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A few words about the Exercises

This file contains solutions of almost all exercises included in the book. There are three
exceptions: 3.10, 8.6 and 12.5. The first one instructs to write a computer program. I
think, even if I presented such a program, nobody would really read the code or want
to see it work. The only way to enjoy is this exercise is to actually do it. Exercise
8.6 is completely trivial. As to the last skipped exercise, although I am sure what I
claim there is true, I have never done it before. I see a numberof obstacles where the
standard approach could break and some ingenuity might be needed. I decided to leave
this challenge open; it might turn out worth a separate article. I should have formulated
this as a question rather than an exercise.

I confess, there are several exercises that I never botheredto actually do before I put
them in the book. I just had a rough idea how to proceed. When working on this file,
it happened more than once that I encountered unexpected difficulties. Some solutions
turned into pieces of work comparable to writing a small article (7.3, 8.9, 8.14, 9.5,
12.2). In some cases I needed to slightly alter the formulation of the exercise or add
an assumption. In such cases the alternation is clearly indicated at the beginning of
the solution (search for “Attention!”). In exercise 6.3 I extrapolated a property typical
for smooth interval map to all systems, which is an evident symptom of tiredness. I
apologize for all these errors. Some of them result from the fact that many exercises
have been added after completing and proofreading the main body of the book.

Moreover, this work lead me to discovering a few more imprecisions in the book. All
resulting corrections are included in the file “Errata”.

I encourage the readers of the book (and of the solutions, if anyone bothers) to send me
information of any discovered further errors, or any comments, via e-mail. They will
be welcome. The book cannot be corrected, but the errata can always be updated.

Tomasz Downarowicz
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Part 1

1 Exercises in Chapter 1

Exercise 1.1.

We have
x = y

x+y · 0 + x
x+y · (x+ y),

hence, by concavity,

f(x) ≥ y
x+y · f(0) + x

x+y · f(x+ y).

Analogously,
f(y) ≥ x

x+y · f(0) + y
x+y · f(x+ y).

Summing both sides, we getf(x) + f(y) ≥ f(0) + f(x+ y) ≥ f(x+ y).

Exercise 1.2.

Convergence inℓ1 obviously implies coordinatewise convergence for any vectors in
ℓ1. The converse holds only with a constraint, for example for probability vectors. Let
p = (p1, p2, . . . ) be a probability vector and leti0 be so large, that

P
i>i0

pi < ε/4.
Let p′ = (p′1, p

′
2, . . . ) be another probability vector such that|pi − p′i| < ε/4i0 for all

i ≤ i0. ThenX
i>i0

p′i = 1 −
X
i≤i0

p′i = 1 −
X
i≤i0

pi +
X
i≤i0

(pi − p′i) ≤
X
i>i0

pi +
X
i≤i0

|pi − p′i| < ε
2

and thus X
i≥1

|pi − p′i| =
X
i≤i0

|pi − p′i| +
X
i>i0

pi +
X
i>i0

p′i < ε.

Exercise 1.3.

H(a ∨ b|c) =

H(a ∨ b ∨ c) −H(c) = H(a ∨ b ∨ c) −H(b ∨ c) +H(b ∨ c) −H(c) =

H(a|b ∨ c) +H(b|c),
and

H(a ∨ b|c) = H(a ∨ b ∨ c) −H(c) ≥ H(a ∨ c) −H(c) = H(a|c).
With the further assumptions,

H(a ∨ b|c) = H(a|b ∨ c) +H(b|c) ≤ H(a|c) +H(b|c);
H(a ∨ b) = H(a ∨ b ∨ e) = H(a ∨ b|e) +H(e) ≤ H(a|e) +H(b|e) +H(e)

= H(a) +H(b) −H(e) ≤ H(a) +H(b);

H(a ∨ a′|b ∨ b′) ≤ H(a|b ∨ b′) +H(a′|b ∨ b′) ≤ H(a|b) +H(a′|b′);
H(a|c) ≤ H(a ∨ b|c) ≤ H(a|b ∨ c) +H(b|c) ≤ H(a|b) +H(b|c). (*)
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SupposeH(a|c) ≥ H(b|c). Then |H(a|c) − H(b|c)| = H(a|c) − H(b|c) and (*)
implies |H(a|c) − H(b|c)| ≤ H(a|b) ≤ max{H(a|b),H(b|a)}. The other case is
symmetric.
Similarly, supposeH(a|c) ≥ H(a|b). Then|H(a|b) − H(a|c)| = H(a|c) − H(a|b)
and (*) implies|H(a|b)−H(a|c)| ≤ H(b|c) ≤ max{H(b|c),H(c|b)}. The other case
is symmetric.
Finally, |H(a)−H(b)| = |H(a|e)+H(e)−H(b|e)−H(e)| = |H(a|e)−H(b|e)| ≤
max{H(a|b),H(b|a)}.

Exercise 1.4.

This is a very crude estimate. Supposep1 is the minimal term inp, let q = 1− p1, and
define two new probability vectorsr = (p1, q) andq = (p2q ,

p3
q , . . . ,

pl

q ). Then

H(p) = −
lX
i=1

pi log pi = −p1 log p1 − q
lX
i=2

pi

q (log pi

q + log q) =

− p1 log p1 − q log q + qH(q) = H(r) + qH(q) ≤ 1 + (1 − p1) log l.

Exercise 1.5.

Pickm1 so large thatp′1 is close enough to 1 to satisfyη(p1) < ε/2 andη(1 − p1) <
ε/4. No matter how we pickm2 we will havep2 ≤ 1 − p1 and sinceη increases near
zero, we will haveη(p2) < ε/4. We pickm2 large enough to makep1 + p2 so close to
1 thatη(1 − p1 − p2) < ε/8. No matter how we pickm3, we will haveη(p3) < ε/8.
And so on. Eventually, we get

H(p′) =
X
i≥1

η(p′i) <
X
i≥1

ε/2i = ε.

Exercise 1.6.

Take the partitionsP,Q andR as in the proof of Fact 1.9.1 (they produce the vector
(1, 1, 1, 2, 2, 2, 2)). ThenI(P ∨ Q;R) = H(P ∨ Q) + H(R) − H(P ∨ Q ∨ R) =
2 + 1 − 2 = 1, while bothI(P;R) andI(Q;R) are zeros, because the partitions are
pairwise independent (see Fact 1.8.2).

Exercise 1.7.

If a = 0 or b = 0 or c = a + b, the problem is trivial. Otherwise, letp ∈ (0, 1) be
such thatH(p, 1 − p) < min{a, b, a + b − c}. Divide the space in two partsA and
B of measuresp and1 − p, respectively. Then letR be a partition ofA with (relative)
entropy 1

p (a + b − c − H(p, 1 − p)). Let P′ andQ′ be two independent partitions of

B with (relative) entropies 1
1−p (c − b) and 1

1−p (c − a), respectively. The partitionP
be defined asR onA andP′ onB, and analogously,Q is defined asR onA andQ′

on B. Letting R0 = {A,B} we evaluate each entropy conditioning it onR0, e.g.,
H(P) = H(P ∨ R0) = H(P|R0) +H(R0). And so, using (1.4.4),

H(P) = pHA(R) + (1 − p)HB(P′) +H(p, 1 − p) = a,

H(P) = pHA(R) + (1 − p)HB(Q′) +H(p, 1 − p) = b,

H(P ∨ Q) = pHA(R) + (1 − p)(HB(P′) +HB(Q′)) +H(p, 1 − p) = c,
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where, in the last case, we have used relative independence of Q′ andP′ on B and
Fact 1.6.16.

2 Exercises in Chapter 2

Exercise 2.1.

It is clear thatπ is onto (both for the unilateral and bilateral shift space) and each(xn)
has the same image underπ as(x′n), wherex′n = xn + 1 (addition is modulo 2). So
the mappingπ is exactly 2 to 1. The preimage byπ of a blockB = (b0, . . . , bn−1)
equalsC ∪ C ′, where

C = (0, b0, b0 + b1, b0 + b1 + b2, . . . , b0 + b1 + · · · + bn−1) and

C ′ = (1, 1 + b0, 1 + b0 + b1, 1 + b0 + b1 + b2, . . . , 1 + b0 + b1 + · · · + bn−1).

Each of these blocks (as cylinder) has measure2−n−1 and since they are disjoint, their
union has measure2−n, the same asB. We have proved thatπ sends the Bernoulli
measure to itself. In other words, the factor process is the same Bernoulli shift and so
the identity map (notπ) provides an isomorphism between the process and its factor.

Exercise 2.2.

Note that forn ∈ N, the past of the power process(X,Pn, µ, Tn,S) equals the past
P− of the original process. By the power rule we have

H(Pn|P−) = h(µ, Tn,Pn) = nh(µ, T,P) (= nh(P)).

Exercise 2.3.

In the Bernoulli shift on two symbols with equal measures1/2, 1/2 let R denote the
zero-coordinate partition. ConsiderP = R{1,3} andQ = R{0,2}. These partitions are
independent, soH(P|Q) = H(P) = 2. Next,P2 = R{1,2,3,4} andQ2 = R{0,1,2,3} and
only one coordinate in the definition ofP does not occur inQ, soH(P2|Q2) = 1. It is
seen thatH(Pn|Qn) = 1 for all n ≥ 2. The sequence2, 1, 1, 1, . . . is not increasing,
the increments are(−1, 0, 0, 0, . . . ) and do not decrease.
To have increments increasing for a longer time take e.g.P = R{1,3,4,7,8,9} and
Q = R{0,2,5,6,10}. Then the sequence(H(Pn|Qn))n equals(6, 3, 1, 0, 0, 0, . . . ) and
the increments are(−3,−2,−1, 0, 0, 0, . . . ).

Exercise 2.4.

Although the sequencean = H(Pn|Qn ∨ B) need not have decreasing increments, it
has decreasingnths and any sequence(an) with convergentnths satisfies

lim
1

n
an = lim

1

n

nX
i=1

(ai − ai−1) ≤ lim sup(an+1 − an).
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In our case we have

an+1 − an = H(Pn+1|Qn+1 ∨ B) −H(Pn|Qn ∨ B) =

H(Pn+1|Qn+1 ∨ B) −H(T−1(Pn)|T−1(Qn) ∨ T−1(B)).

We haveT−1(Qn) 4 Qn+1 and, by subinvariance,T−1(B) 4 B, hence the right hand
side does not exceed

H(Pn+1|Qn+1 ∨ B) −H(T−1(Pn)|Qn+1 ∨ B) = H(P|P[1,n] ∨ Qn+1 ∨ B).

The expressions on the right decrease toH(P|P+ ∨ QN0 ∨B), so we have proved that

h(P|Q,B) = lim 1
nH(Pn|Qn ∨ B) ≤ H(P|P+ ∨ QN0 ∨ B).

Exercise 2.5.

Let (X,P, µ, T,S) be any process with positive entropyh. TakeQ to be the trivial
partition and setB = P+. Thenh(P|Q,B) = lim 1

nH(Pn|P+) = lim 1
nH(P|P+) =

lim 1
nh = 0, whileH(P|P+ ∨ QN0 ∨ B) = H(P|P+ ∨ P+) = H(P|P+) = h > 0.

Exercise 2.6.

Sinceh(Q) ≤ h(Q ∨ P) = h(Q|P) + h(P), it suffices to show thath(Q|P) = 0. By
(2.3.11) (for trivialB), and sinceQ 4 PZ, we do haveh(Q|P) = H(Q|Q+ ∨ PZ) = 0.

Exercise 2.7 ([Downarowicz–Serafin, 2002, Example 1]).

Let X ⊂ {0, 1, 2}S consist of sequences in which0 appears every other position
(and not in between, e.g0101020102 . . . or 1010201020 . . . ). Let P denote the zero-
coordinate partition and letµ be the (shift-invariant) measure determined by saying that
cylinders of even length2n have equal masses2−n−1. The partitionQ = {0, 1 ∪ 2}
is shift-invariant, so it determines a two-point factor(Y,Q, ν, S,S) of (X,P, µ, T,S).
For ergodicity of(X,P, µ, T,S) notice thatT 2 is ergodic (in fact Bernoulli) on both0
and1 ∪ 2 so everyT -invariant function (beingT 2-invariant) is constant on either set.
Now T exchanges these sets, so the two constants must match. Obviously h(µ|ν) =
h(µ) = 1/2. On the other hand, the fiber entropy is not constant onY : we have
h(P|0) = limH(µ0,P|P[1,n]) = 0 (becauseP is trivial on the fiber of0). Now, since
h(µ|ν) = 1

2 (h(P|0) + h(P|1 ∪ 2)) it must be thath(P|1 ∪ 2) = 1.

