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Abstract

Let T be a continuous map on a compact metric space (X, d). A pair
of distinct points x, y ∈ X is asymptotic if limn→∞ d(T nx, T ny) = 0. We
prove the following four conditions to be equivalent: 1. htop(T ) = 0;
2. (X, T ) has a (topological) extension (Y, S) which has no asymptotic
pairs; 3. (X, T ) has a topological extension (Y ′, S′) via a factor map
that collapses all asymptotic pairs; 4. (X, T ) has a symbolic extension
(i.e., with (Y ′, S′) being a subshift) via a map that collapses asymptotic
pairs. The maximal factors (of a given system (X, T )) corresponding to
the above properties do not need to coincide.

Notational conventions: We will consider dynamical systems given by the iter-
ates of a single transformation T of the space X into itself. If we regard only
the forward iterates Tn with n ≥ 0, (T 0 is, by convention, the identity map),
then we denote the system by (X,T, N0), while the notation (X,T, Z) indicates
that T is necessarily invertible and we observe its both forward and backward
iterates Tn with n ∈ Z. In statements valid for both types of systems we will
denote the system by (X,T, S) understanding that S ∈ {N0, Z} represents both
options. When speaking about factors and extensions we will always require
that the factor and the extension have the same S.

1 Introduction

In ergodic theory of probability measure preserving transformations, one of the
central problems is the classification into systems of entropy zero (deterministic
systems) and those with positive entropy. We can consider five conditions which
are well known to be equivalent for a measurable system (X,A, µ, T, S) (as can be
easily deduced from the definition of the Kolmogorov-Sinai entropy, the Krieger
Generator Theorem and the characterization of the Pinsker sigma-algebra in
processes with finitely many states):
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1. The Kolmogorov-Sinai entropy of (X,A, µ, T, S) is zero;

2. The sigma-algebra A equals the full Pinsker sigma-algebra of the system,
defined as the join

∨
P ΠP , over all finite partitions P of X, of the Pinsker

sigma-algebras ΠP in the processes generated by P (recall that ΠP =⋂
n≥0 P

∞
n ), where P∞

n =
∨

i≥n T−iP).

3. The system occurs as factor of another system (extension), such that the
(lifted) sigma-algebra A is contained in the full Pinsker sigma-algebra of
the extension.

4. The system occurs as factor of a process over a finite partition P, and the
(lifted) sigma-algebra A is contained in the Pinsker sigma-algebra ΠP of
the extending process.

5. Every subinvariant sub-sigma-algebra F of A (i.e., such that T−1(F) ⊂ F)
is invariant (i.e., T−1(F) = F), in other words, the transformation in every
factor of the forward action (X,A, µ, T, N0) is invertible.

There have been several attempts to create analogs of determinism (and
of the Pinsker factor as well) in topological dynamics. Let us mention some:
Furstenberg [F] calls a topological dynamical system (X,T, S) “deterministic”
when its topological entropy htop(T ) is zero. This is an obvious analogy to
the first above measure-theoretic understanding of determinism. Kaminski,
Siemaszko and Szymanski [K-S-S] consider another class: they call a system
“topologically deterministic” whenever the transformation in every topological
factor of the forward action (X,T, N0) is invertible (a homeomorphism). This
idea clearly follows the analogy to the criterion 5 above. The authors show that
their definition leads to a proper subclass of the class of systems with topo-
logical entropy zero. Blanchard, Host and Maass ([B-H-M]) assign the term
“deterministic” to equicontinuous systems (which is obviously an even smaller
class).

In this paper we will define three more topological notions of determinism,
analogous to the remaining three of the listed characterizations of entropy zero
in ergodic theory (items 2–4 in the above list). All of them are expressed in terms
of asymptotic pairs and factors/extensions. Then we will show that, just like in
ergodic theory, these three notions coincide with topological entropy zero. This
fact can be considered yet another analogy between measure-theoretic and topo-
logical dynamics. At the same time, it provides three new criteria for topological
entropy zero, shedding some new light on this popularly used property. Notice
that asymptotic pairs is a much simpler concept than “exponential growth of
(n, ǫ)-sepatared sets” or than entropy pairs, used so far to distinguish between
zero and positive topological entropy in general topological dynamical systems.

