only difference is that the analogs of fheperiodic markers will not
appear periodically, yet with gaps ranging betwegrand somep, > pj. Here is
how we do. We fix a sequendg;) and the associated quotients > 2 just as in
Definition A.3.1. We find a;-marker seff;. Since there are no periodic pointsin

all orbits visit F; and the gaps between the visits range betwgend2p; — 1. In the
induced systen(Fy, Tr, , S) we find ag;-markerFy. Since the induced system has no
periodic points, every s, -orbit visits F, with gaps ranging between and2¢; — 1,
which implies that ever{’-orbit in X visits F3 with gaps ranging between g1 = p»
andp, = (2p1 — 1)(2¢1 — 1) > po. Proceeding inductively we construct a decreasing
sequence of marker sef§.. Abusing slightly our convention, we will call ther
markers (they are in fagt,-markers). If we visualize the-markers in the array-name
representation of our system (in form of vertical bars in iie row) then in every
arrayx we see th€k+1)-markers only at coordinates whekemarkers occur, there
are at leas, k-markers between two consecutiet1)-markers, while the distances
between two consecutivg + 1)-markers are bounded. The blocks appearing in row
k between two neighboring-markers will be called:-blocks. The (finite) collection
of the k-blocks appearing in the system will be denotedy(this time the blocks
in B; have various but bounded lengths). In injective systemstrays are bilateral,
so thekth row of everyz is a concatenation of thie-blocks (there is no problem with
truncatedk-blocks at the left end).

We are ready to encode our system using a countable alph&tefalphabet is going
to beA = U;‘;l B, U {x}, wherex is added as the topological accumulation point, so
thatA is homeomorphic to the one-point compactificatioiNgf

We now define the map from X into the shift overA by describing the image =
¢(x) € A” of everyz € X. We will encodez “row after row”. We encode the
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first row by placing iny, at the positions of all-markers inz, the symbols front3;
representing thé-blocks that follow these markers in Sincep; > 2, every sector in

y between the positions of two consecutivenarkers has at least one unfilled position.
We now encode the second rowmoby placing iny, in the first empty slot between two
2-markers ofz, the symbol fromB, representing the block sitting there in the second
row of z. Sinceq; > 2, after this step every sector inbetween tw-markers has
at least one empty slot. We continue in this manner througtoass. All eventually
unfilled positions iny we fill with the stars. (The situation resembles that on Fégur
7.2, except that the cuts are not exactly at equal distanmshat in every step the
information is stored in only one symbol per “period”, so lmetend there will be
much more unfilled space in) It is clear that so defined map+— y is continuous:
every symbol (except the star) inis determined by a bounded rectangleri(i.e., its
preimage is clopen). The star alone is not an open set, whylepen neighborhood
of the star is a complement of finitely many other symbols tsgieimage is also a
clopen set. It is evident that so defined mapommutes with the shift transformation.
To see that it is injective, note that we can easily recoostinom y the consecutive
rows ofxz. Fork = 1, we locate iny the symbols belonging t6;. Their positions
determine thel-markers and the symbols themselves provide informatiamuiathe
contents of the correspondirigblocks inz. We continue inductively: Suppose the
kth row of z nas been reconstructed (together with thmarkers). We locate ip all
symbols belonging t#;_ 1, and then we “unload” their contents each time starting at
the nearest-marker to the left, where we also placéka-1)-marker. So, the map is

a topological conjugacy ok with its image.

To see that periodic points are an obstacle, take the igeméip on the Cantor set.
Every point is a fixpoint, so in any subshit it must be représgiby a sequence filled
with one symbol. Thus, uncountably many symbols are neemleddode all points.

To see how the above fails in non-injective systems, consid®dometer plus a Can-
tor set which is sent by’ to one point (sayr) in the odometer. No matter how we
encode the system as a unilateral shift, the sequence eafiresz must admit un-
countably many shift-preimages, that is one-coordinatdopgations to the left. So,
an uncountable alphabet is needed.

Exercise 7.4.

Leth = h(T). LetB,, denote the family of all blocks of length occurring inX.
Let A be an alphabet of cardinality2® | + 1. It is important thaog #A > h, so
we can invoke our Exercise 3.8 (and the remark following thlat®n): there exists a
“better than prefix-free” familye of blocks overA such that denoting b§,, the family
of blocks of lengthn contained inC, we have#@,, > 2"+ for somes > 0 andn
sufficiently large. On the other hand, we know that #B,, < 2"(+2) for largen.
So, we can find amg such that for every, > ng, #B.,, < #C,. Then there exists
an injective length-preserving map: U, -, Bn — U,,>p, Cn- Now we apply the
Marker Lemma and find ano-marker. The code from X into AZ is constructed as
follows: we cut everyr at the markers into blocks of lengths at legt(and bounded).
Then we replace every such blogkby ®(B). Becauseb is length-preserving, this is
a shift-invariant procedure, and by boundedness of thekbl|dtis continuous. Since
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the image ofb is contained in a “better than prefix-free” family, the cagtiplaces (i.e.,
the markers) can be reconstructed in evgéfy), and becaus@ is injective, we can
then reconstruct: completely. Thus, the code a topological conjugacyXofvith its
image.

To see how the above fails in non-injective systems, consideilateral subshiffX
over a finite alphabet and with entropy smaller thdng #A. We enhance the subshift
by adding points of the formz, wherex € X anda is a single symbol belonging to
a strictly larger alphabet’ > A. The enhanced system is a subshift over the alphabet
A’. Since all its points fall intaX’ after one iterate, the topological entropy of the
enhanced subshift is the same as that¥an Nonetheless, in any unilateral subshift
representation, each point from has#A’ shift-preimages, so an alphabet of at least
such cardinality is needed.