Exercise 2.8.

By the Ergodic Theorem, the probability vectorspn,Bm(x) assinging values to the ele-
ments ofPn converge almost surely to the vectorp(µ,Pn). For finite partitionP the as-
sertion now follows from the definitionsHn(Bm(x)) = 1

nH(pn,Bm(x)), H(µ,Pn) =
H(p(µ,Pn)) combined with continuity of static entropy on finite-dimensional proba-
bility vectors.
There is slight difficulty with countable partitions. By lower semicontinuity of the static
entropy (Fact 1.1.8) we only havelimmHn(Bm(x)) ≥ 1

nH(µ,Pn). Note however,
thatpn,Bm(x) is the same as the vector of masses assigned to the cells ofPn by the

6



average measure Mm−nδx. Integrating these probability vectors with respect to the
invariant measureµ we getZ

pn,Bm(x) dµ(x) = p(µ,Pn).

Now we invoke the supharmonic property ofH (Fact 1.1.10):

H(p(µ,Pn)) ≥
Z
H(pn,Bm(x)) dµ(x),

i.e., after dividing byn, 1
nH(µ,Pn) ≥

R
Hn(Bm(x)) dµ(x), for everym, and, by

Fatou’s Lemma,
1

n
H(µ,Pn) ≥

Z
lim
m
Hn(Bm(x)) dµ(x).

This, together with theµ-almost sure converse inequality implies equalityµ-almost
everywhere.

3 Exercises in Chapter 3

Exercise 3.1.

Givenε > 0, we have, for largen: 1
nH(Pn) ≤ h(P) + ε, i.e.,

H(Pn) ≤ nh(P) + nε = h(µ, Tn,Pn) + nε,

which is exactly the desirednε-entropy independence. It is not trivial wheneverε <
h(µ, T,P) (thennε < h(µ, Tn,Pn)). Sincen is selected after fixingε, the “error
term” nε need not be small, so this does not translate to genuineδ-independence.

Exercise 3.2.

In an independent process(X,P, µ, T,S) let Q = T−1(P). ThenH(Pn) = nH(P)
andH(Pn|Qn) = H(P), so 1

n (H(Pn)−H(Pn|Qn)) = (1− 1
n )H(P) which increases

to its limit H(P).
Note thatH(Pn)−H(Pn|Qn) = I(Pn;Qn). Exercise 1.6 shows lack of subadditivity:
I(P1 ∨ P2;Q1 ∨ Q2) may exceedI(P1;Q1)+I(P2;Q2) (Exercise 1.6 shows failure
for Q1 = Q2). So, we cannot expect the sequence examined in this exercise to be
subadditive. Now we have shown it need not even have descendingnths.

Exercise 3.3.

This follows directly from the Kolmogorov 0-1 law.

Exercise 3.4.

We have familiesΛk consisting ofrk blocks of lenthsnk. We have recursive relations
nk+1 = rknk andrk+1 = rk!. The key observation is that there is in fact a unique
shift-invariant measureµ on our systemX. It is so, because each blockB ∈ Λk
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appears exactly once in every block fromΛk+1. Since everyx ∈ X is an infinite
concatenation of the blocks fromΛk+1, the ergodic theorem impliesµ(B) = 1

nk+1
for

any ergodic measure. This determines the measure to be unique.
In order to compute the entropy, we will anticipate a bit and use the variational prin-
ciple, which allows, in uniquely ergodic systems, to replace h(µ) by the easier topo-
logical entropy. Thus, we need to prove that the sequence1

nk
log #Bnk

has a positive
limit, whereBnk

is the family of all blocks of lengthnk appearing inX. Clearly,
#Bnk

≥ #Λk = rk, so it suffices to examine the sequence1
nk

log rk. It starts with

A = 1
2 log #Λ, which we may assume much larger than 1. Then, by Stirling’s formula,

1

nk+1
log rk+1 ≈ rk log rk − rk

rknk
=

1

nk
log rk −

1

nk
.

So, we have (roughly)lim 1
nk

log rk ≈ A−
P∞
k=1

1
nk

. The sequence1/nk starts with
1/2 and decreases much faster than exponentially, so its sum is smaller than 1. This
shows that 1

nk
log rk has indeed a positive limit.

Exercise 3.5.

In any process(X,P, µ, T,S) with positive entropy takeBk = P[k,∞). ThenB =T
k Bk is the Pinsker sigma-algebra andh(P|B) = h(P) > 0. On the other hand, for

eachk, h(P|Bk) = limn
1
nH(Pn|P[k,∞)) ≤ limn

1
nH(Pk) = 0.

Exercise 3.6.

Let (ΛS, µ, σ,S) be a Bernoulli shift, i.e.,µ = pS, wherep is a probability distri-
bution onΛ. On the probability space(X,µ) consider the sequence of random vari-
ablesXn(x) = − log µ(Aσnx), whereAσnx is the cell ofPΛ containingσnx. They
are independent and identically distributed with expectedvalueH(p) (which equals
h(µ)). The Law of Large Numbers asserts that the averages1

n

Pn−1
i=0 Xi converge al-

most everywhere to this expected value. It suffices to note that
Pn−1
i=0 Xi(x) equals

− log µ(Anx), i.e., the information functionIPn
Λ
(x).

Exercise 3.7.

Notice that the mapx 7→ TRn(x)(x) preserves the measure (it sends each cylinder of
lengthn to itself and on every such cylinder it is just the induced map, which pre-
serves the conditional measure). Let us abbreviate this mapby S. Thus, for each
i ≥ 1 the variablesx 7→ Rn(Six) have the same distributions as Rn, in particular the
Ornstein–Weiss’s assertion is fulfilled:limn

1
n log Rn(Six) → h(P) µ-almost every-

where. Givenk, the variables

mn(x) = max{ 1
n log Rn(S

ix) : 1 ≤ i ≤ k} = 1
n log max{Rn(S

ix) : 1 ≤ i ≤ k}

also converge toh(P) µ-a.e. Now

R(k)
n (x) = Rn(x) + Rn(Sx) + Rn(S

2x) + · · · + Rn(S
k−1x)

lies betweenmax{Rn(Six) : 1 ≤ i ≤ k} andkmax{Rn(Six) : 1 ≤ i ≤ k}. Thus
1
n log R(k)

n (x) lies between mn(x) and 1
n log k + mn(x), which implies the desired

convergence.
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Exercise 3.8.

Attention! In the formulation the word “eventually” is missing: . . . thecardinality of
blocks of lengthn eventuallyexceeds2n(log l−ε).

The numberspk = 1
(l−1)lk−2 decrease to zero ask → ∞, so the following convex

combinations ofl − 1 andl

lk = pk(l − 1) + (1 − pk)l

increase tol. Let k be so large thatlog lk > log l − ε.
Let 0 and1 denote two selected symbols fromΛ. LetW = 10000 . . . 0 (with k − 1
zeros). Note that any two occurrences ofW in an element ofΛN0 are over disjoint
intervals of coordinates. LetCn be the family of all blocks of lengthn overΛ, ending
with W and in whichW does not occur otherwise. It is obvious that

S
n Cn is a prefix-

free family. We need to estimatecn = #Cn. A block C ∈ Cn is essentially a block
C ′ of lengthn− k in whichW does not occur, withW appended on the right. So,cn
equals the cardinality of the familyC′

n of such blocksC ′ (of lengthn− k).
Let n > 2k − 1. Some of the blocks inC′

n end (on the right) withW ′ = 1000 . . . 0
(with k − 2 zeros). We can change this ending, and as long as we do not replace the
1 by 0, we are sure that the new block still belongs toC′

n. Thus, there are at least
(l − 1)lk−2 − 1 such changed blocks made from one block ending withW ′. This
implies that the ratio between cardinalities of blocks ending withW ′ and not ending
withW ′ in C′

n is at mostpk/(1−pk). Every block ending withW ′ can be prolonged to
the right to a block belonging toC′

n+1 in l− 1 possible ways (we must not add0 at the
end). Every block not ending withW ′ can be prolonged arbitrarily (i.e., inl possible
ways) and the prolonged block always belongs toC′

n+1. Thus

cn+1 ≥ cn(pk(l − 1) + (1 − pk)l) = cnlk.

Since this is true forn ≥ 2k − 1, we have proved thatcn ≥ ln−2k
k = 2n

n−2k
n

(log lk).
Becauselog lk is strictly larger thanlog l − ε, so is n−2k

n (log lk) for large enoughn,
hencecn is eventually larger than2n(log l−ε), as needed.

Remark. This family is better than prefix-free. A prefix-free familyallows to deter-
mine the cutting places in everyunilateral concatenation, but we must know where to
start cutting. In infinite bilateral concatenations we may not be able to determine the
cuts. As it was mentioned in the exercise, a prefix-free family is just a family of disjoint
cylinders, so for example the family of all blocks of a given lengthn is prefix-free. Any
sequence is now a bilateral concatenation and can be cut backin n different ways.
The family constructed in the solution (according to the hint) has the stronger property
that the cutting places are determined in any bilateral concatenation (it suffices to find
the blocksW ). This is important in coding algorithms applicable to bilateral sequences.

Exercise 3.9.

Attention! The formulation of Theorem 3.5.1 contains errors. It shouldbe mentioned
that Λ is finite and thatP = PΛ. The second sentence should be deleted and the
assertion should read:
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Then, for everyε > 0, the joint measure of all blocksB of lengthm and compression
rate smaller than(h− ε)/ log #Λ tends to zero withm.

Fix anε > 0. Consider the blocksB of lengthm and compression rate smaller than
(h − ε)/ log #P. Their compressed images are binary blocks of lengths smaller than
m(h− ε), so there at most2m(h−ε) such blocks. In particular, the conditional entropy
of Pm on any subset of their union, denotedAm, is smaller thanm(h− ε). Next, fixn
so large that1nH(Pn) < h+ δ, whereδ is some small positive number. In order for a
blockB to satisfyHn(B) ≤ h + δ we needHn(B) to be closer to1

nH(Pn) than the
(positive) differenceh+ δ − 1

nH(Pn). By continuity of entropy on finite-dimensional
vectors, it suffices that the vectorpn,B (of frequencies inB of blocks of lengthn) is
very close to the vectorp(µ,Pn). By the Ergodic Theorem, form sufficiently large,
this is satisfied for blocksB of lengthm covering a setXm of measure at least1 − δ.
By Lemma 2.8.2, ifm is large enough, the cardinality of blocks inXm does not exceed
2m(h+δ). In particular, the conditional entropy ofPm on any subset ofXm is smaller
thanm(h + δ). We divideX into three parts:Xm ∩ Am (treated as a subset ofAm),
Xm \ Am (a subset ofXm) and the rest,X \X ′, whose measures are estimated from
above byµ(Am), 1 − µ(Am) andδ, respectively. We have

mh ≤ H(Pm) ≤ µ(Am)m(h− ε) + (1 − µ(Am))m(h+ δ) + δm log #P + log 3.

This easily implies
µ(Am) ≤ δ

ε+δ (1 + log #P + log 3
mδ ).

Passing withm to infinity we getlim supm µ(Am) ≤ δ
ε+δ (1 + log #P) and sinceδ is

arbitrarily small, we conclude thatlimm µ(Am) = 0.

Exercise 3.10.

We skip the solution of this exercise.

4 Exercises in Chapter 4

Exercise 4.1.