The analogy does not reach further, to the notion of Pinsker factor. Our
approach allows to define four types of topological analogs of the Pinsker factor;
they are all topological factors (of a given topological system (X,T )) maximal
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with respect to some property. At the end of the paper we mention them and
the fact that these factors in general do not coincide.

2 Pinsker-like systems

Before we introduce our classes of systems, we recall an elementary definition
from topological dynamics.

Definition 2.1. A pair of distinct points 〈x, y〉 in a topological dynamical sys-
tem (X,T, S) is (forward) asymptotic if

lim
n→∞

d(Tnx, Tny) = 0.

Suppose we want to mimic the notion of the Pinsker sigma-algebra from
ergodic theory. For a process generated by a finite partition P, this sigma-
algebra equals ΠP =

⋂
n≥1 P

∞
n . If a function f on X is ΠP -measurable then

its value f(x) at x = (x(n))n∈S is (almost surely) determined by the unilateral
sequence x[n,∞) starting at any positive n.

In topological dynamics an analog of a process over a finite partition is a
symbolic system (subshift) over a finite alphabet Λ. The following definition
attempts to copy the measure-theoretic concept of measurability of a factor of
a process generated by a finite partition P, with respect to the Pinsker sigma-
algebra ΠP : the image of each point x via the topological factor map should be
determined by the unilateral sequence x[n,∞) starting at any positive n.

Definition 2.2. Let (X,T, S) be a subshift. A topological factor (Y, S, S) of
(X,T, S) (with a factoring map π : X → Y ) is Pinsker-like if

∀x,x′∈X ∀n∈N x[n,∞) = x′[n,∞) =⇒ π(x) = π(x′).

In other words, π collapses asymptotic pairs.

The last phrasing of this condition can be applied not only to subshifts: fac-
tors that collapse asymptotic pairs can be considered in any topological dynami-
cal system. They will also be called Pinsker-like factors. One has to realize, that
there is an (a priori) essential difference between Pinsker-like factors of subshifts
and of arbitrary systems. A pair 〈x, x′〉 in a subshift is asymptotic whenever
it is “ǫ-asymptotic”, i.e, when lim sup d(Tnx, Tnx′) < ǫ for a sufficiently small
epsilon. In general systems asymptoticity cannot be weakened this way. The
requirement that a factor map collapses all asymptotic pairs is stronger for sub-
shifts (than for general systems) because it means that all “ǫ-asymptotic” pairs
are already collapsed. We will distinguish two seemingly new classes of topo-
logical systems, as defined below, by analogy to the characterizations 4 and 3
of measure-theoretic determinism listed in the introduction:

Definition 2.3. We will call a topological dynamical system (X,T, S) (strongly)
Pinsker-like (PL) if there exists a subshift, such that (X,T, S) is its Pinsker-
like factor. A system (X,T, S) is weakly Pinsker-like (WPL) if it occurs as a
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Pinsker-like factor of any topological dynamical system (not necessarily a sub-
shift).

Both classes PL and WPL (of strongly and weakly Pinsker-like systems,
respectively) are closed under taking factors, which follows from the completely
trivial observation below:

Lemma 2.4. Let π be a topological factor map (between two topological dynam-
ical systems) which is a composition of several factor maps, at least one of which
is Pinsker-like. Then π is Pinsker-like.

Proof. Just observe that any factor map sends an asymptotic pair either to an
asymptotic pair or collapses it.

3 NAP-systems

We will now introduce yet another class of systems, by analogy to the second
characterization of measure-theoretic determinism (item 2 in the introduction).
A measure-theoretic system is deterministic if it is its own Pinsker factor (via
the identity map). In our analogy, this would mean that a topological system
should be its own Pinsker-like factor, via identity, i.e., that identity collapses
all asymptotic pairs. This is possible only in systems which simply do not have
(distinct) asymptotic pairs. This leads to the following class:

Definition 3.1. A topological dynamical system (X,T, S) is called NAP (no
asymptotic pairs) if it has no asymptotic pairs.

The class of NAP systems is not closed under taking factors. There is a
quite complicated example in [B-H-S]. From the results of the next section it
will follow that any nonperiodic subshift of entropy zero has a NAP extension,
while nonperiodic subshifts are never NAP (this elemntary fact goes back to
1969, [B-W]). Below we give a very simple explicit example:

Example 3.2. There exists NAP-system (X,T, Z), which has a nontrivial fac-
tor (Y, S, Z) in which all distinct pairs are asymptotic.