Exercise 7.5.

In every bilateral subshift any element of a periodic orlfiperiod n has the form
...BBB. .., whereB has lengtm. Moreover, at most different blocksB produce
elements of the same orbit. Because therd’atdocks of lengthn, using an alphabet
of cardinality! we can produce at most and at least™/n different periodic orbits
with periodn. Let X be the union of”/n disjoint orbits of period» modeled as a
subshift ovell symbols. The entropy of such a primitive system is zero fdexercise
7.4 worked,X should admit a representation over two symbols. But withgdwnbols
we can model at mogt* periodic orbits with period.. For! large enough /n > 2™,

a contradiction.

8 Exercisesin Chapter 8

Exercise 8.1.

We have B{ = oo andag = Xg. The best way to see this is by examining the transfi-
nite sequence. Notice that tkéh tail 6, equals 1 on the dense ety 1, xt2,--- |,
sof;, = 1. This impliesu; = 1. Now addingu, to the tails only shifts the picture up
by a unit, hencei, = 2, and, inductivelyu, = «, for naturale. This clearly implies
uy, = oo and this is where the transfinite procedure stops for thetifinst

Exercise 8.2 (cf. [Boyle—-Downarowicz, 2004, Proposition 3.10])

We proceed by induction oord(z). By Theorem 8.1.14y4 (z) = 0 at any isolated
point, so the statement holdsdfd(z) = 0. Suppose we have proved it for some
ord(z) = r > 0. Letz be a point of order + 1. Defineu asuy, except atz where
we setu(z) = (r + 1uy(x). We complete the proof by showing thatis a repair
function forH. Since we have alterag,, only atz, it suffices to verify that the defects
of u + 6, converge to zero at. Note thatr is surrounded by points’ of order at most
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r, at which the inductive hypothesis holds. For eacke have

z/—x

limsup rui (z') — (r + Dug (z) + Op(z) — O (2) =

z/—x

r(lirrll supug (z') — ul(x)) —u1(x) + Ok (x) — Ok ().
The first term equals times the defect ofi;, which is zero, becausg is upper semi-
continuous. (All functionsu,, in the transfinite sequence are upper semicontinuous
— this is obvious from the definition, but perhaps not suffitdieemphasized in the
book). Now we letk tend to infinity, and them, (z) decreases ta,(z) and 6 (x)
decreases to zero, so the entire expression tends to zesguased.

Exercise 8.3.

Each entry in the matrix, say/,, .., representing:,(z) at points of order can be
verbalized as

o ap+ a1+ -+ a1, for r<n
o “the maximal sum of. different terms indexed up to— 1", for r > n,

where by “terms” we mean the numbets Notice that the maximal sum afdifferent
terms from a set of nonnegative numbers dominates all sheuras from this set,
so the above second case description can be written as “thienalasum of up ton
different terms indexed up to— 1”. This phrasing includes the first case, because for
r < n the maximal such sum is clearly the sum of all terms indexetbup- 1. Thus,

M, , = "the maximal sum of up ta different terms indexed up to— 1",

is the general form, including alst/, ,- for all  (any sum of0 terms is0). We will
verify thatu,, (z) = M, ord(z) DY induction onn.

Forn = 0 the formula holds. Assume it holds for some> 0. We need to evaluate
un+1. Take a point: and denoter = ord(x). Fork sufficiently largedy(«) = 0 and
then(u,, + 0x)(z) = u,(z) = M,,,. Every neighborhood of contains (in spite of)
only pointsa’ of ordersr’ < r — 1, moreover, for every sucH it contains infinitely
many points of order’. Thus, no matter how large the function(u,, + 6;) assumes
within this neighborhood the valu¥,, , + a,, i.e.,

“the maximal sum of up ta different terms indexed up td — 1"+ a,
which is the same as
“the maximal sum of up ta + 1 different terms indexed up td includinga,.”.

Alltogether,u,, 1 (x) equals the maximum ovef < r — 1 of the above maximal sums
andM,, .. Itis hence clear thai, 1 (z) does not exceed “the maximal sum of up to
n + 1 different terms indexed up to— 17, i.e., My 1 r.
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But every “sum of up to: + 1 different terms indexed up to— 1" has its maximal
index, some’ < r — 1, and then this sum is a “sum of up to+ 1 different terms
indexed up to’ including a,-”, and is taken into account in the maximum defining
Un+1(z). Thisimplies thaty, 41 (z) = Mp41,,.

Exercise 8.4.

We need to show that;; = w;. Since always:; < uy, we focus on the converse
inequality. Because,, = EH — h and we assume thatE= h, the desired inequality
becomes:,; > h — h. We have

—~—

U = limgk =limh — hy > h— limﬁk
k k k

(we have used the inequaliygjr/g < f+gfor f = h — b, andg = h;,). Since all
functionsh,, are assumed upper semicontinuous, the last limit edialsh;, = h.

Exercise 8.5.

Attention! The formulation of the exercise contains a misprint. It dti@ay not about
superenvelopes only about repair functions.

The Tarski-Knaster Theorem asserts that any order-priegeoperator® : L — L
defined on a complete lattide has its smallest fixpoint. Recall thatamplete lattice
is a partially ordered set in which every subset hagfimmum(greatest lower bound)
and supremuni{smallest upper bound). In our case, the lattice will be thigection
of all nonnegative upper semicontinuous functions on thealo X, where we include
the constant infinity function. The infimum of s subgkbf L is simply the pointwise

infimuminf{h : h € A}, while the supremum equatap{h : h € A} or the infinity
function when the supremum is unbounded. Given an incrgasguencé{ = (hy)

of nonnegative functions o, tending to a finite limith (hence we also have the tails
0r, = h — h;) we define the operatoP : L — L by

P(f) =lim | (f +6).