In fact, it suffices to assume that the sequencePk generatesunder the action, that is,
the double sequence of partitionsPnk (in caseS = N0) or P

[−n,n]
k (in caseS = Z)

((k, n) range overN0 × N0) generatesA.
Given any finite partitionP of cardinalitym, let k andn be so large that there exists a
partitionP′ 4 Pnk (in caseS = N0; P′ 4 P

[−n,n]
k for S = Z) also of cardinalitym, with

dR(P,P′) < ε (recall that inPm the metricdR is uniformly equivalent tod1). Then,
by (2.4.10), regardless of the conditioning sigma-algebra, |h(P|B) − h(P′|B)| < ε,
which impliesh(P|B) < h(P

[2n+1]
k |B) + ε = h(Pk|B) + ε (we have also used Fact

2.4.1). Taking the (increasing) limit overk on the right and then supremum on the left,
we geth(A|B) ≤ limk h(Pk|B) + ε. Now we can removeε and combine the result
with the obvious converse inequality.
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Exercise 4.2.

This is now an immediate consequence of the preceding exercise and Theorem 2.5.1.

Exercise 4.3.

We will prove the formulah(µ, Tn|B) = |n|h(µ, T |B) assumingB to be invari-
ant only for negativen, otherwise it works for subinvariantB (regardless ofS). We
copy the proof of Fact 4.1.14 almost verbatim. By Fact 2.4.19(the conditional ver-
sion; this is where invariance ofB may be needed), we have, for every partitionP:
h(µ, Tn,P|B) ≤ h(µ, Tn,P|n||B) = |n|h(µ, T,P|B). Now we applysupP and get

h(µ, Tn|B) ≤ |n|h(µ, T |B) = sup
Q=P|n|

h(µ, Tn,Q|B) ≤ h(µ, Tn|B).

Exercise 4.4.

We will actually prove Theorem 4.2.9 without using Remark 4.2.7 and then prove that
remark using the theorem. Given a finite partitionQ measurable with respect toΠµ,
we can approximate it up toε in d1 (equivalently indR) by a partitionQ′ of the same
cardinality asQ, measurable with respect to a finite join

Wk
i=1 ΠPi

for some partitions
Pi. We do not need Remark 4.2.7 for that; the partitionsPi need not be members of
anya priori fixed sequence of partitions. The difficulty lies in understanding the join of
possibly uncountably many sigma-algebras. In fact,Πµ is, by definition, the smallest
sigma-algebra containing

S
ΠP (union over all finite partitionsP). But every set in

Πµ is obtained via countably many set operations involving at most countably many
sets in that union, so it is contained in

W∞
i=1 ΠPi

for some sequence of finite partitions
Pi. Now we can use the usual approximation within this countable join. The rest
of proof of Theorem 4.2.9 is (almost) unchanged. We remark, that without assuming
the partitionsPi to be linearly ordered by4, it is no longer true that the join

Wk
i=1 ΠPi

equalsΠP, whereP =
Wk
i=1 Pi; it is only refined (which is very easy to see). There are

examples where the converse refining fails (perhaps this should be better emphasized
in the book). Anyway, the valid direction is sufficient in theproof of Theorem 4.2.9.

We shall now prove Remark 4.2.7 in a stronger version, which includes the case of
one generating partition. Namely, we will only assume that the refining sequencePk
generates under the action (as we did in the solution of Exercise 4.1).
Clearly,

W∞
k=1 ΠPk

4 Πµ. We need to prove the converse. LetQ be a partition mea-
surable with respect toΠµ. Then, by Theorem 4.2.9,h(µ,Q, T ) = 0 and hence, by
the power rule (Fact 2.4.19),h(µ, Tn,Q) ≤ h(µ, Tn,Qn) = 0 for everyn ≥ 1. Now
we approximateQ by Q′ up to ε in dR, whereQ′ 4 Pk for somek (here it is im-
portant thatPk is a refining sequence). By (2.4.10) (forTn and trivial B), we have
|h(µ, Tn,Q′) − h(µ, Tn,Q)| < ε, i.e.,h(µ, Tn,Q′) < ε for all n ≥ 1. Further, no-
tice thath(µ, Tn,Q′) = H(Q′|Q′{n,2n,3n,... }) ≥ H(Q′|Q′[n,∞)). As a consequence,
H(Q′|P[n,∞)

k ) < ε for everyn. Now we invoke (1.7.14) and getH(Q′|ΠPk
) < ε, all

the moreH(Q′|
W
k ΠPk

) < ε. We use (1.6.36) and getH(Q|
W
k ΠPk

) < 2ε. Since
this is true for everyε,H(Q|

W
k ΠPk

) = 0 and (1.6.28) impliesQ 4
W
k ΠPk

.
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Exercise 4.5.

We haveh(A|B) = supP h(P|B) > 0, whereP ranges over all finiteA-measurable
partitions ofX. Thus, there exists a finite partitionP of X such thath(P|B) > 0.
We restrict our attention to the system generated jointly byP and(Y,B, ν, S,S). We
will prove that almost everyy has an infinite preimage already in this system. In other
words, we can assume thatA = PS ∨ B.
Suppose that the set of pointsy with finite preimagesπ−1(y) has positive measureν.
Fory in this set, the points in the preimage ofy are distinguished by theirP-names, so
there is a minimalny such that all these points are in different cells ofP[−ny,ny ] (or
just Pny for S = N0). Some value ofny, sayn0 must occur with positive measureν,
say on a setA0. By ergodicity, the value of the time of the first visit inA0 is finite
almost everywhere, so it is bounded by somen1 on a setA1 of measureν larger than
δ = h(A|B)

log #P
. That means that relatively onA1, PS ∨ B = R ∨ B, whereR is a finite

partition (R can beP[−n,n] joined with the partition determined by the entry times to
D trimmed atn1). Now, for everyn, we can write

H(Pn|B) ≤ H(Pn|B∨κ)+H(κ) ≤ (1− δ)HA1
(R|B)+ δ log #Pn+H(δ, 1− δ),

whereκ is the partition intoA1 and its complement. After dividing byn and passing
with n to infinity, the left hand side converges toh(A|B). The first and last terms on
the right hand side (divided byn) decrease to zero, while the middle term becomes, by
the choice ofδ, strictly smaller thanh(A|B), a contradiction.

Exercise 4.6.

By (2.3.5) and Exercise 2.4 (with trivialB), h(P|Q) ≤ H(P|P+∨QS) in any case ofS.
Further,

h(P|Q) ≤ H(P|P+ ∨ QS) ≤ H(P|P+ ∨ QS ∨ Q) =
X
B∈Q

µ(B)HB(P|P+ ∨ Q+).

The full futureP+ ∨ Q+ of the joint process, restricted toB, obviously contains the
future of the process generated byP with respect to the induced map onB, denoted
by PB,+ (all we need to determine the forwardPB,+-name of anx ∈ B is its forward
P-name and the return times toB, which areQ+-measurable). So, we get

h(P|Q) ≤
X
B∈Q

µ(B)HB(P|PB,+) =
X
B∈Q

µ(B)h(µB , TB ,P).

To see an example with sharp inequality, supposeh(P0) = h > 0, while Q generates a
periodic factor with some periodp. SetP = P

p
0. Thenh(P|Q) = h(Pn0 ) = h. Notice

that for eachB ∈ Q, TB = T p. Sinceµ =
P
B∈Q

µ(B)µB and all these measures are
T p-invariant, by affinity of the dynamical entropy and the power rule, we haveX
B∈Q

µ(B)h(µB , T
p,P) = h(µ, T p,P) = h(µ, T p,Pp0) = ph(µ, T,P0) = ph > h.

12



Exercise 4.7.

Just take any endomorphism of finite entropy that does not admit a unilateral generator.
For example,T can be invertible with positive entropy, yet we consider only the action
of N0. If you want a genuine (not invertible) endomorphism, consider the direct product
of a bilateral Bernoulli shift with a unilateral Bernoulli shift. If there existed a unilateral
generatorP, the bilateral Bernoulli factor would be, by invariance, measurable with
respect toP[n,∞) for every positiven, and hence with respect to the Pinsker sigma-
algebra, which is impossible due to positive entropy.

Exercise 4.8.

For any pair of partitionsP andQ measurable with respect toA andB, correspondigly,
we have

H((P ∨ Q)n|C′) = H(Pn ∨ Qn|C′) = H(Pn|C′) +H(Qn|C′).

Dividing by n and passing to the limit we geth(P ∨ Q|C′) = h(P|C′) + h(Q|C′) It
suffices to take supremum over all such pairs of partitions, and notice that the joined
partitionsP ∨ Q generate the joined sigma-algebraA ∨ B, to get the desired equality
h(A ∨ B|C′) = h(A|C′) + h(B|C′).

Exercise 4.9.

Attention! In the formulation, the ergodicity assumption is obviouslymissing (other-
wise we may have no generator at all).

By Theorem 4.5.1 (Sinai), our system has a partitionP which generates an independent
process with full entropyh. By Theorems 4.4.7, there is a partitionQ which generates
a process of entropy smaller thanε/2 and such thatP ∨ Q generates everything. We
will prove that we can replace the partitionQ by another,Q′, which generates the same
factor asQ and has static entropy smaller thanε. This will end the proof, as thenP∨Q′

is a generator andH(P ∨ Q′) < H(P) + ε = h+ ε, i.e., the corresponding process is
ε-independent.
Let r be so large thatH(Qr) < rε/2. By a standard modification of the Rokhlin
Lemma, there is a setA ∈ QZ such that the return time toA assumes only two val-
ues: r − 1 andr. Let κ be the partition{A, T (A), . . . T r−2(A), B}, whereB is the
remaining set (contained inT r−1(A)). We have

rε

2
> H(Qr) ≥ H(Qr|κ) ≥

r−2X
n=0

µ(Tn(A))HTn(A)(Q
r) ≥ 1

r

r−2X
n=0

HTn(A)(Q
r).

We multiply both sides byr/(r − 1) and get

1

r − 1

r−2X
n=0

HTn(A)(Q
r) <

ε

2

r2

r − 1

which implies that for at least one indexn0 ∈ {0, n− 2},HTn0 (A)(Q
r) < ε

2
r2

r−1 .
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LetQ′ be defined asQr intersected withA′ = Tn0(A) and the complement ofA′ in one
piece. Notice that the partitionQ′ generates the same process asQ: meaningful symbols
symbols in theQ′-name of a pointx occur at coordinatesn for which Tnx ∈ A′ and
they encode the blocks of lengthr starting atn in theQ-name ofx, while the next such
symbol is not further thanr positions forward. Denoting byR the partition intoA′ and
its complement, the static entropy ofQ′ can be estimated as follows

H(Q′) ≤ H(Q′|R) +H(R) ≤ µ(A′)HA′(Qr) + 0 +H(R) ≤
ε

2

r2

(r − 1)2
+H( 1

r−1 , 1 − 1
r−1 ) < ε

if r is chosen large enough. This concludes the construction.

Exercise 4.10.

Attention! Again, in the formulation, the ergodicity assumption is obviously missing.

First of all, recall that the original proof of the Sinai Theorem is valid also for endo-
morphisms, this is why the exercise is formulated for both cases ofS. Now, it suffices
to take forP a generator of a Bernoulli factor of full entropy, which can be finite in the
finite entropy case.
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Part 2

6 Exercises in Chapter 6

Exercise 6.1.

Consider the (unilateral or bilateral) subshift of finite type on three symbols{0, 1, 2},
where we prohibit repetitions00, 11, and22. Let the coverU depend on the zero
coordinate and consist of the unions of two symbols each:U =

�
0∪ 1 , 1∪ 2 , 0∪ 2

©
.

There are 6 admitted words of length 2:01, 02, 12, 10, 20 and21 and they are covered
by two sets (for example)(0∪ 1)× (1∪ 2) and(1∪ 2)× (1∪ 0) (in the order they are
written). So,12H(U2) = 1

2 log 2 = log
√

2. To keep1
3H(U3) not increased, we need

N(U3) not larger than2
√

2 (strictly smaller than3), which means that we would have
to cover all admitted blocks of length 3 by only two elements of U3. This is impossible,
because there are 12 admitted words of length 3, while each element ofU3 contains
at most 4 of them; in the definiton ofU ∈ U3 we must specify 3 pairs of different
symbols, so at least two symbols must be used twice, which means thatU (containing
a priori 8 words) contains at least 4 forbidden words, hence at most 4 admitted words.

Exercise 6.2.

This is a direct consequence of(Un)m = Un+m and the convergencem+n
m →

m
1.