Proof. We begin with describing the factor system. We let (Y, S, Z) be the one-
point compactification of the integers with the map n 7→ n + 1 (and ∞ 7→ ∞).
It is obvious that all distinct pairs in this system are asymptotic. The extension
(X,T, Z) is a subsystem of the product space Y ×T, where T is the circle treated
as the additive group [0, 1) with addition modulo 1. On this space we introduce
the following action: we fix an irrational number α ∈ (0, 1) and we define T by
the formula

T (〈n, t〉) = 〈n + 1, t + α + 1
n
〉 (for n = 0 we simply skip 1

n
).

Note that on the invariant circle {∞} × T we have the irrational rotation by
α. We restrict the system to this invariant circle and the two-sided orbit of
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the point x0 = 〈0, 0〉. It is easy to see that we obtain a closed invariant set X
on which T is a homeomorphism, extending (Y, S, Z). It remains to show that
there are no asymptotic pairs in X.

If a pair 〈x, x′〉 consists of two points from the invariant circle, then the
distance between Tn(x) and Tn(x′) is constant (i.e., does not depend on n). If
x belongs to the circle and x′ is on the single orbit outside the circle then the
projection of Tn(x′) onto the circle rotates by the varying angle α + 1

n
, while x

rotates by the constant angle α. The differences 1
n

decrease to zero, but form a
divergent series, so it is easy to see, that this pair of points behaves proximally
([A]), but not asymptotically. Finally consider a pair 〈x, x′〉 where both points
are outside the invariant circle. Then x = Tm(x0), x′ = Tm+k(x0), for some
m ∈ Z and a positive integer k. The projections of the points Tn(x) = Tm+n(x0)
and Tn(x′) = Tm+n+k(x0) onto the circle differ by

kα + 1
m+n

+ 1
m+n+1

+ · · · + 1
m+n+k−1

.

The finite sum of the harmonic series visible in the above formula decreases to
zero as n grows, hence the distance between such pair converges to kα (mod 1).
Because α is irrational, for any k this limit is positive. So such a pair is not
asymptotic either.

Clearly, the transformation in every NAP-system is injective, so it is a home-
omorphism on the surjective part of the system. But there are invertible sys-
tems that are not NAP (for example nonperiodic bilateral subshifts). It is easy
to see that every system topologically deterministic in the sense of Kaminski,
Siemaszko and Szymanski is NAP, but not vice-versa.

Since the class of NAP-systems is not closed under taking factors (which
makes it a poor analog of the measure-theoretic class of deterministic systems),
it is reasonable to enlarge this class by admitting all factors of NAP-systems.
Such enlarged class (denoted FNAP) is going to be our last topological analog
of determinism, corresponding to the property 2 in the introduction.

4 Equality between the classes

Leaving aside the class of topologically deterministic systems in the sense of
Kaminski, Siemaszko and Szymanski (which is essentially smaller than the class
of all systems with topological entropy zero), we have distinguished four classes
of systems, each closed under taking factors, each being a topological analog of
measure-theoretic determinism: systems with topological entropy zero (TEZ),
Pinsker-like systems (PL), weakly Pinsker-like systems (WPL), and finally sys-
tems with no asymptotic pairs and their factors (FNAP). Our main result fol-
lows:

Theorem 4.1.

TEZ = PL = WPL = FNAP .
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The inclusion FNAP ⊂ WPL is obvious: a factor of a NAP system is its
factor via a map that collapses all asymptotic pairs (because there are none).
The inclusion PL ⊂ WPL is trivial. The inclusion WPL ⊂ TEZ has been proved
by Blanchard, Host and Ruette [B-H-R]. It remains to show the inclusions TEZ
⊂ PL and TEZ ⊂ FNAP. This is done in the two lemmas below, which we
formulate in the “universal language”, i.e., without using our abbreviations:

Lemma 4.2. Every topological dynamical system (X,T, S) with topological en-
tropy zero is a factor of a subshift with topological entropy zero, via a factor
map that collapses all asymptotic pairs.