Itis immediate to see that the operator is well defined (tregiefunctions belong tb)
and preserves the order. So far, we have just recalled wisagiwen in the formulation
of the exercise. We need to verify that fixpointsfoére exactly the repair functions of
the tails ofH. Then the smallest fixpoint will coincide with the smallespair function
uy. To this end we write

Plu) =u < liinu+9k:u — lilgn(qukauf@k):O =

h,ﬁn (u+0;) =0 <= wu isarepair function

Exercise 8.6.

This is completely elementary and will be skipped.
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Exercise 8.7.

The derivation of the first statement is based on the imptinat > ¢ — f > g.
The converse need not hold, for exampléit= [0, 1] with 6, = ; andd; = 11,
whereQ denotes the set of rational numberg(ni].

Exercise 8.8.

On a compact domain, sa¥;, our upper semicontinuous functighattains its maxi-
mumy, at some pointy. SinceX is convex, the Choquet Theorem asserts that there
exists a probability distributiog supported byexX with bar(§) = zo. But f is also
convex, so by Fact A.2.10 it is supharmonic, and thus

Yo = f(xo) = f(bar(¢ /f

Sincef(x) < yo at all points, this inequality is only possible when it is @uality and
f = yo &-almost everywhere. In particulaf(z) = yo at at least one point iexX.

Exercise 8.9.

. H|—= . .
Attention! We do not show that)!|—= = ua o, only that both determine’! via

the same operations. We do not invoke Lemma 8.2.13 direwily,the same proving
methods.

This is a hard exercise. We claim the following

UZ} - ((u?ﬂexx)harm)[x] = ((uiﬂﬁ) harM)[jq.

The statement obviously holds far= 0. Suppose it holds for af < «. Recall that
v}t stands fosup;_,, u}} We now write a sequence of (in)equalities and then we will
explain why each of them is true.

(1) hary¢ [:K:] (2) H‘i hary¢ :K] (3)
= ((e)™) = (e

)
A\ b A\ (K]
<<li'£n (v?lﬁ + 9n|exg<)> > (4) <11 < o= 4 0, |ex9<) M>> ®
(
[

7_77_\_/ harM (6) harM [K]
lim (va X 4 9,{|exx) > hm (( g 9N|ex9<) )

_ | haryey K] (8) o
lim {((UZJ'M) M) v QKJ > lim (07 + 6,) < ™.
At first notice that since each, is harmonic, it is affine, sa is affine (although not

necessarily harmonic), hence eathis affine. This make§N concave (Fact A.2.5),
and by an easy induction, all functiong’ are concave. On the other hand, for any
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distribution§ we have[ hd{ > [ h.d{ = h.(bar(&)) for everys, hencef hdf >
h(bar(§)) andh is shown to be subharmonic. Also eath= h — h,, is subharmonic.

. . haryt . . .
H
(1) is derived as foIIows(ua |exg<) is upper semicontinuous, so
(%]

(1)) = ()™ (€ = [ ulllgaede = [ altde < alfta),

where¢ is some distribution orex/C with barycenter at;, and the last inequality is a
consequence af’! being concave and upper semicontinuous, hence supharmonic

(2) results from the fact that throughout the transfiniteuicttbn leading thf'W (at

a point inexX) the “tildes” are taken in the context ekX, so they produce not larger
functions than the “tildes” taken in the wider contextJ6f leading tou’! at this point.
(3) is just the transfinite definition applied to the restaotH|_-.

In (4) we pull the decreasing limit outside the harmonic egien. Since the harmonic
extension relies on integrals, we need a kind of Lebesgu@réhne The functions
are bounded from some index on (otherwise the case is tragalve have infinity on
the right), so if the net is actually a sequence, we can uséebesgue Dominated
Theorem. For nets, however, we must invoke a stronger rdsula decreasing net of
upper semicontinuous functions, the integral commutels thii¢ limit (see e.g. (A7) in
the Appendix of [Downarowicz-Serafin, 2002]).

In (5) we exchange the limit with the push-down. Since therfitlre compact, the
functions are upper semicontinuous and decrease, this €aofe by virtue of the
exchanging suprema and infima Fact A.1.24.

In (6), for eachx we delay the application of “tilde” till after the harmonigtension
and the push-down. (“Tilde” commutes with the harmonic egien because we are
on a Bauer simplex, so it is not important in what order werjomet them applied.)
For the push-down the inequality is obvious, because thetifumon the left is upper
semicontinuous (see Fact A.1.26) and dominates the funaiithout the “tilde” on the
right.

When evaluating the push-down on the left hand side of (7) meso € X we must
integrate the sum of two functions with respect to all meassupported byxX) with
barycenter at:. Since#f,, is subharmonic, the integral éf. with respect to such a
measure will be always at leat(x). So the integral of the sum will always be at least
the integral of the first function plug;(z). Now we can take the supremum over all
such measures.

H‘ hary [K] H|7 haryy [3{]
For (8) note tha< (va e*K) ) > ((uﬁ e*K) ) for everys < a. By the
inductive assumption, we replace the Iatterdg/, and then we apply supremum over
all g < a.
(9) is just the transfinite definition.
The claim about the order of accumulation is now obvious.

Exercise 8.10.

This is a direct consequence of two inequalitié&u, U vV V) < H(u, W) + H(p, V)
andH (u, T-™(U)) < H(u,U). The first one holds since whene®e= U andQ 3= V

25



thenPVv Q= UV QandH (u, PV Q) < H(u,P) + H(p, Q). The second is true by
invariance ofu and since whenevér = U thenT—"(P) = T (U).