Exercise 6.3.

Attention! The statement is in general false. Any system(X,T,S) is topologically
conjugate to the subsystem of the unilateral shift onXN0 consisting of the forward
orbits. In the product metric

dp((xn), (yn)) =
∞X
n=0

1

2n
d(xn, yn)

the shift map is Lispshitz with the constantc = 2, while it can have arbitrarily large
topological entropy (the same as(X,T,S)).

The statement does hold ifc ≤ 1 (an important application of that is, that all isometries
have entropy zero). In such case all the metricsdn are equal tod hence the number of
(n, ε)-separated points does not grow withn.
For arbitrary Lipshitz constantsc the statement is valid forC1 interval maps in the
standard metric, which follows e.g. from the Margulis-Ruelle Inequality (9.4.1) (and
the Variational Principle).

Exercise 6.4.

Let P = {I1, I2, . . . , IN} be the partition of[0, 1] into the branches of monotonicity
(intervals on whichT is monotone)I1 = [0, a1), I2 = [a1, a2), . . . , IN = [aN−1, 1].
Notice that for eachn ≥ 1 the cellsJ ∈ Pn are in fact intervals on which all the iterates
T, T 2, . . . , Tn−1 are monotone. We will estimate the number of(n, ε)-separated points
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contained inJ . Consider the intervals between neighboring(n, ε)-separated points in
J . Each of them must be stretched to at least the lengthε by one of the functions
T, T 2, . . . , Tn−1. By monotonicity, each of these functions can stretch at most 1/ε
of these intervals, because their images are disjoint. Together, at mostn/ε intervals
can be stretched, which limits the cardinality of the pointsto n/ε + 1. Now, the total
number of(n, ε)-separated points is at mostNn(nε +1) (whereNn bounds the number
of cellsJ). The desired estimate ofh(T ) is obtained by taking the logarithm, dividing
by n, passing withn to infinity and then lettingε tend to zero.

Exercise 6.5.

Let T ∨ S denote the joining ofT andS within the common extension. Fact (6.4.13)
applied twice (first toT ∨ S andS, then toT ∨ S andT ) and the triangle inequality
yield

|h∗(S) − h∗(T )| ≤ h(T ∨ S|S) + h(T ∨ S|T ).

By (6.5.8),h(T ∨ S|S) = h(T |S) andh(T ∨ S|T ) = h(S|T ).

Exercise 6.6.

First taken ≥ 0. Notice that(Un)m, where the exponentm refers to the action ofTn,
equalsUnm (in the action ofT ). So,

h(Tn,Un|Vn) = lim
m

1
mH(Unm|Vnm) = nh(T,U|V)

(since the limit definingh(T,U|V) exists, it is achived along the subsequencenm).
Further,

h(Tn|Vn) = sup
W

h(Tn,W|Vn) ≥ sup
W=Un

h(Tn,Un|Vn) =

sup
U

nh(T,U|V) = nh(T |V).

On the other hand, sinceUn < U, we also have

h(Tn|Vn) = sup
U

h(Tn,U|Vn) ≤ sup
U

h(Tn,Un|Vn) = nh(T |V).

We have proved the equalityh(Tn|Vn) = nh(T |V). We proceed similarly with the
conditioning covers:

h∗(Tn) = inf
W

h(Tn|W) ≤ inf
W=Vn

h(Tn|Vn) = inf
V

nh(T |V) = nh∗(T ),

and, sinceVn < V,

h∗(Tn) = inf
V

h(Tn|V) ≥ inf
V

h(Tn|Vn) = nh∗(T ).

It remains to show that for homeomorphisms,h∗(T−1) = h∗(T ). Note thatUn, where
the exponent refers to the action ofT−1, equalsU[−n+1,0] (in the notation referring to
T ). SinceT is a homeomorphism, we haveH(U[−n+1,0]|V[−n+1,0]) = H(Un|Vn).
This equality passes via all intermediate definitions leading toh∗(T−1) = h∗(T ).
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Exercise 6.7.

Forn ≥ 0 we use again that(Un)m, where the exponentm refers to the action ofTn,
equalsUnm. We have

h(Tn,Un|y) = lim sup
m→∞

1
mH(Unm|y) = n · lim sup

m→∞

1
mnH(Unm|y) ≤ nh(T,U|y).

This time we have no subadditivity to deduce the existence ofthe limit. Instead, to
prove the converse inequality, we will use monotonicity. Every positive integer can
be written asi = min − ri with mi ≥ 1 and0 ≤ ri ≤ n − 1. ThenH(Ui|y) ≤
H(Umin|y), so

nh(T,U|y) ≤ n lim sup
i→∞

1
iH(Ui|y) ≤ min

i
1
mi

H(Umin|y) = h(Tn,Un|y),

becausemin
i →

i
1. Further, the definition ofh(T |y) involves the supremum overU,

which is handled identically as in the preceding exercise (we skip rewriting). If we
replace the conditioningy by a measureν, the only essential difference in the defini-
tions is the presence ofinf rather thanlim sup. So now we first deriveh(Tn,Un|ν) ≥
nh(T,U|ν), and we use monotonicity for the converse inequality (we representi as
min+ ri, so thati ≥ min).
We remark that for an invariant measureν we can alternatively use Corollary 6.7.4 (c)
and (d), and power rules pass toh(T,U|ν) andh(T |ν) via integration.

Attention! For negativen the equalitiesh(Tn,U|n||y) = |n|h(T,U|y) andh(Tn|y) =
|n|h(T |y) may actually fail. An easy example is the subshift of finite type on three
symbolsΛ = {0, 1, 2} where we prohibit the blocks10 and20, the coverU equal to the
zero-coordinate partitionPΛ, and the factor map that glues together the symbols1 and2
(to a symbol denoted in the factor as1). The fiber ofy = . . . 000111 . . . (we underline
the coordinate0) intersects2n−1 elements ofUn, while only one element ofU[−n+1,0].
Henceh(Tn,U|y) = log 2 6= 0 = h(T−1,U|y). It is not hard to see that in fact
h(T−1,U|y) = 0 for any other finite coverU, soh(T |y) ≥ log 2 6= 0 = h(T−1|y).
Nevertheless, the equalitiesh(Tn,U|ν) = |n|h(T,U|ν) andh(Tn|ν) = |n|h(T |ν)
do hold wheneverν is invariant. It is so becauseH(Un|y) = H(U[−n+1,0]|T−n+1y).
The change of the variable vanishes after integrating with respect to an invariant mea-
sure, soH(Un|ν) = H(U[−n+1,0]|ν), which easily implies the above two equalities
for n = −1 (and hence for alln < 0).

Exercise 6.8.

See Exercise 6.2.

Exercise 6.9.

This is nontrivial only whenh(T ) <∞. Then all involved measure-theoretic entropies
are finite. By the Inner Variational Principle (Theorem 6.8.4), then Fact 4.1.6, and
finally the Variational Principle, we have

h(T |ν) + h(ν) = sup
µ∈π−1(ν)

h(µ|ν) + h(ν) = sup
µ∈π−1(ν)

h(µ) ≤ h(T ).
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Exercise 6.10.

Let π = ψφ. We have, using consecutively the Inner Variational Principle, the Varia-
tional Principle and the Conditional Variational Principle,

h(T |ξ) = sup
µ∈π−1(ξ)

h(µ|ξ) = sup
µ∈π−1(ξ)

�
h(µ|φ(µ)) + h(φ(µ)|ξ)

�
≤

sup
µ∈MT (X)

h(µ|φ(µ)) + sup
ν∈ψ−1(ξ)

h(ν|ξ) = h(T |S) + h(S|ξ).

Exercise 6.11.

Let both spaces be{0, 1, 2}, let both covers beU = V = {{0, 1}, {0, 2}, {1, 2}}. We
haveN(U) = N(V) = 2, whileN(U ⊗ V) = 3 < 4 (the product space is covered for
example by{0, 1} × {0, 1}, {1, 2} × {1, 2} and{0, 2} × {0, 2}).

Exercise 6.12.

The inequality 2. is easy and can be derived using only the Outer Variational Principle
and (6.5.8), as follows:

h(T |ξ) ≤ h(T |R) = h(S ∨R|R) ≤ h(S).

(An alternative way is via the Inner Variational Principle and the second inequality in
Fact 4.4.3. Yet another alternative is to first prove 1. and then use Corollary 6.7.4 (d).)

The inequality 1. is a bit harder. By Definition 6.5.2, Fact 6.5.9 (and its proof), we
can think of(X,T,S) as a subsystem of(Y, S,S) × (Z,R,S) and we can restrict our
attention to product coversU⊗V. Note that(U⊗V)n (the exponent refers toT = S×R)
equalsUn ⊗ Vn (exponents refer toS andR, respectively). At any pointz ∈ Z we
haveH(Un ⊗ Vn|z) ≤ H(Un). We divide both sides byn, pass tolim supn, then
apply supremum over all pairs of coversU andV.

7 Exercises in Chapter 7

Exercise 7.1.

Denote our subshift by(X,T,S). The inequalitylim supk
1
pk

log #Bk ≤ h(T ) is
obvious;Bk contains only blocks of lengthpk appearing in our subshift (usually not all
of them).
To derive the converse inequality consider the setAk of points having apk-periodic
marker at the coordinate zero. Clearly,Ak is compact,T pk -invariant and with the
action ofT pk it is conjugate to a subshift over the alphabetBk. Thus the topologi-
cal entropy of(Ak, T pk ,S) does not exceedlog #Bk. The spaceX contains the dis-
joint unionX ′ of setsAk, T (Ak), . . . , T

pk−1(Ak), and the systems(T i(Ak), T pk ,S)
are factors of(Ak, T pk ,S) via T i, so their topological entropies are not larger than
log #Bk. In addition, in the unilateral case, there maybe points notbelonging toX ′

but all such point fall intoX ′ after less thanpk iterates. This proves thath(T pk) ≤
log #Bk on the entire spaceX and, by the power rule for topological entropy (Fact
6.2.3),h(T ) ≤ 1

pk
log #Bk, for everyk. This implies the existence of the limit and the

desired equality.
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Exercise 7.2.

This is a standard exercise in topological dynamics, havingnothing to do with entropy.
In the surjective case the natural extension is conjugate tothe bilateral subshift with
the samelanguageas the given unilateral subshift, i.e., with the same finite blocks
occurring. In the non-surjective case there are blocks occurring in the unilateral shift
which do not extend to the left within the language. We call these block “dead ends”.
We append a new symbol (say∗) to the alphabet and we enhance the language by
blocks of the form∗ ∗ ∗ · · · ∗ (of any finite length) and∗ ∗ ∗ · · · ∗ B, whereB is a
dead end. The natural extension is conjugate to the bilateral shift with this enhanced
language. We skip the tedious but easy verification of the conjugacies.

Exercise 7.3.