Lemma 4.3. Every topological dynamical system (X,T, S) with topological en-
tropy zero is a factor of a zero-dimensional system with no asymptotic pairs.

Since nonperiodic symbolic systems always possess asymptotic pairs, except
the periodic case, the NAP extension must not be symbolic. This is why there is
no trivial inclusion between the classes FNAP and PL. The equality is obtained
via the class TEZ.

Before the proofs of the above lemmas let us say a few words about zero-
dimensional dynamical systems. By an easy exercise, every such system (X,T, S)
can be represented in the following symbolic-array form: every element of X
is an array x = [xk,n]k∈N,n∈S′ , where S

′ ∈ {N0, Z} (the index set S
′ need not

match the acting set S; in case S
′ = Z we say that the arrays are bilateral), and

there are finite sets Λk (alphabets) such that xk,n ∈ Λk for all k and n. The
transformation T on X is the horizontal shift S([xk,n]) = [xk,n+1].

An elementary example of a zero-dimensional system is an odometer. The
simplest way to define an odometer is via inverse limits: let p = (pk)k∈N be a
sequence of integers such that pk+1 is a multiple of pk. Let Zk = Z/pkZ with
the transformation Sk(z) = z + 1 mod pk. For each k ≥ 1 the system (Zk, Sk) is
a topological factor of (Zk+1, Sk+1) via the congruence mod pk. The odometer
to base (pk) is defined as the inverse limit of the sequence of systems (Zk, Sk).
Formally, it is the set

Gp = {(zk)k∈N : ∀k zk ∈ Zk, zk = zk+1 mod pk},

with the transformation T ((zk)k) = (zk + 1 mod pk)k. In the symbolic-array
form every element of the odometer is a bilateral array over two symbols: “empty
space” and “division marker” (pictured as a short vertical line on the left side
of the empty space), such that in row number k the division markers appear
periodically: one every pk positions, and the markers in row k + 1 are allowed
only at the coordinates n where the division markers occur in the row k.

The next tool are principal zero-dimensional extensions. The following is
true: every topological dynamical system has a zero-dimensional (bilateral)
principal extension. We will not need the full generality of the meaning of
the word ,,principal”. In case (X,T, S) has topological entropy zero, an exten-
sion (Y, S, S) of (X,T, S) is principal whenever it also has topological entropy
zero. The existence of such an extension is guaranteed in several ways: one of
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them uses Mean Dimension Theory by E. Lindenstrauss and B. Weiss ([L-W],
[L]) and is described in detail in [B-D]. An alternative method is newly proved
in [D-H]. Passing to the product with an odometer, we can always assume
that the elements of the extension are bilateral binary marked arrays. “Binary
marked” means that the arrays are essentially filled with zeros and ones, with
additional “division markers” occurring by the same rules as in the odometer.
The rectangular pk×k block occurring in rows 1 through k between the markers
in the last row of such a marked array will be called a k-rectangle. An example
of a binary marked array and a k-rectangle is shown on the Figure 1 below.

. . . 0 1 1 1 00 01 00 01 10 11 1 0 1 1 0 1 1 . . .

. . . 1 1 0 1 10 11 10 01 11 10 1 1 0 0 1 0 1 . . .

. . . 0 1 0 0 11 01 10 10 11 00 1 1 0 0 0 1 1 . . .
. . . 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 . . .

...
...

...

Figure 1: A binary marked array (the base (pk) starts with p1 = 2, p2 = 6, p3 =
12, . . . . The boldface numbers form a 3-rectangle.

Proof of Lemma 4.2. The construction of symbolic extensions is in general a
difficult task, discussed at length in [B-D]. The proof here is an exercise in
constructing symbolic extensions in the easiest case of entropy zero systems. By
Lemma 2.4, and the existence of zero-dimensional principal extensions, it suffices
to build the desired extension in case (X,T, S) is zero dimensional, in form of
bilateral binary marked arrays. Let Rk,n denote the family of all rectangles of
height k and length n, appearing in the first k rows of X. Because the system has
entropy zero, the cardinalities of these families grow subexponentially with n, in
particular, for each k there exists nk such that log #(Rk,nk

