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Abstract

We prove that every topological dynamical system (X,T ) has a
faithful zero-dimensional principal extension, i.e. a zero-dimensional
extension (Y, S) such that for every S-invariant measure ν on Y the
conditional entropy h(ν|X) is zero, and, in addition, every invariant
measure on X has exactly one preimage on Y . This is a strengthening
of the result in [D-H] (in which the extension was principal, but not
necessarily faithful).

1 Introduction

All the terms used in the introduction are standard, nonetheless they
are explained in the Preliminaries. Given a topological dynamical sys-
tem (X,T ) in the form of the action of the iterates of a continuous
transformation T on a compact metric space X, it is of interest to re-
place it by another, more familiar system, easier to describe and han-
dle. One of the possibilities is to lift (i.e. extend) the system to some
(Y, S), whose phase space Y is zero-dimensional. Any zero-dimensional
system admits a pleasant symbolic array form in which every point is
represented as an infinite array filled with discrete symbols. This rep-
resentation allows one to apply many methods of symbolic dynamics,
for instance to calculate the topological entropy or the entropies of the
invariant measures, and, in fact, many other invariants. In case we find
such a system (Y, S), we say, that we have found a zero-dimensional
extension. It is an elementary exercise to show that every system has
a zero-dimensional extension. On the other hand, we are naturally
interested in minimizing the “distance” between the original system
(X,T ) and its extension (Y, S). There are at least two ways in which
this minimization can be performed:
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1. We may be interested in minimizing, for each invariant measure
µ on X, the increase of entropy as we lift that measure to an
invariant measure ν on Y .

2. We may want that for each µ on X there exist a unique lift ν on
Y .

The increase of entropy specified in 1. is measured by the condi-
tional dynamical entropy h(ν|X). In case µ has finite dynamical en-
tropy, this conditional entropy simply equals the difference h(ν)−h(µ),
but the conditional notation is universal. The best one can get in the
category 1. is a principal extension, i.e., such that h(ν|X) = 0 for every
invariant measure ν on Y . An extension which satisfies the postulate
2. will be called here a faithful extension.

One may also ask whether there exists an extension that satisfies
a stronger version of postulate 2., namely that for each µ on X there
exist a unique lift ν on Y and that (Y, ν, S) is measure-theoretically iso-
morphic to (X,µ, T ). Such an extension is called isomorphic. Clearly,
an isomorphic extension is automatically principal and faithful.

For invertible systems (i.e., such that T is a homeomorphism) with
finite topological entropy and satisfying an additional assumption that
it has a nonperiodic minimal factor, the existence of zero-dimensional
isomorphic extensions has already been established as a consequence
of the deep results in mean dimension theory developed by E. Lin-
denstrauss and B. Weiss ([L-W] and [Li]). Every such system satisfies
the so-called “small boundary property”, which allows to rather easily
construct its zero-dimensional isomorphic extension. If the assump-
tion about the existence of a minimal factor is dropped, the above
theory still allows to easily build a zero-dimensional principal (but
not necessarily faithful) extension: It is elementary to see that the
direct product with any system of zero topological entropy is a prin-
cipal extension and that the composition of two principal extensions
is a principal extension. Thus, an arbitrary (invertible) system of fi-
nite topological entropy is first extended to its direct product with
some infinite minimal system of zero topological entropy (for example
an irrational rotation of the circle, or an odometer) and since such a
product already has a minimal nonperiodic factor, it can be isomor-
phically extended to a zero-dimensional system.

Lindenstrauss provided examples showing that both assumptions
(finite entropy and minimal factor) are essential for the small boundary
property ([Li]). Thus, for systems with infinite entropy, even those
which admit a minimal nonperiodic factor, we cannot hope to prove
the existence of an isomorphic zero-dimensional extension.

In [D-H] we have shown that a principal zero-dimensional extension
can be constructed for any topological dynamical system. However,

2



this extension was almost certainly not faithful, let alone isomorphic.
In the present paper we strengthen this result, showing that any topo-
logical dynamical system has a faithful, principal zero-dimensional ex-
tension. The construction is in fact very similar to the one in [D-H]
and the constructed extension is essentially the limit of a sequence of
block codes.

Historically, the term principal was probably first used by F. Ledrap-
pier in [Le]. The construction of a principal extension for systems of
finite topological entropy via the mean dimension theory was heavily
exploited in [B-D] in the theory of symbolic extensions. The detailed
description of the passage from the small boundary property to the
principal extension can be found in [D1] (in earlier papers it is consid-
ered more or less obvious and left to the reader).

2 Preliminaries

2.1 Basic notions

Dynamical systems. Throughout this work a dynamical system
will be a triple (X,T, S), where X is a compact metric space with
metric d, T is a continuous map on X (invertible or not) and S ∈
{Z,Z+ ∪ {0}} is the index set, depending on whether we consider both
the negative and positive iterates of T (i.e. the action on X of Z) or
only positive ones (i.e. the action on X of Z+∪{0}) — our final result
applies in both cases, but a few details of the proof differ, so we need
to be able to make the distinction. For brevity, where the index set or
transformation are obvious or irrelevant, we will omit them.