Again, this is an exercise in topological dynamics and has little to do with entropy.
We begin with the remark that the Marker Lemma 7.5.4 applies in fact to continuous
maps, not necessarily homeomorphisms. If we replace the starting clopen coverU by
U′ = T−nm(U), then eachU ∈ U′ has clopen forward images throughnm iterates
and all the setsFj constructed in the proof (including the marker setF ) are clopen
together with theirn backward and forward images. We skip further details here (see
[Downarowicz, 2008]).
In any zero-dimensional system without periodic points we can mimic the odometer
factor. The only difference is that the analogs of thepk-periodic markers will not
appear periodically, yet with gaps ranging betweenpk and somep′k > pk. Here is
how we do. We fix a sequence(pk) and the associated quotientsqk ≥ 2 just as in
Definition A.3.1. We find ap1-marker setF1. Since there are no periodic points inX,
all orbits visitF1 and the gaps between the visits range betweenp1 and2p1 − 1. In the
induced system(F1, TF1

,S) we find aq1-markerF2. Since the induced system has no
periodic points, everyTF1

-orbit visitsF2 with gaps ranging betweenq1 and2q1 − 1,
which implies that everyT -orbit inX visitsF2 with gaps ranging betweenp1q1 = p2

andp′2 = (2p1 − 1)(2q1 − 1) > p2. Proceeding inductively we construct a decreasing
sequence of marker setsFk. Abusing slightly our convention, we will call themk-
markers (they are in factpk-markers). If we visualize thek-markers in the array-name
representation of our system (in form of vertical bars in thekth row) then in every
arrayx we see the(k+1)-markers only at coordinates wherek-markers occur, there
are at leastqk k-markers between two consecutive(k+1)-markers, while the distances
between two consecutive(k+1)-markers are bounded. The blocks appearing in row
k between two neighboringk-markers will be calledk-blocks. The (finite) collection
of the k-blocks appearing in the system will be denoted byBk (this time the blocks
in Bk have various but bounded lengths). In injective systems thearrays are bilateral,
so thekth row of everyx is a concatenation of thek-blocks (there is no problem with
truncatedk-blocks at the left end).
We are ready to encode our system using a countable alphabet.The alphabet is going
to beΛ =

S∞
k=1 Bk ∪ {∗}, where∗ is added as the topological accumulation point, so

thatΛ is homeomorphic to the one-point compactification ofN0.
We now define the mapφ from X into the shift overΛ by describing the imagey =
φ(x) ∈ ΛZ of everyx ∈ X. We will encodex “row after row”. We encode the
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first row by placing iny, at the positions of all1-markers inx, the symbols fromB1

representing the1-blocks that follow these markers inx. Sincep1 ≥ 2, every sector in
y between the positions of two consecutive1-markers has at least one unfilled position.
We now encode the second row ofx by placing iny, in the first empty slot between two
2-markers ofx, the symbol fromB2 representing the block sitting there in the second
row of x. Sinceq1 ≥ 2, after this step every sector iny between two2-markers has
at least one empty slot. We continue in this manner through all rows. All eventually
unfilled positions iny we fill with the stars. (The situation resembles that on Figure
7.2, except that the cuts are not exactly at equal distances and that in every step the
information is stored in only one symbol per “period”, so in the end there will be
much more unfilled space iny.) It is clear that so defined mapx 7→ y is continuous:
every symbol (except the star) iny is determined by a bounded rectangle inx (i.e., its
preimage is clopen). The star alone is not an open set, while any open neighborhood
of the star is a complement of finitely many other symbols, so its preimage is also a
clopen set. It is evident that so defined mapφ commutes with the shift transformation.
To see that it is injective, note that we can easily reconstruct from y the consecutive
rows ofx. For k = 1, we locate iny the symbols belonging toB1. Their positions
determine the1-markers and the symbols themselves provide information about the
contents of the corresponding1-blocks inx. We continue inductively: Suppose the
kth row ofx nas been reconstructed (together with thek-markers). We locate iny all
symbols belonging toBk+1, and then we “unload” their contents each time starting at
the nearestk-marker to the left, where we also place a(k+1)-marker. So, the mapφ is
a topological conjugacy ofX with its image.

To see that periodic points are an obstacle, take the identity map on the Cantor set.
Every point is a fixpoint, so in any subshit it must be represented by a sequence filled
with one symbol. Thus, uncountably many symbols are needed to encode all points.

To see how the above fails in non-injective systems, consider an odometer plus a Can-
tor set which is sent byT to one point (sayx) in the odometer. No matter how we
encode the system as a unilateral shift, the sequence representingx must admit un-
countably many shift-preimages, that is one-coordinate prolongations to the left. So,
an uncountable alphabet is needed.

Exercise 7.4.

Let h = h(T ). Let Bn denote the family of all blocks of lengthn occurring inX.
Let Λ be an alphabet of cardinality⌊2h⌋ + 1. It is important thatlog #Λ > h, so
we can invoke our Exercise 3.8 (and the remark following the solution): there exists a
“better than prefix-free” familyC of blocks overΛ such that denoting byCn the family
of blocks of lengthn contained inC, we have#Cn ≥ 2n(h+ε) for someε > 0 andn
sufficiently large. On the other hand, we know thatlog #Bn < 2n(h+ε) for largen.
So, we can find ann0 such that for everyn ≥ n0, #Bn ≤ #Cn. Then there exists
an injective length-preserving mapΦ :

S
n≥n0

Bn →
S
n≥n0

Cn. Now we apply the
Marker Lemma and find ann0-marker. The codeφ fromX into ΛZ is constructed as
follows: we cut everyx at the markers into blocks of lengths at lestn0 (and bounded).
Then we replace every such blockB by Φ(B). BecauseΦ is length-preserving, this is
a shift-invariant procedure, and by boundedness of the blocks, it is continuous. Since
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the image ofΦ is contained in a “better than prefix-free” family, the cutting places (i.e.,
the markers) can be reconstructed in everyφ(x), and becauseΦ is injective, we can
then reconstructx completely. Thus, the code a topological conjugacy ofX with its
image.

To see how the above fails in non-injective systems, consider a unilateral subshiftX
over a finite alphabetΛ and with entropy smaller thanlog #Λ. We enhance the subshift
by adding points of the formax, wherex ∈ X anda is a single symbol belonging to
a strictly larger alphabetΛ′ ⊃ Λ. The enhanced system is a subshift over the alphabet
Λ′. Since all its points fall intoX ′ after one iterate, the topological entropy of the
enhanced subshift is the same as that onX. Nonetheless, in any unilateral subshift
representation, each point fromX has#Λ′ shift-preimages, so an alphabet of at least
such cardinality is needed.

Exercise 7.5.

In every bilateral subshift any element of a periodic orbit of period n has the form
. . . BBB. . . , whereB has lengthn. Moreover, at mostn different blocksB produce
elements of the same orbit. Because there areln blocks of lengthn, using an alphabet
of cardinality l we can produce at mostln and at leastln/n different periodic orbits
with periodn. Let X be the union ofln/n disjoint orbits of periodn modeled as a
subshift overl symbols. The entropy of such a primitive system is zero, so, if Exercise
7.4 worked,X should admit a representation over two symbols. But with twosymbols
we can model at most2n periodic orbits with periodn. For l large enough,ln/n > 2n,
a contradiction.

8 Exercises in Chapter 8

Exercise 8.1.

We have EH ≡ ∞ andα0 = ℵ0. The best way to see this is by examining the transfi-
nite sequence. Notice that thekth tail θk equals 1 on the dense set{xk+1, xk+2, . . . },
soθk ≡ 1. This impliesu1 ≡ 1. Now addingu1 to the tails only shifts the picture up
by a unit, henceu2 ≡ 2, and, inductively,uα ≡ α, for naturalα. This clearly implies
uℵ0

≡ ∞ and this is where the transfinite procedure stops for the firsttime.

Exercise 8.2 (cf. [Boyle–Downarowicz, 2004, Proposition 3.10]).

We proceed by induction onord(x). By Theorem 8.1.14,uH(x) = 0 at any isolated
point, so the statement holds iford(x) = 0. Suppose we have proved it for some
ord(x) = r ≥ 0. Let x be a point of orderr + 1. Defineu asuH except atx where
we setu(x) = (r + 1)u1(x). We complete the proof by showing thatu is a repair
function forH. Since we have altereduH only atx, it suffices to verify that the defects
of u+ θk converge to zero atx. Note thatx is surrounded by pointsx′ of order at most

21



r, at which the inductive hypothesis holds. For eachk we have

............

(u+ θk)(x) ≤
...
u(x) +

...

θ k(x) = lim sup
x′→x

u(x′) − u(x) + eθk(x) − θk(x) ≤

lim sup
x′→x

ru1(x
′) − (r + 1)u1(x) + eθk(x) − θk(x) =

r
�
lim sup
x′→x

u1(x
′) − u1(x)

�
− u1(x) + eθk(x) − θk(x).

The first term equalsr times the defect ofu1, which is zero, becauseu1 is upper semi-
continuous. (All functionsuα in the transfinite sequence are upper semicontinuous
– this is obvious from the definition, but perhaps not sufficiently emphasized in the
book). Now we letk tend to infinity, and theneθk(x) decreases tou1(x) andθk(x)
decreases to zero, so the entire expression tends to zero, asrequired.

Exercise 8.3.

Each entry in the matrix, sayMn,r, representingun(x) at points of orderr can be
verbalized as

Mn,r =

¨
a0 + a1 + · · · + ar−1, for r ≤ n

“the maximal sum ofn different terms indexed up tor − 1” , for r ≥ n,

where by “terms” we mean the numbersai. Notice that the maximal sum ofn different
terms from a set of nonnegative numbers dominates all shorter sums from this set,
so the above second case description can be written as “the maximal sum of up ton
different terms indexed up tor − 1”. This phrasing includes the first case, because for
r ≤ n the maximal such sum is clearly the sum of all terms indexed upto r− 1. Thus,

Mn,r = “the maximal sum of up ton different terms indexed up tor − 1” ,

is the general form, including alsoM0,r for all r (any sum of0 terms is0). We will
verify thatun(x) = Mn,ord(x) by induction onn.

For n = 0 the formula holds. Assume it holds for somen ≥ 0. We need to evaluate
un+1. Take a pointx and denoter = ord(x). Fork sufficiently largeθk(x) = 0 and
then(un + θk)(x) = un(x) = Mn,r. Every neighborhood ofx contains (in spite ofx)
only pointsx′ of ordersr′ ≤ r − 1, moreover, for every suchr′ it contains infinitely
many points of orderr′. Thus, no matter how largek, the function(un + θk) assumes
within this neighborhood the valueMn,r′ + ar′ , i.e.,

“the maximal sum of up ton different terms indexed up tor′ − 1” + ar′

which is the same as

“the maximal sum of up ton+ 1 different terms indexed up tor′ includingar′” .

Alltogether,un+1(x) equals the maximum overr′ ≤ r− 1 of the above maximal sums
andMn,r. It is hence clear thatun+1(x) does not exceed “the maximal sum of up to
n+ 1 different terms indexed up tor − 1”, i.e.,Mn+1,r.
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But every “sum of up ton + 1 different terms indexed up tor − 1” has its maximal
index, somer′ ≤ r − 1, and then this sum is a “sum of up ton + 1 different terms
indexed up tor′ including ar′ ”, and is taken into account in the maximum defining
un+1(x). This implies that,un+1(x) = Mn+1,r.

Exercise 8.4.

We need to show thatuH = u1. Since alwaysu1 ≤ uH, we focus on the converse
inequality. BecauseuH = EH−h and we assume that EH = eh, the desired inequality
becomesu1 ≥ h̃− h. We have

u1 = lim
k

eθk = lim
k
h̃− hk ≥ eh− lim

k

ehk
(we have used the inequalitỹf + g ≤ ef + eg for f = h − hk andg = hk). Since all
functionshk are assumed upper semicontinuous, the last limit equalslimk hk = h.

Exercise 8.5.

Attention! The formulation of the exercise contains a misprint. It should say not about
superenvelopes only about repair functions.

The Tarski-Knaster Theorem asserts that any order-preserving operatorP : L → L
defined on a complete latticeL has its smallest fixpoint. Recall that acomplete lattice
is a partially ordered set in which every subset has itsinfimum(greatest lower bound)
andsupremum(smallest upper bound). In our case, the lattice will be the collection
of all nonnegative upper semicontinuous functions on the domainX, where we include
the constant infinity function. The infimum of s subsetA of L is simply the pointwise

infimum inf{h : h ∈ A}, while the supremum equalsåsup{h : h ∈ A} or the infinity
function when the supremum is unbounded. Given an increasing sequenceH = (hk)
of nonnegative functions onX, tending to a finite limith (hence we also have the tails
θk = h− hk) we define the operatorP : L→ L by

P(f) = lim
k

↓ ˜(f + θk).

It is immediate to see that the operator is well defined (the image functions belong toL)
and preserves the order. So far, we have just recalled what was given in the formulation
of the exercise. We need to verify that fixpoints ofP are exactly the repair functions of
the tails ofH. Then the smallest fixpoint will coincide with the smallest repair function
uH. To this end we write

P(u) = u ⇐⇒ lim
k
ũ+ θk = u ⇐⇒ lim

k
(ũ+ θk − u− θk) = 0 ⇐⇒

lim
k

............

(u+ θk) = 0 ⇐⇒ u is a repair function.

Exercise 8.6.

This is completely elementary and will be skipped.
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Exercise 8.7.