Exercise 8.11.

For the first inequality note that arfy inscribed inU has diameter at mosfiam(U),
for the second — that arjy of diameter smaller thabeb(U) is inscribed inll.

Exercise 8.12.

Just note that the covét™ is inscribed in the cover constituted by the diam(U))-
balls and that the cover by tife, Leb(U))-balls is inscribed ifl. Then use the mono-
tonicity (6.3.5).

Exercise 8.13.

Given a covefl and a set4, the smallest cardinality of a subfamily tf* coveringA

is at least equal to the maximal cardinality (ef, diam(U))-separated set. This easily
implies thath(T,U|F,V) > h(T,diam(U)|F,V). On the other hand, any maximal
(n, Leb(U))-separated sdt in A is also(n, Leb(U))-spanning inA. Each element of
E is contained, together with i{3:, Leb(U))-ball, in an element (™. In this manner
we select a subfamily df” which coversA and has at most the cardinality Bf This
impliesh(T, U|F, V) < h(T, Leb(U)|F, V). Now we can apply the above to a refining
sequence of covel$y, (then bothdiam(Uy) andLeb(Uy,) tend to zero).

Exercise 8.14.

Attention! Implicitly, V is assumed finite. Otherwise | don't know how to proceed.

This is an extremely unpleasant exercise. The reason | psttd illuminate how
convenient it is to have entropy structure defined as a unifequivalence class. We
may afford not to care much about measurability of functionene particular entropy
structure because in the same class there are other seguégactions known to be
measurable (even upper semicontinuous). In [Downaro®i@@5a], | simply used the
upper integral to extend the functiéiT'|x:, V) to nonergodic measures.

The strategy is to assume that is zero-dimensional, and (1) approximafeby a
sequence oflopen coverd’y, i.e., having clopen (not necessarily disjoint) cells and
then (2) prove the assertion for such clopen covers. In Sewd will apply principal
extensions to get rid of the zero-dimensionality assumptio

(1) We fix a finite open coveY (of our zero-dimensional spac€) and temporarily we
also fix an ergodic measure We will exploit the following variant of Lemma 8.3.20:
If W is another cover then

hT |, W) < h(T|p, V) + 1im1 inf{h(T,VI|F,W) : u(F) > o}.

The proof is exactly the same as that of Lemma 8.3.20 exceptishuses the full
version of (6.3.10) (i.e., we ke in the last term).

Fork € NandV € V there exists a clopen s&f, contained in\/ and containing
{z : d(z,V°) > 1/k} (because the latter set is compact). We can easily arraege th
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setsVj, to grow with k. It is easy to see than if/k < Leb(V)/2 then the collection
Vi = {Viy : V € V}is a (clopen) cover oX. SinceV = Vi wheneverk’ > k,
the sequence of functiondgT'|u, Vi) increases. Moreover, since for edclthe sets
Vi grow toV, the measure of the sé, = [, (V' \ Vi) is smaller thar for large
enoughk (this is where we neell to be finite). By the Ergodic Theorem, giver> 0
there existsi;, , € N and a sef}, , of measure larger thansuch that for alh. > ny,
all n-orbits starting inf}, , visit A; at mostne times. By the last displayed formula,
we have

h(T‘:u7 V) < h(T‘,Uﬂ Vk‘) + }—1211 h(T7 ’Vk‘Fk’,ov V)

We need to estimate the last term. ket F}, ,. Forn > ny , choose a celV* of V*
containingz, sayV" = I, T-iV® (eachV® e V). ThenT"(z) € V") except
for at mostne indices:. This implies that: belongs to one of at most

(D)o
ne

modifications of J{—,' 7=V, in which at mostne terms are altered (i.el;,” is
replaced by another cell 6f;). We have covered}, , NV by at mostL,, elements
of V. Thus

h(T,Vi|Fy0,V) < lim 2 log L, < H(g,1 — €)elog #V,

regardless ob. We have proved that the function(T|u, V) on ergodic measures
equals the increasing limit of the functiohéI'|u, V), whereV,, are clopen covers.

(2) We will check measurability of the functiok(7|u, V) for a finite clopen cover
V = {V1,V,,...V;} of a zero-dimensional spacé. In this setup consider the joining
(X', T',S) of our system with the subshift over the alphalet {1,2,...,}, such
that every point: € X is joined with all sequences.,) € AS such tha™(z) € V,,
(the joining associates to eaclall its possibléV-names). Every ergodic measurean
be lifted to a measurg’ on the joining by the rule, that all possiblewords assigned
to a finite piece of an orbit have equal probabilities (giverat each coordinate we
choose the available symbols with equal probabilities adépendently of the choices
made on other coordinates). It is not hard to see that theurepasis ergodic and
that the assignment — ' is continuous on ergodic measures (we skip the standard
arguments via estimating the frequencies of blocks). Usiggdic decomposition, we
extend this assignment to a continuous map fddm(X ) into M (X'). LetP denote
a clopen partition (hence a cover) &f, let V' and?’ denote the lifts of? and? to X”,
respectively. Additionally, onX’ we have the zero-coordinate clopen partition (and
cover)Q corresponding to the symbols in Notice that the cells o’ are precisely
the fiber saturations of the cells 9f Choose a closed sét € X’ and denote by’ its
projection toX, and letG’ be the lift of F' (so thatG’ is the fiber-saturation aF; recall
that bothF” andG’ are closed). Because the cellsif are fiber-saturated, it does not
matter whether we cover the setsn B (where B € Q") or their fiber saturations.
Thus

T, PG,Q) = h(T', P |G, V') = W(T,P|F,V).
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In the expression on the left, we are dealing with two pantigiand we count the cells
of P'" needed to cover a cell i@" (intersected withF'), so the count will be exactly
the same as if we counted the cells(#f v Q)" instead ofP’". This leads to

WT', P v Q|G,Q) = h(T,P|F, V).