Factors, extensions and conjugacies. A dynamical system
(X,T, S) is a factor of the dynamical system (Y, S,S) if there exists a
continuous map π from Y onto X such that T ◦ π = π ◦ S. In this
situation we also say that Y is an extension of X. If the map π is a
homeomorphism, we say that X and Y are conjugate.

2.2 Zero-dimensional dynamical systems

A dynamical system (Y, S,S) is called zero-dimensional if Y is a zero-
dimensional space, i.e. if it has a base consisting of sets which are
both closed and open. A particularly important class of such systems
are symbolic systems over an uncountable alphabet which we will call
array systems and which are constructed as follows: Let Λk be a finite
set with discrete topology and let Yc =

∏∞
k=1 ΛS

k. The points of Yc
can be thought of as arrays {yk,n}k≥1,n∈S

where yk,n ∈ Λk. With the
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action of the horizontal shift S (i.e. (Sy)k,n = yk,n+1) Yc becomes a
zero-dimensional dynamical system. An array system is any closed,
shift-invariant subset Y of such a Yc.

A j by m rectangle will mean a rectangle of height j and width
m, that is a finite matrix C = (Ck,n) , k = 1, . . . , j; n = 0, . . . ,m− 1,
with Ck,n ∈ Λk. Any such rectangle C can be identified with a cylinder
in Y in the standard way: y ∈ C iff yk,n = Ck,n, k = 1, . . . , j; n =
0, . . . ,m− 1.

2.3 The marker lemma

The following lemma is a standard tool in zero-dimensional dynamics,
the proof and several generalizations can be found e.g. in [D2].

Lemma 2.1. Let (X,T,Z) be zero-dimensional topological dynamical
system without any periodic points. For every n ≥ 1 there exists a
clopen set F such that:

1. T−i(F ) are pairwise disjoint for i = 0, 1, . . . , n− 1.

2. X =
⋃n−1
i=−n+1 T

−i(F ).

2.4 Invariant measures

Denote the set of all probability measures on the sigma-algebra of
Borel subsets of X by M(X). It is a compact, metrizable, convex set.
The map T induces on M(X) a continuous map (which we also denote
by T ) by the formula (Tµ)(B) = µ(T−1(B)) (for Borel sets B). Let
MT (X) be the set of all T -invariant probability measures on X, i.e.
such that Tµ = µ. This is a nonempty, closed and convex subset of
M(X). The extreme points of MT (X) are ergodic measures, i.e. the
ones for which any invariant set has measure either 0 or 1. We will
denote the set of ergodic measures by Me

T (X).
For a measure µ ∈ M(XC) we define

A
T
n (µ) =

1

n

(

µ+ Tµ+ . . .+ Tn−1µ
)

.

For x ∈ X the symbol δx denotes the point mass at x. We will later
need the following two facts, both of which are fairly obvious:

Fact 2.2. For any n the set MT (X) is within the closure of the convex
hull of the set

{

A
T
n (δx); x ∈ X

}

.

Fact 2.3. Let U be an open subset of M(X) containing MT (X).
There exists an N such that for any n > N and any x ∈ X the
measure A

T
n (δx) is in U .
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Let (Y, S) be an array system and let d be a metric consistent with
the weak-star topology on MS(Y ). We will make use of the following
standard fact:

Fact 2.4. Let µ, ν ∈ MS(Y ). For any ε > 0 there exist δ > 0 and
j, k > 0 such that if

|µ(C) − ν(C)| < δ

for all j by k-rectangles C, then d(µ, ν) < ε.

2.5 Entropy

We recall the basic definitions and facts of the entropy theory of dy-
namical systems. Let (X,T ) be a dynamical system and let µ ∈
MT (X). For any finite partition A of X into measurable sets we
define the entropy of a partition as

H(µ,A) = −
∑

A∈A

µ(A) lnµ(A).

Hn(µ,A) =
1

n
H(µ,An),

where An =
∨n−1
j=0 T

−j(A). The sequence Hn is known to converge to
its infimum, which allows one to define

h(µ,A) = limHn(µ,A).

Finally the entropy of a measure is given as

h(µ) = sup
A

h(µ,A),

where the supremum is taken over all finite partitions of X.
If A and B are two finite partitions of X, then we can define the

conditional entropy of A with respect to B as

H(µ,A|B) =
∑

B∈B

µ(B)H(µB ,A),

where µB(A) ∈ M(X) is defined by µB(A) = µ(A|B) for all Borel
sets. Then we can proceed to define

Hn(µ,A|B) =
1

n
H(µ,An|Bn).