The derivation of the first statement is based on the implication f ≥ g =⇒ ef ≥ eg.
The converse need not hold, for example ifX = [0, 1] with θk ≡ 1

k andθ′k = 1
k1IQ,

whereQ denotes the set of rational numbers in[0, 1].

Exercise 8.8.

On a compact domain, say,K, our upper semicontinuous functionf attains its maxi-
mumy0 at some pointx0. SinceK is convex, the Choquet Theorem asserts that there
exists a probability distributionξ supported byexK with bar(ξ) = x0. But f is also
convex, so by Fact A.2.10 it is supharmonic, and thus

y0 = f(x0) = f(bar(ξ)) ≤
Z
f(x) dξ.

Sincef(x) ≤ y0 at all points, this inequality is only possible when it is an equality and
f = y0 ξ-almost everywhere. In particular,f(x) = y0 at at least one point inexK.

Exercise 8.9.

Attention! We do not show thatuHα |exK = u
H|

exK
α , only that both determineuHα via

the same operations. We do not invoke Lemma 8.2.13 directly,only the same proving
methods.

This is a hard exercise. We claim the following

uHα =
��
uHα |exK

�harM
�[K]

=
��
u
H|

exK
α

�harM
�[K]

.

The statement obviously holds forα = 0. Suppose it holds for allβ < α. Recall that
vHα stands forsupβ<α u

H
β . We now write a sequence of (in)equalities and then we will

explain why each of them is true.

uHα
(1)

≥
��
uHα |exK

�harM
�[K] (2)

≥
��
u
H|

exK
α

�harM
�[K] (3)

= �
lim
κ

� å
v
H|

exK
α + θκ|exK

��harM
![K]

(4)
=

�
lim
κ

�� å
v
H|

exK
α + θκ|exK

�harM
��[K]

(5)
=

lim
κ

��� å
v
H|

exK
α + θκ|exK

�harM
�[K]

�
(6)

≥ lim
κ

24 å��
v
H|

exK
α + θκ|exK

�harM
�[K]

35 (7)

≥

lim
κ

24 å��
v
H|

exK
α

�harM
�[K]

+ θκ

35 (8)

≥ lim
κ

˜(vHα + θκ)
(9)
= uHα .

At first notice that since eachhκ is harmonic, it is affine, soh is affine (although not
necessarily harmonic), hence eachθκ is affine. This makeseθκ concave (Fact A.2.5),
and by an easy induction, all functionsuHα are concave. On the other hand, for any
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distributionξ we have
R
h dξ ≥

R
hκ dξ = hκ(bar(ξ)) for everyκ, hence

R
h dξ ≥

h(bar(ξ)) andh is shown to be subharmonic. Also eachθκ = h− hκ is subharmonic.

(1) is derived as follows:
�
uHα |exK

�harM
is upper semicontinuous, so��

uHα |exK
�harM

�[K]

=
�
uHα |exK

�harM
(ξ) =

Z
uHα |exK dξ =

Z
uHα dξ ≤ uHα (x),

whereξ is some distribution onexK with barycenter atx, and the last inequality is a
consequence ofuHα being concave and upper semicontinuous, hence supharmonic.

(2) results from the fact that throughout the transfinite induction leading tou
H|

exK
α (at

a point inexK) the “tildes” are taken in the context ofexK, so they produce not larger
functions than the “tildes” taken in the wider context ofK, leading touHα at this point.
(3) is just the transfinite definition applied to the restrictionH|

exK
.

In (4) we pull the decreasing limit outside the harmonic extension. Since the harmonic
extension relies on integrals, we need a kind of Lebesgue Theorem. The functions
are bounded from some index on (otherwise the case is trivial, as we have infinity on
the right), so if the net is actually a sequence, we can use theLebesgue Dominated
Theorem. For nets, however, we must invoke a stronger result: for a decreasing net of
upper semicontinuous functions, the integral commutes with the limit (see e.g. (A7) in
the Appendix of [Downarowicz-Serafin, 2002]).
In (5) we exchange the limit with the push-down. Since the fibers are compact, the
functions are upper semicontinuous and decrease, this can be done by virtue of the
exchanging suprema and infima Fact A.1.24.
In (6), for eachκ we delay the application of “tilde” till after the harmonic extension
and the push-down. (“Tilde” commutes with the harmonic extension because we are
on a Bauer simplex, so it is not important in what order we interpret them applied.)
For the push-down the inequality is obvious, because the function on the left is upper
semicontinuous (see Fact A.1.26) and dominates the function without the “tilde” on the
right.
When evaluating the push-down on the left hand side of (7) at somex ∈ K we must
integrate the sum of two functions with respect to all measures supported byexK) with
barycenter atx. Sinceθκ is subharmonic, the integral ofθκ with respect to such a
measure will be always at leastθκ(x). So the integral of the sum will always be at least
the integral of the first function plusθκ(x). Now we can take the supremum over all
such measures.

For (8) note that
��
v
H|

exK
α

�harM
�[K]

≥
��
u
H|

exK

β

�harM
�[K]

for everyβ < α. By the

inductive assumption, we replace the latter byuHβ , and then we apply supremum over
all β < α.
(9) is just the transfinite definition.

The claim about the order of accumulation is now obvious.

Exercise 8.10.

This is a direct consequence of two inequalities:H(µ,U ∨ V) ≤ H(µ,U) +H(µ,V)
andH(µ, T−n(U)) ≤ H(µ,U). The first one holds since wheneverP < U andQ < V
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thenP ∨ Q < U ∨ Q andH(µ,P ∨ Q) ≤ H(µ,P) +H(µ,Q). The second is true by
invariance ofµ and since wheneverP < U thenT−n(P) < T−n(U).

Exercise 8.11.

For the first inequality note that anyP inscribed inU has diameter at mostdiam(U),
for the second – that anyP of diameter smaller thanLeb(U) is inscribed inU.

Exercise 8.12.

Just note that the coverUn is inscribed in the cover constituted by the(n, diam(U))-
balls and that the cover by the(n, Leb(U))-balls is inscribed inU. Then use the mono-
tonicity (6.3.5).

Exercise 8.13.

Given a coverU and a setA, the smallest cardinality of a subfamily ofUn coveringA
is at least equal to the maximal cardinality of(n, diam(U))-separated set. This easily
implies thath(T,U|F,V) ≥ h(T, diam(U)|F,V). On the other hand, any maximal
(n, Leb(U))-separated setE in A is also(n, Leb(U))-spanning inA. Each element of
E is contained, together with its(n, Leb(U))-ball, in an element ofUn. In this manner
we select a subfamily ofUn which coversA and has at most the cardinality ofE. This
impliesh(T,U|F,V) ≤ h(T, Leb(U)|F,V). Now we can apply the above to a refining
sequence of coversUk (then bothdiam(Uk) andLeb(Uk) tend to zero).

Exercise 8.14.

Attention! Implicitly, V is assumed finite. Otherwise I don’t know how to proceed.

This is an extremely unpleasant exercise. The reason I put itis to illuminate how
convenient it is to have entropy structure defined as a uniform equivalence class. We
may afford not to care much about measurability of functionsin one particular entropy
structure because in the same class there are other sequences of functions known to be
measurable (even upper semicontinuous). In [Downarowicz,2005a], I simply used the
upper integral to extend the functionh(T |µ,V) to nonergodic measures.

The strategy is to assume thatX is zero-dimensional, and (1) approximateV by a
sequence ofclopen coversVk, i.e., having clopen (not necessarily disjoint) cells and
then (2) prove the assertion for such clopen covers. In step (3) we will apply principal
extensions to get rid of the zero-dimensionality assumption.

(1) We fix a finite open coverV (of our zero-dimensional spaceX) and temporarily we
also fix an ergodic measureµ. We will exploit the following variant of Lemma 8.3.20:
If W is another cover then

h(T |µ,W) ≤ h(T |µ,V) + lim
σ→1

inf{h(T,V|F,W) : µ(F ) > σ}.

The proof is exactly the same as that of Lemma 8.3.20 except that is uses the full
version of (6.3.10) (i.e., we keepF in the last term).

For k ∈ N andV ∈ V there exists a clopen setVk contained inV and containing
{x : d(x, V c) ≥ 1/k} (because the latter set is compact). We can easily arrange the
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setsVk to grow withk. It is easy to see than if1/k < Leb(V)/2 then the collection
Vk = {Vk : V ∈ V} is a (clopen) cover ofX. SinceVk < Vk′ wheneverk′ ≥ k,
the sequence of functionsh(T |µ,Vk) increases. Moreover, since for eachk the sets
Vk grow toV , the measure of the setAk =

S
V ∈V

(V \ Vk) is smaller thanε for large
enoughk (this is where we needV to be finite). By the Ergodic Theorem, givenσ > 0
there existsnk,σ ∈ N and a setFk,σ of measure larger thanσ such that for alln ≥ nk,σ
all n-orbits starting inFk,σ visit Ak at mostnε times. By the last displayed formula,
we have

h(T |µ,V) ≤ h(T |µ,Vk) + lim
σ→1

h(T,Vk|Fk,σ,V).

We need to estimate the last term. Letx ∈ Fk,σ. Forn ≥ nk,σ choose a cellV nx of Vn

containingx, sayV nx =
Sn−1
i=1 T

−iV (i) (eachV (i) ∈ V ). ThenT i(x) ∈ V
(i)
k except

for at mostnε indicesi. This implies thatx belongs to one of at most

Ln =

�
n

nε

�
#Vnε

modifications of
Sn−1
i=1 T

−iV
(i)
k in which at mostnε terms are altered (i.e.,V (i)

k is
replaced by another cell ofVk). We have coveredFk,σ ∩ V nx by at mostLn elements
of Vnk . Thus

h(T,Vk|Fk,σ,V) < lim
n

1
n logLn ≤ H(ε, 1 − ε)ε log #V,

regardless ofσ. We have proved that the functionh(T |µ,V) on ergodic measures
equals the increasing limit of the functionsh(T |µ,Vk), whereVk are clopen covers.

(2) We will check measurability of the functionh(T |µ,V) for a finite clopen cover
V = {V1, V2, . . . Vl} of a zero-dimensional spaceX. In this setup consider the joining
(X ′, T ′,S) of our system with the subshift over the alphabetΛ = {1, 2, . . . , l}, such
that every pointx ∈ X is joined with all sequences(an) ∈ ΛS such thatTn(x) ∈ Van

(the joining associates to eachx all its possibleV-names). Every ergodic measureµ can
be lifted to a measureµ′ on the joining by the rule, that all possibleΛ-words assigned
to a finite piece of an orbit have equal probabilities (givenx, at each coordinate we
choose the available symbols with equal probabilities and independently of the choices
made on other coordinates). It is not hard to see that the measureµ′ is ergodic and
that the assignmentµ 7→ µ′ is continuous on ergodic measures (we skip the standard
arguments via estimating the frequencies of blocks). Usingergodic decomposition, we
extend this assignment to a continuous map fromMT (X) into MT ′(X ′). LetP denote
a clopen partition (hence a cover) ofX, let V′ andP′ denote the lifts ofV andP toX ′,
respectively. Additionally, onX ′ we have the zero-coordinate clopen partition (and
cover)Q corresponding to the symbols inΛ. Notice that the cells ofV′ are precisely
the fiber saturations of the cells ofQ. Choose a closed setG ∈ X ′ and denote byF its
projection toX, and letG′ be the lift ofF (so thatG′ is the fiber-saturation ofG; recall
that bothF andG′ are closed). Because the cells ofP′n are fiber-saturated, it does not
matter whether we cover the setsG ∩ B (whereB ∈ Qn) or their fiber saturations.
Thus

h(T ′,P′|G,Q) = h(T ′,P′|G′,V′) = h(T,P|F,V).
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In the expression on the left, we are dealing with two partitions and we count the cells
of P′n needed to cover a cell inQn (intersected withF ), so the count will be exactly
the same as if we counted the cells of(P′ ∨ Q)n instead ofP′n. This leads to

h(T ′,P′ ∨ Q|G,Q) = h(T,P|F,V).