Now we temporarily fix an ergodic measyréandy’) and we repeat the argument used
in the proof of Lemma 8.3.21 (with the correction in the deifam of the selG = G.;
seeErrata): We fix a sequence of clopen partitioft refining in X, and we choose
a setG of measure larger tham of points satisfying, up te, the Shannon-McMillan-
Breiman Theorem applied to the ergodic meagtrand each partitio), v Q andQ
(for each partition with perhaps different threshold léngtNow we letk — oo, and
then the right hand of the last displayed equality simplyeoges tah(T'|F, V), while
the left side remains within the rang¢’, P |Q) ¢, (h(1', P;|Q) = h(1', P}, VvV Q|Q)
is the usual measure-theoretic conditional entropy irmgltwo partitions; this we do
exactly as in the proof of Lemma 8.3.21). Since every sublséf of measure larger
thano contains setd” (images ofG as described above) for arbitrarily smallthe
application of the infimum over such sets and then supremwancoleads to

(T, |p, V) = lim T h(p', Pi|Q).

This equality extends to all measupesia integrating over the ergodic decomposition
(the function on the right is harmonic, the one on the leftasnmonic by definition).
The functiony — h(p’, Pr|Q) is now a composition of the continuous map—
with the conditional entropy function for two clopen covershich, as we know very
well, is upper semicontinuous. So(T’, |, V) is of Young class.U.

(3) It remains to extend the result to generals systems. \degehthe meaning of
the notation: from now of.X, 7', S) will denote a general topological dynamical sys-
tem, while (X', T",S) will be its principal zero-dimensional extension (see Tieeo
7.6.1). We have a continuous surjection: X’ — X between Choquet simpices
XK' = My (X') andX = M (X). We fix a finite open coveY of X and we letV’ de-
note its lift. As we have shown in the preceding step, thetiong (') = A(T"|1/, V')

is an increasing limit of some upper semicontinuous andeffience harmonic) func-
tions, sayfi(u’). The pushed-down functio *I maintain these two properties (see
Fact A.2.22). It is an elementary observation, that the aifmr push-down preserves
increasing limits (it is a matter of exchanging two suprenTdjus /%! = lim 1 f,?q.
This monotone limit is obviously of Young clag$), and, by the Lebesgue Monotone
Theorem, it is a harmonic function. Lemma 8.3.18 implies jh&! (1) coincides with
h(T|p, V) on ergodic measures, and, since both functions are harptheiccoincide
everywhere.
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9 Exercisesin Chapter 9

Exercise 9.1.

Example 9.3.6 is the one. Heré€= h, hencehy,(T') = h(T) thush,(T) = 0.
On the other hand, the measyrg = >_, 2*’“u(3k+1) (playing the role of the point
b in Example 8.2.17) has obviously entropy zero, while Bt this measure i$. So,
hres(NO) =1> hres(T)-

Exercise 9.2.

This is well known. There is only one invariant measure, tbenralized Lebesgue
measure. Any partitiof? of the circle in two arcdy, I (no matter how we attach the
endpoints) has the small boundary property and generateth@zdynamics). So, this
one partition suffices to build the zero-dimensional ppatextension, which becomes
a subshift (the closure of tHB-names). With small boundary property, the standard
zero-dimensional extension is not only principal but exsamiorphic.

Exercise 9.3.

Although the system looks even more trivial than the prawgdine, this exercise is a
bit more intricate. Since this system has no small boundianpegrty, we must first lift it
to a product with something minimal of entropy zero. etlenote the product 60, 1]
with the unit circle (also viewed g8, 1], but with endpoints glued together). On this
space we apply the product dynamics of the identity timesesidrad irrational rotation
(by somes): T'(t,z) = (t,z + s). This system is a principal extension(@, 1], id, S)
(for both cases 0f). Take the partitiorP into two sets separated by a skew line
crossing all vertical sections (for instangg) = i + %) and the horizontal ling = 0.
Label the bottom set by and the top set by. The ergodic measures dhared; x A,
and it is obvious that the boundary ®f(the dividing lines) has measure zero for all
such measures. S, has small boundary. Moreover, this partition generates tfwe
dynamics) inX. So, this one partition suffices to build the zero-dimenaiqmincipal
extension, which becomes a subshiftthe closure of thé-names). This extension
is isomorphic to the product system (for every invariant saea), but obviously not to
the base systerfjo, 1], 1d, S).

As a matter of fact, this principal symbolic extension is sj@t union of Sturmian
subshifts (over the same rotation, but different arc pans), and the factor map
T :Y — [0,1] associates to every sucht that 1 + £ is the density of zeros ip.

We skip proving this.

Exercise 9.4.

We must copy the construction of Example 9.3.5 except thexetimust be two er-
godic measures supported by the first row and witrowing to infinity, the measures
supported by théth row must approach the average of the two measures in the firs
row. So, we take two bilateral uniquely ergodic subshitsand X (say, over disjoint
alphabets), each of entropy 1, and we denote their measyrgg bnd .1, respec-
tively. We choose block®, appearing inX, with lengths increasing witk, so that
t(B,) — Ho and we choos€’, analogously inX; (the length o’ should be the same

as that ofB;). Now we letX consist of all symbolic arrays obeying the following rules:
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1. The first rowz; of z either belongs taX, or to X; or it has the form

2. If the first row isz ), then thekth row of z is an element of.
3. All other rows are filled with zeros.

Now there are two ergodic measures of entrogplus some periodic measures) sup-
ported by the first row and for eaghthere are finitely many measurgs ; supported
by matrices with nontriviakth row. All these measures are isomorphigigpjoined
with a periodic orbit, so all of them have entropy These measures accumulate at
the measurt%(uo + p1), because for largé short blocks in thelst row occur half

of the time with the frequency as i, and half of the time with the frequency as in
Cy, while other rows are filled with zeros, except one very distaw, which we can
ignore for the weak-star distance. The structure of Exar8@el8 is now copied.