) < nk2−k (and the
right hand side is an integer). By dropping some of the division markers we can
easily arrange that nk = pk, the length of the k-rectangles. After this is done we

let Rk denote the family of all k-rectangles, and we have #(Rk) < 2pk2
−k

. This
implies, that there exists an injective function (code) πk from all k-rectangles
into the family of all binary blocks of length pk2−k. We can now create the
symbolic extension. Initially it will be not precisely symbolic, as its elements
will consist of a pair: an element of the odometer (to base (pk)) and a symbolic
row. For each x ∈ X we create its “preimage”, y, as follows: we take the same
element of the odometer as is represented by the markers in x. The symbolic
row of y is filled inductively: above the left half of each 1-rectangle R of x we
put in y the image of R via the code π1 (this image has length exactly half of
the length of R). After this step “half” of y is filled with zeros and ones, leaving
the rest to be filled in the steps to come. In the following steps we apply an
additional twist: the image πk(R) of each k-rectangle R in x is placed not above
R, but instead, above the neighboring k-rectangle (to the right). The contents
of πk(R) is written there into the consecutive free slots in that sector (starting
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from the left). This will use only half of the free slots available, leaving the rest
to be used in the steps to come (see Figure 2).

Figure 2: Three first steps of the construction of the symbolic preimage y of x.
The arrows show where the information is stored.

It is easy to see, that after all steps are completed, depending on the posi-
tioning of the markers, the symbolic row of y is either completely filled, or there
remain some unfilled slots. We fill these slots in every possible way, producing
multiple preimages for x; this causes that (Y, S, S) is not conjugate to (X,T, S),
only it is a topological extension. We skip the standard description of the factor
map from Y to X, which relies on simply uncoding all the k-rectangles from the
contents of appropriate places in the symbolic row of y, located with the help
of the odometer part of y.

Now consider two different arrays x and x′ in X. If they have different
positioning of the markers then they factor to two distinct elements of the
odometer. Any pair of their preimages y and y′ contains the same distinct
pair of elements of the odometer. Since the odometer is distal (the map is an
isometry in an appropriate metric), such elements are never asymptotic. Now
suppose x and x′ have the same structure of markers. They must still differ at
at least one position (k, n). This implies that for every k′ ≥ k the k′-rectangles
covering this position in x and x′ are different. Then they have different images
by πk′ . It is thus clear that the symbolic preimages y of x and y′ of x′ (any
choice of a pair of such preimages) will differ at infinitely many positions tending
toward infinity. In other words, y and y′ cannot be (forward) asymptotic. We
have proved that asymptotic pairs 〈y, y′〉 must have a common image in X.

Now we calculate the topological entropy of the extension (Y, S, S). Clearly
the odometer has entropy zero, so we only need to compute the entropy of
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the symbolic row, and here it suffices to count the blocks occurring between
neighboring pairs of k-markers. Take a block B in some y ∈ Y , lying between
two consecutive k-markers. Its content is almost completely determined by
the k-rectangle of the image x, positioned directly below B. This rectangle
determines all but pk2−k+1 entries in B. This implies that the number of all
such blocks B is at most the number of all k-rectangles in X (which is not

larger than 2pk2
−k

) times 2pk2
−k+1

. The logarithm of this product divided by
the length pk goes to zero with k. Thus htop(S) = 0.

To complete the construction we must replace the odometer in the con-
struction of Y by something symbolic. The standard method is to extend the
odometer to a binary Toeplitz system of entropy zero (see e.g. [D] for a survey
on Toeplitz systems). Such an extension induces an extension of Y to a symbolic
system with two rows; the element of the odometer will be now replaced by a
symbolic row containing an element of the Toeplitz system. By Lemma 2.4,
after this modification of Y , the property that the factor map onto X collapses
asymptotic pairs will be preserved. This ends the proof.

Proof. (of Lemma 4.3) This time the task is, for an arbitary system (X,T, S)
with topological entropy zero, to find a zero-dimensional extension which is
NAP (possesses no asymptotic pairs).