Now we temporarily fix an ergodic measureµ (andµ′) and we repeat the argument used
in the proof of Lemma 8.3.21 (with the correction in the definition of the setG = Gε;
seeErrata): We fix a sequence of clopen partitionsPk refining inX, and we choose
a setG of measure larger thanσ of points satisfying, up toε, the Shannon-McMillan-
Breiman Theorem applied to the ergodic measureµ′ and each partitionP′

k ∨ Q andQ

(for each partition with perhaps different threshold length). Now we letk → ∞, and
then the right hand of the last displayed equality simply converges toh(T |F,V), while
the left side remains within the rangeh(µ′,P′

k|Q)±ε, (h(µ′,P′
k|Q) = h(µ′,P′

k ∨Q|Q)
is the usual measure-theoretic conditional entropy involving two partitions; this we do
exactly as in the proof of Lemma 8.3.21). Since every subset of X of measure larger
thanσ contains setsF (images ofG as described above) for arbitrarily smallε, the
application of the infimum over such sets and then supremum overσ leads to

h(T, |µ,V) = lim
k

↑ h(µ′,Pk|Q).

This equality extends to all measuresµ via integrating over the ergodic decomposition
(the function on the right is harmonic, the one on the left is harmonic by definition).
The functionµ 7→ h(µ′,Pk|Q) is now a composition of the continuous mapµ 7→ µ′

with the conditional entropy function for two clopen covers, which, as we know very
well, is upper semicontinuous. So,h(T, |µ,V) is of Young classLU.

(3) It remains to extend the result to generals systems. We change the meaning of
the notation: from now on(X,T,S) will denote a general topological dynamical sys-
tem, while(X ′, T ′,S) will be its principal zero-dimensional extension (see Theorem
7.6.1). We have a continuous surjectionπ : K′ → K between Choquet simpices
K′ = MT ′(X ′) andK = MT (X). We fix a finite open coverV of X and we letV′ de-
note its lift. As we have shown in the preceding step, the function f(µ′) = h(T ′|µ′,V′)
is an increasing limit of some upper semicontinuous and affine (hence harmonic) func-
tions, sayfk(µ′). The pushed-down functionsf [K]

k maintain these two properties (see
Fact A.2.22). It is an elementary observation, that the operation push-down preserves
increasing limits (it is a matter of exchanging two suprema). Thusf [K] = lim ↑ f [K]

k .
This monotone limit is obviously of Young classLU, and, by the Lebesgue Monotone
Theorem, it is a harmonic function. Lemma 8.3.18 implies that f [K](µ) coincides with
h(T |µ,V) on ergodic measures, and, since both functions are harmonic, they coincide
everywhere.
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9 Exercises in Chapter 9

Exercise 9.1.

Example 9.3.6 is the one. Here EH = eh, hencehsex(T ) = h(T ) thushres(T ) = 0.
On the other hand, the measureµ0 =

P
k 2−kµ(Bk+1) (playing the role of the point

b in Example 8.2.17) has obviously entropy zero, while EH at this measure is1. So,
hres(µ0) = 1 > hres(T ).

Exercise 9.2.

This is well known. There is only one invariant measure, the normalized Lebesgue
measure. Any partitionP of the circle in two arcsI1, I2 (no matter how we attach the
endpoints) has the small boundary property and generates (via the dynamics). So, this
one partition suffices to build the zero-dimensional principal extension, which becomes
a subshift (the closure of theP-names). With small boundary property, the standard
zero-dimensional extension is not only principal but even isomorphic.

Exercise 9.3.

Although the system looks even more trivial than the preceding one, this exercise is a
bit more intricate. Since this system has no small boundary property, we must first lift it
to a product with something minimal of entropy zero. LetX denote the product of[0, 1]
with the unit circle (also viewed as[0, 1], but with endpoints glued together). On this
space we apply the product dynamics of the identity times some fixed irrational rotation
(by somes): T (t, x) = (t, x+ s). This system is a principal extension of([0, 1], id,S)
(for both cases ofS). Take the partitionP into two sets separated by a skew line
crossing all vertical sections (for instancey(t) = 1

4 + t
2 ) and the horizontal liney = 0.

Label the bottom set by0 and the top set by1. The ergodic measures onX areδt × λ,
and it is obvious that the boundary ofP (the dividing lines) has measure zero for all
such measures. So,P has small boundary. Moreover, this partition generates (via the
dynamics) inX. So, this one partition suffices to build the zero-dimensional principal
extension, which becomes a subshiftY (the closure of theP-names). This extension
is isomorphic to the product system (for every invariant measure), but obviously not to
the base system([0, 1], Id,S).

As a matter of fact, this principal symbolic extension is a disjoint union of Sturmian
subshifts (over the same rotation, but different arc partitions), and the factor map
π : Y → [0, 1] associates to everyy sucht that 1

4 + t
2 is the density of zeros iny.

We skip proving this.

Exercise 9.4.

We must copy the construction of Example 9.3.5 except that there must be two er-
godic measures supported by the first row and withk growing to infinity, the measures
supported by thekth row must approach the average of the two measures in the first
row. So, we take two bilateral uniquely ergodic subshiftsX0 andX1 (say, over disjoint
alphabets), each of entropy 1, and we denote their measures by µ0 andµ1, respec-
tively. We choose blocksBk appearing inX0 with lengths increasing withk, so that
µ(Bk) → µ0 and we chooseCk analogously inX1 (the length ofCk should be the same
as that ofBk). Now we letX consist of all symbolic arrays obeying the following rules:
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1. The first rowx1 of x either belongs toX0 or to X1 or it has the form
x(k) = . . . BkCkBkCkBkCk . . . .

2. If the first row isx(k), then thekth row ofx is an element ofX0.

3. All other rows are filled with zeros.

Now there are two ergodic measures of entropy1 (plus some periodic measures) sup-
ported by the first row and for eachk there are finitely many measuresµk,i supported
by matrices with nontrivialkth row. All these measures are isomorphic toµ0 joined
with a periodic orbit, so all of them have entropy1. These measures accumulate at
the measure12 (µ0 + µ1), because for largek short blocks in the1st row occur half
of the time with the frequency as inBk, and half of the time with the frequency as in
Ck, while other rows are filled with zeros, except one very distant row, which we can
ignore for the weak-star distance. The structure of Example8.2.18 is now copied.

Exercise 9.5.

Of course, we could build a system whose simplex of invariantmeasures is a Bauer
simplex spanned by the unit interval and the entropy structure restricted to ergodic
measures copies the sequence(hk) in Exercise 8.1 (the pick-up stick game on a dense
sequence). Instead, we will describe the example proposed by Mike Boyle in the early
90’s, before entropy structures were introduced, and the lack of symbolic extensions
was proved using topological methods. This example triggered the development of the
theory of symbolic extensions. Below it is adapted to the language of symbolic arrays.

LetX consist of 0-1 symbolic arrays obeying the following rules:

1. The1st rowx1 of x is arbitrary. Ifx1 is not periodic then all other rows are filled
with zeros.

2. If x1 is periodic with minimal periodk1 then we allowx1+k1 to be arbitrary. If
x1+k1 is not periodic then all other rows are filled with zeros.

3. If x1+k1 is periodic with minimal periodk2 then we allowx1+k1+k2 to be arbi-
trary. If x1+k1+k2 is not periodic then all other rows are filled with zeros.

4. and so on...

Every ergodic measure is supported by arrays with only one aperiodic row, hence its
entropy is at mostlog 2 and so is the topological entropy of the system.

SupposeY is a symbolic extension via a factor mapπ : Y → X. Then, for eachk
the compositionπk of π with the projection onto the subshiftXk visible in thekth
row, as a factor map between two subshifts, is a sliding blockcode of some finite
horizonrk. Choose integersp1 andpi+1 = piqi (qi ∈ N), and definek0 = 1 and
ki = 1 + p1 + · · · + pi. By letting the numberspk grow fast enough we can easily
arrange thatrki

/pi+1 ≤ 1/3.
Let us focus only the rectangular blocksRj of lengthpj+1 extending overkj rows and
having, for eachi ≤ j, in row ki, periodic repetitions of some blockBi of lengthpi+1

(and zeros in all other rows). Note that all such rectangles are admitted in our system
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X. EveryRj has the following structure: in rows1 throughki−1 it hasqj repetitions
of one and the same rectangleRj−1 (of lengthpj) and in rowkj it has a completely
arbitrary blockBj . We will write Rj = [R

qj

j−1, Bj ]. For each rectangleRj we let
C(Rj) be the family of blocks of lengthpj+1 appearing inY “above”Rj (i.e., in the
preimage byπ of the cylinder associated toRj , at the same horizontal coordinates as
Rj ). We letLj denote the minimal cardinality ofC(Rj). Also, we let

C(R
qj

j−1) =
[
Bj

C([R
qj

j−1, Bj ])

(the family of blocks admitted “above”Rqj

j−1). Notice that if two rectanglesRj differ
in the “central parts” (denotedB′

j) of Bj , of lengthpj+1 − 2rkj
≥ pj+1/3, then their

familiesC(Rj) are disjoint (because the blocksB′
j are completely determined via the

block code by the considered blocks inY ). Since there are at least2pj+1/3 different
blocksB′

j , we obtain that, for anyRj−1,

#C(R
qj

j−1) ≥ 2
pj+1

3 Lj .

On the other hand, givenRj−1, each block in the familyC(R
qj

j−1) must be concatenated
exclusively from blocks belonging to one familyC(Rj−1). So,

#C(R
qj

j−1) ≤ (#C(Rj−1))
qj ,

which, combined with the preceding inequality (and the equality pj+1/qj = pj) yields

#C(Rj−1) ≥ 2
pj

3 L
1

qj

j .

Because this holds for anyRj−1, we have obtained the inductive dependence

Lj−1 ≥ 2
pj

3 L
1

qj

j .

Let us iterate this inequality two times:

Lj−2 ≥ 2
pj−1

3 L
1

qj−1

j−1 ≥ 2
pj−1

3 2
pj−1

3 L
1

qjqj−1

j = 22
pj−1

3 L

pj−1

pj+1

j .

Iteratingj times we get

L0 ≥ 2j
p1
3 L

p1
pj+1

j ≥ 2j
p1
3

(recall that the index0 refers to the family of one-row rectanglesR0 in row k0 = 1
of lengthp1, and henceL0 is at most the cardinality of all blocks of lengthp1 in Y ).
Because the above holds for everyj, we have proved that the cardinality of all blocks
of lengthp1 in Y is unbounded. A contradiction.

Remark. In this example the simplex of ergodic measures and the entropy structure
do not resemble those of Exercise 8.1. The picture is more like the one in Exercise 8.3,
but with infinite order of accumulation (however, one has to take a quotient space to see
such a structure). The measures of positive entropy are supported by arrays with finitely
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many (sayj−1) periodic rows and one nonperiodic row. These measures (after suitable
identification) correspond the points with topological order of accumulationj. When
the index of the last aperiodic row grows, the correspondingmeasures accumulate at
measures with one row less (this resembles the situation in Example 9.3.5). But we
also have “backward” accumulation points (when the order ofaccumulation grows).
This corresponds to letting the the number of nonzero rows grow. These accumulation
points are measures supported by some odometers.
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Part 3

11 Exercises in Chapter 11

Exercise 11.1.

Recall thatHµ(F|G) is defined in (11.2.1) asHµ(F ⊔ G) − Hµ(G). Thus (11.2.2) is
implied byHµ(F ⊔ G) ≥ Hµ(F) (in presence of the trivial familyO, these two are
in fact equivalent). From now on, this exercise appends Exercise 1.3 by reversing one
of its implications (recall, we assumedH(a ∨ b) ≥ H(a) andH(a|b) ≥ H(a|b ∨ c),
i.e., (11.2.2) and (11.2.3) and we were to deriveH(a ∨ b|c) ≤ H(a|b) + H(b|c) i.e.,
(11.2.10)).

We proceed as follows:

Hµ(F|G ⊔ H) = Hµ(F ⊔ G ⊔ H) −Hµ(G ⊔ H) =

Hµ(F ⊔ G ⊔ H) −Hµ(G ⊔ H) −Hµ(G) +Hµ(G) = Hµ(F ⊔ H|G) −Hµ(H|G) ≤
Hµ(F|G) +Hµ(H|G) −Hµ(H|G) = Hµ(F|G).

Exercise 11.2.