Exercise 9.5.

Of course, we could build a system whose simplex of invanaeasures is a Bauer
simplex spanned by the unit interval and the entropy straectastricted to ergodic
measures copies the sequefieg) in Exercise 8.1 (the pick-up stick game on a dense
sequence). Instead, we will describe the example proposétike Boyle in the early
90’s, before entropy structures were introduced, and ttle ¢& symbolic extensions
was proved using topological methods. This example triggiéne development of the
theory of symbolic extensions. Below it is adapted to thglege of symbolic arrays.

Let X consist of 0-1 symbolic arrays obeying the following rules:

1. Thelstrowz; of x is arbitrary. Ifz; is not periodic then all other rows are filled
with zeros.

2. If z4 is periodic with minimal period:; then we allowz;, to be arbitrary. If
Z1+k, IS NOt periodic then all other rows are filled with zeros.

3. If 14, is periodic with minimal period: then we allowz;, +«, to be arbi-
trary. If z1.4, +x, iS NOt periodic then all other rows are filled with zeros.

4. and soon...

Every ergodic measure is supported by arrays with only oeei@gic row, hence its
entropy is at moslog 2 and so is the topological entropy of the system.

Suppos€Y” is a symbolic extension via a factor map: Y — X. Then, for eachk
the compositionr;, of = with the projection onto the subshift;, visible in thekth
row, as a factor map between two subshifts, is a sliding blom#e of some finite
horizonr;. Choose integers; andp;+1 = p;q; (¢; € N), and definek, = 1 and
ki =14 p1 +--- + p;. By letting the numberg;, grow fast enough we can easily
arrange thaty, /p;+1 < 1/3.

Let us focus only the rectangular blocks of lengthp;, extending ovef:; rows and
having, for eacti < j, in row k;, periodic repetitions of some blodR; of lengthp; .,
(and zeros in all other rows). Note that all such rectanglesadmitted in our system
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X. Every R; has the following structure: in rowisthroughk;_, it hasg; repetitions

of one and the same rectangls_, (of lengthp;) and in rowk; it has a completely
arbitrary blockB;. We will write R; = [R}’,, B;]. For each rectangl&; we let
C(R;) be the family of blocks of length;, appearing int” “above” R; (i.e., in the
preimage byr of the cylinder associated t8;, at the same horizontal coordinates as
R;). We letL; denote the minimal cardinality @f(R;). Also, we let

C(RY ) = JC(RY 4, B)))
B;

(the family of blocks admitted “abovd%jj_ 1)- Notice that if two rectangle®; differ

in the “central parts” (denote#}) of B;, of lengthp; 1 — 2y, > p;11/3, then their
familiesC(R;) are disjoint (because the blocky are completely determined via the
block code by the considered blocks¥). Since there are at leagti+1/2 different
bIocksB§, we obtain that, for any,; _,

Pjt1

#C(RY ) =275 Lj.

On the other hand, giveR;_1, each block in the familﬂ(Rj’;l) must be concatenated
exclusively from blocks belonging to one famifi{R;_1). So,

#C(R}L,) < (#C(R;j-1))",

which, combined with the preceding inequality (and the &tua; 1 /g; = p;) yields

1

#C(Rj_1) = 23 L.

Because this holds for anfy;_;, we have obtained the inductive dependence

o
%o
Lj—1223Lj~

Let us iterate this inequality two times:

1 Pj—1
Pj—1 -

L™ =275 L+

1
Pi=1 g7 Pj
Lj—2 > 273 Ljil > 2

Pj—1

—1
3 273

Iteratingj times we get

P

Lo > 273 L+ > 27%

(recall that the index refers to the family of one-row rectanglég in row ky = 1

of lengthp,, and hencd, is at most the cardinality of all blocks of length in Y).
Because the above holds for everywe have proved that the cardinality of all blocks
of lengthp, in Y is unbounded. A contradiction.

Remark. In this example the simplex of ergodic measures and thegnstructure
do not resemble those of Exercise 8.1. The picture is moeeti& one in Exercise 8.3,
but with infinite order of accumulation (however, one hasteta quotient space to see
such a structure). The measures of positive entropy aresiggiby arrays with finitely

31



many (sayj —1) periodic rows and one nonperiodic row. These measures @fitable
identification) correspond the points with topological erdf accumulatiory. When
the index of the last aperiodic row grows, the correspondmegisures accumulate at
measures with one row less (this resembles the situatioxémigle 9.3.5). But we
also have “backward” accumulation points (when the ordemaafumulation grows).
This corresponds to letting the the number of nonzero rows.gFrhese accumulation
points are measures supported by some odometers.
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Part 3

11 Exercisesin Chapter 11

Exercise 11.1.

Recall thatH,(¥|9) is defined in (11.2.1) a&l,(F U 9) — H,(G). Thus (11.2.2) is
implied by H,,(F U §) > H,(F) (in presence of the trivial family, these two are
in fact equivalent). From now on, this exercise appends dtserl.3 by reversing one
of its implications (recall, we assumédd(a vV b) > H(a) andH (a|b) > H(alb V c),
i.e., (11.2.2) and (11.2.3) and we were to detd¥é&: V b|c) < H(a|b) + H(b|c) i.e.,
(11.2.10)).