Here is how we construct the NAP extension. Let (X,T, S) be the initial
system (of entropy zero). By Lemma 4.2, there exists a bilateral subshift exten-
sion, also of entropy zero, say (Y1, S1, S), via a map π1 that collapses asymptotic
pairs. Applying the same theorem again, (Y1, S1, S) has a bilateral subshift ex-
tension (Y2, S2, S) via a map π2 that collapses asymptotic pairs. And so on.
We obtain a sequence of bilateral subshifts (Yk, Sk, S) bound by factor maps πk

that collapse asymptotic pairs. The zero-dimensional extension is obtained as
the corresponding inverse limit of subshifts. Suppose this inverse limit has an
asymptotic pair 〈y, y′〉. For each k ≥ 1 the image of this pair in Yk (denoted
〈yk, y′

k〉) is either an asymptotic pair or yk = y′
k. In either case, such pair is

collapsed by πk (for every k ≥ 1, in particular for each k ≥ 2), i.e., yk−1 = y′
k−1

for all k ≥ 2. We have shown that y = y′, so there are no (distinct) asymptotic
pairs in the inverse limit.

5 Hierarchy of maximal factors

With the above notions of topological determinism one can associate (at least)
four types of “maximal factors” (of a given topological dynamical system): the
maximal factor of entropy zero (so-called “topological Pinsker factor (TPF) –
it is determined by the smallest closed forward invariant equivalence relation
which contains all entropy pairs [B-L]), the maximal topologically deterministic
factor in the sense of Kaminski, Siemaszko and Szczepanski (TDF; it corre-
sponds to the intersection of all closed forward invariant equivalence relations
such that every closed forward invariant equivalence relation containing it is
also backward invariant), the maximal Pinsker-like factor (PLF, determined by
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the smallest closed forward invariant equivalence relation which contains all
asymptotic pairs) and the maximal NAP-factor (NAPF, whose existence can be
easily shown using inverse limits and Zorn’s Lemma). Unlike in the case of the
corresponding classes of systems, these four types of factors are all essentially
different, so this is where the analogy to ergodic theory ends.

Theorem 5.1. We have the following factorization

TPF 7→ MPLF 7→ MNAPF 7→ MDF .

These four types of factors are essentially different.

Proof. Let us first explain the factorizations: The maximal Pinsker-like factor
has entropy zero, so it factors through the topological Pinsker factor. The
maximal NAP factor is NAP, so the factor map leading to it must collapse all
asymptotic pairs (the image of a not collapsed asymptotic pair is an asymptotic
pair). So it is Pinsker-like, thus it factors through the MPLF. The MDF factor
is deterministic in the sense of [K-S-S], so it is NAP, and hence it factors through
the maximal NAP factor.

The first arrow is not by identity in any zero entropy system that possesses
asymptotic pairs (for example in a nonperiodic subshift of entropy zero). The
second arrow is not by identity in Example 5.2 below. The third arrow is not by
identity in any NAP system which is not deterministic (like the one in Example
3.2).

Example 5.2. There exists a bilateral subshift (X,T, Z) such that the maximal
Pinsker-like factor (Y, S, Z) is not NAP.

Proof. Let (X,T, Z) be the orbit-closure (in the Z-action) of the following (bi-
lateral) sequence over two symbols:

x = . . . 11111110000000111110000011100010111000111110000011111110000000 . . .

In addition to the countable orbit of this sequence, the system contains also the
points

a = . . . 000000111111 . . . , b = . . . 111111000000 . . .

and their countable orbits, and the fixpoints

c = . . . 000000 . . . , d = . . . 111111 . . .

The dynamics of this system is shown on the figure below.
It is elementary to see, that all points in the orbit of a are asymptotic to the

fixpoint d, and all points in the orbit of b are asymptotic to c. The maximal
factor collapsing asymptotic pairs must also collapse the pair 〈c, d〉, because the
corresponding relation must be closed. So, all points a, b, c, d and their orbits
are collapsed to one point. That is all. No other collapsing is necessary (we
leave it to the reader). So obtained factor looks exactly the same as the factor
(Y, S, Z) in Example 3.2: it is a one-point compactification (by a fixpoint) of a
single discrete orbit. As before, all pairs in this factor are asymptotic, so this
maximal factor is not NAP.
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Figure 3: The dynamics in the example. The backward orbit of the central point
is not shown. It is more or less symmetric to the forward orbit.
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nology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

e-mail: downar@pwr.wroc.pl

Institut des Sciences de l’Ingénieur de Toulon et du Var, Avenue G. Pompidou,
B.P. 56, 83162 La Valette du Var Cedex, France

e-mail: yves.lacroix@univ-tln.fr

12