We have

T l(Fn) = (T l
F)n =

l+n−1G
i=l

T i
F

thus
Fl+n = Fl ⊔ (T l

F)n

Using (11.2.2) withH = O, and (11.2.11), we obtain

Hµ((T
l
F)n) ≤ Hµ(F

l+n) ≤ Hµ(F
l) +Hµ((T

l
F)n).

We now divide both sides byl + n and takelim sup asn tends to infinity. The mid-
dle expression becomeshµ(T ,F) while both the left and right hand sides become
hµ(T ,T

l
F).

Exercise 11.3.

Notice that(Fn)m, where the exponentm refers to the action ofT n equalsFnm (in
the notation referring toT ). Any naturalk equalsnm − i, where0 ≤ i ≤ n − 1 and
then, as in the preceding exercise,

Fnm = Fi ⊔ (T i
F)k

and
Hµ((T

i
F)k) ≤ Hµ(F

nm) ≤ Hµ(F
i) +Hµ((T

i
F)k)).

Now we divide both sides byk and applylim sup ask tends to infinity. The extreme
terms becomehµ(T ,T

i
F), which, by the preceding exercise, equalshµ(T ,F). For
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the middle term we note that in the limit1/k can be replaced by1/nm (wherem tends
to infinity) and we obtain1

nhµ(T
n,Fn). This proves the first equality in Fact 11.2.6.

The second equality follows in a standard way from two facts:the supremum over all
F applied tohµ(T

n,Fn) gives not more thanhµ(T
n) because it takes into account

only families of the formFn. On the other hand it gives not less, becauseF ⊂ Fn and
thushµ(T

n,F) ≤ hµ(T
n,Fn).

Exercise 11.4.

This and the next exercises are general facts concerning doubly stochastic operators
and have nothing to do with entropy.

SupposeT be a doubly stochastic operator operator. As we know (see (11.2.21)),

T (f ∨ g) ≥ T f ∨ T g.

If T is invertible,T−1 is easily seen to be a doubly stochastic operator as well, so,
applyingT−1 to both sides, and applying the above inequality forT−1, we obtain

f ∨ g ≥ T−1(T f ∨ T g) ≥ T−1T f ∨ T−1T g = f ∨ g.

Thus, the first above inequality is an equality, and, applying to it T , we get

T (f ∨ g) = T f ∨ T g.

By a symmetric argument,T preserves the operation∧. In this manner this exercise
has been reduced to a particular case of the next one.

Exercise 11.5.

It is obvious that pointwise generated operators preserve lattice operations. Notice
that characteristic functions (i.e., assuming only the values0 and1) are precisely these
functionsf for which

f = 2f ∧ 1.

Thus a doubly stochastic operator which preserves the lattice operations (and it always
preserves constants), sends characteristic functions to characteristic functions. It re-
mains to show that then it is pointwise generated. Recall, thatT is a doubly stochastic
operator onL1(µ), where(X,A, µ) is a standard probability space.

If T sends characteristic functions to characteristic functions, then it induces a map,
sayT, fromA into itself. SinceT preserves integrals with respect toµ, T preserves the
measureµ. By linearity and preservation of the constant1I, T preserves set operations,
and by the Lebesgue Dominated Theorem, also countable unions (up to measureµ).
So, T is a homomorphism fromA to some sub-sigma-algebraB = T(A) ⊂ A. It
is well known that in standard spaces any such homomorphism is associated with a
measure-preserving mapT : X → X by the formulaT(A) = T−1(A). (Rougly, this
map is defined (almost everywhere) as follows: a single point{x} is almost surely sent
by T to an atom ofB. This atom creates the preimageT−1(x).)
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Perhaps we have a good opportunity to clarify an issue concerning doubly stochastic
operators in general. Something that wasn’t clearly said inthe book. We have men-
tioned that a transition probability always determines a stochastic operator, and that not
all stochastic operators are such. What we have not said, is this

Fact: every doubly stochastic operator is in fact determined by a transition probability.

Proof. First, each doubly stochastic operatorT determines a shift-invariant measure
µ on the countable product spaceXN0 (interpreted as the space of trajectories), by the
following formula (it suffices to define the measure on cylindersA0 ×A1 × · · ·×An):

µ(A0 ×A1 × · · · ×An) =

Z
1IA0

T (· · ·T (1IAn−2
T (1IAn−1T 1IAn

)) · · · ) dµ.

In order to produce the transition probabilityP (x, ·) it now suffices to take the disinte-
gration measureµx of µ with respect to the sigma-algebra on the coordinate0 atx and
apply it to the sets depending on the coordinate1. We skip the tedious but straightfor-
ward verification thatµ is indeed a shift-invariant probability measure on the product
sigma-algebra, and that the stochastic operator associated with so defined transition
probability preservesµ and coincides onL1(µ) with T .

The above fact opens yet another way to prove that doubly stochastic operators sending
characteristic functions to characteristic functions arepointwise generated. We need to
show that the transition probabilitiesP (x, ·) are almost surely point-massesδy and
then the associated map will bex 7→ y.
By assumption, for every measurable setA, the function(T1IA)(x) =

R
1IAP (x, dy)

takes on almost surely only the values0 and1. At almost every point this is true for
a countable family of setsA that generates the sigma-algebra. This already implies
thatP (x, ·) is concentrated at one point (otherwise at least one set fromthe generating
family would have an intermediate measure value).

Exercise 11.6.

We have

Θm,t,s(f)(x) = 1 ⇐⇒ m((f(x) − t) ∧ (s− f(x))) ≥ 1

⇐⇒ f(x) ∈ [t+ 1
m , s− 1

m ]

Θm,t,s(f)(x) = 0 ⇐⇒ (f(x) − t) ∧ (s− f(x)) ≤ 0 ⇐⇒ f(x) /∈ (t, s).

Thus1I{t+ 1
m

≤f≤t− 1
m

} ≤ Θm,t,s(f) ≤ 1I{t<f<s} (we have already proved (11.2.26))

and the extreme functions disagree only whenf ∈ (t, t + 1
m ) ∪ (s − 1

m , s). Thus the
L1(µ) distance betweenΘm,t,s(f) and1I{t<f<s} does not exceed the measureµ of the
set of points for whichf falls into this intervals. Including the internal endpoints leads
to a not smaller value, hence the inequality (11.2.27) holds.
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Exercise 11.7.

It is easy to see thatT n(f)(x) = 1
2n f(σnx) + 2n−1

2n

R
f dµ for everyf ∈ L1(µ).

Thus T n(f) converges to the constant
R
f dµ, implying that the entropyhµ(T ) is

zero. On the other hand, iff0(x) = x0 then T n(f0)(x) = 1
2n f(xn) + 2n−1

2n
1
2

and(T n(f0))
−1(κ) equals thenth coordinate partition. Thus, the partition generated

jointly by (T i(f0))
−1(κ) for i = 0, 2 . . . , n− 1 equals the partition into the blocks of

lengthn, which has static entropyn log 2.

12 Exercises in Chapter 12

Exercise 12.1.

(i) is clear using Definition 12.1.2, since a familyF of continuous functions on the
factor lifts to a familyF′ of continuous functions onX, and for each coverV the
preimageF−1(V) lifts to F′−1

(V). Recall that the cardinality of a minimal subcover is
preserved under preimage of a continuous surjection.

(ii) is now obvious, as conjugate systems are factors of each-other.

(iii) is best seen using Definition 12.1.3. Each familyF of continuous functions on
Y prolongs to a familyF ′ on X and then every(dF, ε)-separated set inY remains
(dF′ε)-separated inX. Also note that, by invariance ofY , for eachn we can use
T n(F′) as a prolongation ofT n(F).

(iv) The proof is analogous to that in Exercise 11.3 (withoutsubadditivity we must
cope withlim sup, hence the simple way as in Fact 6.2.3 cannot be applied). We only
outline the steps. Let us use Definition 12.1.1 for a change. We begin by proving an
analog of Exercise 11.2:h1(T ,T

l(F), ε) = h1(T ,F, ε). This is done the same way
as that exercise with⊔ replaced by the ordinary union of families andHµ(F) replaced
by H1(F, ε). Monotonicity (the analogue of (11.2.2)) and subadditivity (the analog of
(11.2.11)) are now obvious properties of joining the coversUε

F
.

Next we follow Exercise 11.3. with the same substitutions.

Exercise 12.2.

We haveT nf = 1
2n

�Pn
k=0

�n
i

�
f ◦ σn+i

�
, which is the convex combination of the

functionsf ◦ σj with coefficients as in the binomial (1/2,1/2)-distribution on [n, 2n].
The differenceT nf −T n+1f is thus a combination of the same functions with coeffi-
cients as in the difference of binomial distributions on[n, 2n] and on[n + 1, 2n + 2].
Skipping the precise calculations, we agree that this difference is a signed distribution

on [n, 2n+2] whose absolute value has small total mass, ifn is large (see the figure: the
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red “tops” represent the positive atoms of the difference distribution, the blue “tops”
are negative). Thus, sincef is bounded, the differencesT nf − T n+1f converge to
zero uniformly asn → ∞. To complete this exercise, we will prove a more general
fact.

Fact: If F consist of functionsf such that the differencesT nf − T n+1f converge to
zero uniformly asn→ ∞, thenh2(T ,F,V) = 0 for any coverV of the interval.

Proof. Fix someδ > 0. For eachV ∈ V defineVδ = {t : d(t, V c) < δ} ⊂ V and
let Vδ = {Vδ : V ∈ V}. Notice that ifδ < Leb(V)/2 thenVδ still covers the entire
interval and it is inscribed inV. Thus, for everyf : X → [0, 1], f−1(Vδ) < f−1(V).
Moreover, if‖g − f‖ < δ theng−1(Vδ) < f−1(V). So, if the assumption onF is
satisfied, then for eachk, we have

(Tn(F))−1(Vδ) <

k−1_
i=0

(Tn+i(F))−1(V),

if n is larger than somenk. Now, in the expression
Wm−1
i=0 (T i(F))−1(V) defining

(Fm)−1(V), we can gruop the terms as follows (assumingm = nk + rk + s, where
s ≤ k):

(Fm)−1(V) =

nk−1_
i=0

(T i(F))−1(V)∨
r−1_
j=0

 
k−1_
i=0

(T nk+jk+i(F))−1(V)

!
∨
s−1_
i=0

(T nk+rk+i(F))−1(V) 4

nk−1_
i=0

(T i(F))−1(V) ∨
r_
j=0

(T nk+jk(F))−1(Vδ)

The number of covers involved above isnk+r. Since each of them has at most#F#V

elements, the static entropylogN
�
(Fm)−1(V)

�
is at most

(nk + r)(log #(F) + log(#V)).

Dividing by m, lettingm grow to infinity and remembering thatr < m/k while nk
does not grow withm, we obtain

h2(T ,F,V) ≤ 1
k (log #(F) + log(#V)).

Sincek in this argument is arbitrary, we conclude that this entropyis zero.

Now, in our exercise, the above holds for everyF hence the topological entropyh2(T )
is zero. The last question is answered using “half” of the variational principle (The-
orem 12.3.1): for every invariant measure ofT , the measure-theoretic entropy of the
corresponding doubly stochastic operator is zero, as well.
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Exercise 12.3.

For p ∈ [0, 1] let pp denote the probability measure on{0, 1} assigningp to {0} and
1−p to{1}. Fory = (yn) ∈ [0, 1]N0 letµ(y) = py1×py2×. . . . It is easy to see that the
mapy 7→ µ(y) is a homeomorphism between[0, 1]N0 and its image, which is a subset
of M({0, 1}N0). It is also immediately seen how the operatorT ∗ dual to the operator
T induced onC({0, 1}N0) by the shift map acts on this image:T ∗µ(y) = µ(σy). We
have shown, that the “hipersystem”(M({0, 1}N0),T ∗) of the full unilateral shift on
two symbols contains a subsystem conjugate to the full shifton [0, 1]N0 . Since the
latter obviously has infinite topological entropy, so does the hypersystem, although the
full shift on two symbols has finite entropy.

Exercise 12.4.

The proof should roughly follow the standard way, however, there might be some tech-
nical issues. I decided to leave this exercise open.
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