We proceed as follows:

Hy(FISUH) = H(FUSUH) — H,(GUH) =
Hy(FUSGUH) — Hy(SUH) — Hu(S) + Hu(S) = Hy(FUH|G) — Hu(H|G) <
Hy(319) + Hu(H[S) — Hu(H|G) = Hu(31S).

Exercise 11.2.
We have
I+n—1 .
T'(F") =(T'H" = || T'F
=1
thus

Srl+n _ ffFl L (Tlgg)n
Using (11.2.2) witH{ = O, and (11.2.11), we obtain
H,((T')") < H, (") < H,(F') + H,(T'F)").

We now divide both sides by+ n and takelim sup asn tends to infinity. The mid-
dle expression becomés, (T, F) while both the left and right hand sides become

h, (T, T'F).
Exercise 11.3.

Notice that(F™)™, where the exponent refers to the action dI"™ equalsF™™ (in
the notation referring td@"). Any naturalk equalsnm — i, where0 < ¢ < n — 1 and
then, as in the preceding exercise,

Fm = F L (T'F)*

and
H,(T'F)F) < Hy(F"™) < Hu(F) + Hu((T')")).

Now we divide both sides by and applylim sup ask tends to infinity. The extreme
terms becomé,, (T, T"F), which, by the preceding exercise, equalgT, F). For
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the middle term we note that in the linlif & can be replaced by/nm (wherem tends
to infinity) and we obtain-h,, (T, ™). This proves the first equality in Fact 11.2.6.

The second equality follows in a standard way from two fattie: supremum over all
F applied toh,(T",F") gives not more than,(T") because it takes into account
only families of the formrg™. On the other hand it gives not less, becaise 3 and
thush, (T",F) < h,(T", 7).

Exercise 11.4.

This and the next exercises are general facts concerninglydstochastic operators
and have nothing to do with entropy.

Suppos€l’ be a doubly stochastic operator operator. As we know (se&.¢l),
T(fVg) >TfVTy.

If T is invertible, T~! is easily seen to be a doubly stochastic operator as well, so,
applyingT ~! to both sides, and applying the above inequalityFor', we obtain

fVg>T N TfVTg)>T 'TfVT 'Tg=fVyg.
Thus, the first above inequality is an equality, and, aplyoit T', we get
T(fvg) =TfVvTg.

By a symmetric argument’ preserves the operation In this manner this exercise
has been reduced to a particular case of the next one.

Exercise 11.5.

It is obvious that pointwise generated operators presextticd operations. Notice
that characteristic functions (i.e., assuming only theesd and1) are precisely these
functionsf for which

f=2fN1.

Thus a doubly stochastic operator which preserves thedatperations (and it always
preserves constants), sends characteristic functionsai@cteristic functions. It re-
mains to show that then it is pointwise generated. Recalt,Khs a doubly stochastic
operator on.! (1), where(X, 2, ;1) is a standard probability space.

If T' sends characteristic functions to characteristic funstidhen it induces a map,
sayT, from &l into itself. SinceT preserves integrals with respectutoT preserves the
measureg:. By linearity and preservation of the constdinfl' preserves set operations,
and by the Lebesgue Dominated Theorem, also countable sifignto measurg,).
So, T is a homomorphism froml to some sub-sigma-algeb® = T(A) C 2. It

is well known that in standard spaces any such homomorplisasgociated with a
measure-preserving map: X — X by the formulal(A) = T~1(A). (Rougly, this
map is defined (almost everywhere) as follows: a single paiftis almost surely sent
by T to an atom ofB. This atom creates the preimage!(z).)
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Perhaps we have a good opportunity to clarify an issue caimgedoubly stochastic

operators in general. Something that wasn't clearly saithénbook. We have men-

tioned that a transition probability always determinesalsastic operator, and that not
all stochastic operators are such. What we have not saidsis th

Fact: every doubly stochastic operator is in fact determined giasition probability.

Proof. First, each doubly stochastic operafBrdetermines a shift-invariant measure
w1 on the countable product spa&e" (interpreted as the space of trajectories), by the
following formula (it suffices to define the measure on cyirsldg x Ay x --- x A,,):

(Ao X Ay x -+ x Ap) = / T, T T(a, ,T(Ta T4 ))---)dp.

In order to produce the transition probabilB(z, -) it now suffices to take the disinte-
gration measurg,, of p with respect to the sigma-algebra on the coordifaer and
apply it to the sets depending on the coordinat®Ve skip the tedious but straightfor-
ward verification thajs is indeed a shift-invariant probability measure on the pobd
sigma-algebra, and that the stochastic operator assdaiatie so defined transition
probability preserveg and coincides od.* () with T O

The above fact opens yet another way to prove that doublyastic operators sending
characteristic functions to characteristic functionsgomtwise generated. We need to
show that the transition probabilitie8(z, -) are almost surely point-masség and
then the associated map will be— y.

By assumption, for every measurable detthe function(T'14)(z) = [ TaP(x,dy)
takes on almost surely only the valugsind1. At almost every point this is true for

a countable family of setsl that generates the sigma-algebra. This already implies
that P(x, -) is concentrated at one point (otherwise at least one settflergenerating
family would have an intermediate measure value).

Exercise 11.6.
We have
Omis(N)(@) =1 = m((f(x) =) A (s — f(2))) > 1
— f(z) € [t—&-%,s—%]

(
Om,t,s(f)(2) =0 = (f(z) =) A (s = f(2)) <O < [(z) & (L, 9).

Thusly, o cpey 1y < O s(f) < Ugyop<sy (We have already proved (11.2.26))
and the extreme functions disagree only wifea (¢,t + =) U (s — -, s). Thus the
L'(p) distance betweed,,, ; ;(f) andlly, ;. does not exceed the measyref the
set of points for whicly falls into this intervals. Including the internal endpait¢ads
to a not smaller value, hence the inequality (11.2.27) holds
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Exercise 11.7.

It is easy to see thal™(f)(z) = o f(o"z) + 2571 [ fdu for every f € L(p).
Thus T"(f) converges to the constaiftf du, implying that the entropy:, (T') is
zero. On the other hand, ifo(z) = zo thenT"(fo)(z) = o f(z,) + 5t
and(T"(fy))~*(3¢) equals theuth coordinate partition. Thus, the partition generated
jointly by (T"(fo))~'(3) fori = 0,2...,n — 1 equals the partition into the blocks of

lengthn, which has static entropylog 2.

12 Exercisesin Chapter 12

Exercise 12.1.

(i) is clear using Definition 12.1.2, since a family of continuous functions on the
factor lifts to a familyF’ of continuous functions oX, and for each cove¥ the
preimageF (V) lifts to 5" (V). Recall that the cardinality of a minimal subcover is
preserved under preimage of a continuous surjection.

(ii) is now obvious, as conjugate systems are factors of-eduoér.

(iii) is best seen using Definition 12.1.3. Each fam#fyof continuous functions on
Y prolongs to a family#’ on X and then everyds, ¢)-separated set ilr remains
(dg-e)-separated inX. Also note that, by invariance df, for eachn we can use
T"(F') as a prolongation dI'" ().

(iv) The proof is analogous to that in Exercise 11.3 (withsubadditivity we must
cope withlim sup, hence the simple way as in Fact 6.2.3 cannot be applied).nlye o
outline the steps. Let us use Definition 12.1.1 for a change.b@gin by proving an
analog of Exercise 11.2h, (T, T'(%),¢) = h,(T,F,¢). This is done the same way
as that exercise with replaced by the ordinary union of families af},(F) replaced
by H; (¥, ). Monotonicity (the analogue of (11.2.2)) and subadditiythe analog of
(11.2.11)) are now obvious properties of joining the col&}s

Next we follow Exercise 11.3. with the same substitutions.

Exercise 12.2.

We haveT" f = 2%( oo (1) f o a"”), which is the convex combination of the

functions f o o7 with coefficients as in the binomial (1/2,1/2)-distribution [, 2n].
The differencel™ f — T™*! f is thus a combination of the same functions with coeffi-
cients as in the difference of binomial distributionsjen2n] and on[n + 1,2n + 2].
Skipping the precise calculations, we agree that thisdiffee is a signed distribution

n n+ 2n  2n+2

on|[n, 2n+2] whose absolute value has small total massjs$flarge (see the figure: the
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red “tops” represent the positive atoms of the differenatridliution, the blue “tops”
are negative). Thus, singeis bounded, the differencég™ f — T" ™! f converge to
zero uniformly asr» — oo. To complete this exercise, we will prove a more general
fact.

Fact: If F consist of functiong’ such that the differencég™ f — T"*! f converge to
zero uniformly as: — oo, thenhy (7', F, V) = 0 for any coverV of the interval.

Proof. Fix somed > 0. For eachV’ € V defineVs; = {t : d(¢,V°) < §} C V and

let Vs = {V5 : V € V}. Notice that ifé < Leb(V)/2 thenV; still covers the entire
interval and it is inscribed iV. Thus, for everyf : X — [0,1], f=1(Vs) = f=1(V).

Moreover, if|g — f|| < 6 theng=(Vs) = f~1(V). So, if the assumption off is

satisfied, then for eadh, we have

k—1

(T™(F) ' (Vs) = \/ (T ) H(V),

=0

if n is larger than somey. Now, in the expressioh/ggl(Ti(?))*l(\7) defining
(F™)~1(V), we can gruop the terms as follows (assuming= nj + rk + s, where
s < k):

() ) =
ngp—1 r—1 /k—1 —
\ @@ty (\/(T“k*ﬂk*@ ) V @) ) <
i=0 j=0 \i=0 i=0
n§/( \T/ Tnk-i—ﬂf (V(;)
i=0 7=0

The number of covers involved aboveig—+r. Since each of them has at mgsfF#V
elements, the static entropyg N((S’m)*l(\?)) is at most

(nk + 7)(log #(F) + log(#V)).

Dividing by m, letting m grow to infinity and remembering that < m/k while ny
does not grow withn, we obtain

hy(T,5,V) < 5 (log #(3F) + log(#V)).
Sincek in this argument is arbitrary, we conclude that this entrismero. O

Now, in our exercise, the above holds for ev8rizence the topological entrop (T')

is zero. The last question is answered using “half” of theéatamal principle (The-
orem 12.3.1): for every invariant measure®f the measure-theoretic entropy of the
corresponding doubly stochastic operator is zero, as well.
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Exercise 12.3.

Forp € [0,1] let p, denote the probability measure ¢, 1} assigning to {0} and
1-pto{1}. Fory = (y,) € [0, 1]N letu® = p,, xp,, x... . Itis easy to see that the
mapy — ) is a homeomorphism betweéh 1] and its image, which is a subset
of M({0,1}%). It is also immediately seen how the operaldr dual to the operator
T induced onC'({0, 1}"°) by the shift map acts on this imag@&* () = (7). We
have shown, that the “hipersystert?({0, 1}o), T™) of the full unilateral shift on
two symbols contains a subsystem conjugate to the full siiffy, 1]No. Since the
latter obviously has infinite topological entropy, so ddeshypersystem, although the
full shift on two symbols has finite entropy.

Exercise 12.4.

The proof should roughly follow the standard way, howevegré might be some tech-
nical issues. | decided to leave this exercise open.
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