Again, the sequence Hn is known to converge to its infimum, which
allows one to define

h(µ,A|B) = limHn(µ,A|B).
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Suppose now that we have a system (Y, S) that is an extension of
(X,T ) by a map π. Let ν be an invariant measure on Y . Any partition
B of X can be lifted to a partition π−1B of Y . Define

h(ν,A|X) = inf
B
h(ν,A|π−1B),

where the infimum is taken over all finite partitions of X. Finally,
define

h(ν|X) = sup
A

h(ν,A|X),

where once again the supremum is taken over all finite partitions of Y .
If the image πν of ν by the factor map π has finite entropy, then it is
not difficult to see that h(ν|X) = h(ν) − h(πν).

We will make use of the following fact.

Fact 2.5. Let Y be an array system and let X be a factor of Y . Let
Rk be the partition defined by cylinders of height k and length 1. Then
for any measure ν on Y we have h(ν|X) = limk h(ν,Rk|X).

To see that it is so, it suffices to observe two facts. Firstly, that the
family {Rk} together with its images under iterates of S generates the
Borel σ-algebra on Y . Secondly, if j < k then Rj ≺ Rk, and therefore
h(ν,Rj |X) < h(ν,Rk|X).

We recall the key definition from the Introduction:

Definition 2.6. Suppose a dynamical system (Y, S) is an extension
of the system (X,T ) via the map π. (Y, S) is a principal extension if
h(ν|X) = 0 for every ν ∈ MS(Y ).

If (X,T ) has finite topological entropy, then by the variational
principle πν has finite entropy for each ν in MS(Y ) so the extension
is principal if and only if h(ν) = h(πν) for each ν. In particular (Y, S)
has the same topological entropy as (X,T ) (this holds also in case of
infinite entropy).

2.6 Continuity of the entropy functions

In the main proof we will consider entropy as a function of the mea-
sure, and we will need several basic facts about the continuity of this
function which we state without proof. First of all:

Fact 2.7. The function µ 7→ µ(A) on M(X) is upper semicontinuous
if A is closed and lower semicontinuous if A is open.

Since µ(Int(A)) ≤ µ(A) ≤ µ(A) and the three are equal if the
boundary of A has measure 0, we have the following:
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Fact 2.8. The function µ 7→ µ(A) on M(X) is continuous at every µ
such that µ(∂A) = 0.

Using the fact that the limit defining h(µ,A|B) is also the infimum,
we easily arrive at the following:

Fact 2.9. For any finite partitions A,B of X the function µ 7→ h(µ,A|B)
on MT (X) is upper semicontinuous at every µ such that µ(∂A) = 0
for every A ∈ A and µ(∂B) = 0 for every B ∈ B.

Finally:

Fact 2.10. If (Y, S) is an extension of (X,T ) and A is a finite par-
tition of Y , then the function µ 7→ h(µ,A|X) on MS(Y ) is upper
semicontinuous at every µ such that µ(∂A) = 0 for every A ∈ A.

To observe that, note that h(µ,A|X) is the infimum of any sequence
h(µ,A|Bn), provided that the diameter of the largest set in Bn tends
to 0. Since we can construct partitions into sets of arbitrarily small
diameter that all have boundaries whose measure µ is 0, Fact 2.10 now
follows.

3 The main result

Theorem 3.1. Any topological dynamical system has a faithful zero-
dimensional principal extension.

Remark 3.2. Moreover, the extension we construct has no periodic
points.

The proof of theorem 3.1 will occupy the remainder of this section.
Let (X,T, S) denote the dynamical system for which we will be

constructing the desired extension. Without loss of generality we can
assume that T is invertible. Indeed, if T is surjective, we can simply
replace the system by its natural extension (which is principal and
faithful). If T is not surjective, we can replace X by the set

X ′ = (X × Z+) ∪ {∞}

and define a metric d′ on it as follows (with the original metric on X
denoted by d):

d′((x1, n1), (x2, n2)) =

∣

∣

∣

∣

1

n1
−

1

n2

∣

∣

∣

∣

, if n1 6= n2,

d′((x1, n), (x2, n)) =
1

n
d(x1, x2),

d′((x, n),∞) =
1

n
.
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In other words, X ′ can be seen as infinitely many copies of X arranged
in a sequence and shrinking to a single point. Now, we define the action
T ′ on X ′ as follows:

T ′(∞) = ∞,

T ′(x, n) = (x, n− 1), if n > 1,

T ′(x, 1) = (Tx, 1).

Now T ′ is surjective onX ′, and, with the exception of the measure con-
centrated on the fixed point ∞, all T ′-invariant measures are supported
by the set X×{1}, so they are the same as the original measures on X.
The system (X ′, T ′,S) has a natural extension. If we now construct
a faithful zero-dimensional principal extension of (X ′, T ′,S) (via the
natural extension), then the system on the preimage of X×{1} will be
a faithful zero-dimensional principal extension of (X,T, S). Therefore,
from now on we will assume T to be invertible.

Let I denote the one-dimensional torus, i.e. the interval [0, 1] with
the endpoints identified, and let λ be the Lebesgue measure on I. Any
function f : X → [0, 1] induces a partition Af of X × I into two
sets: {(x, t) : 0 ≤ t < f(x)} and {(x, t) : f(x) ≤ t < 1} (i.e. the sets of
points below and above the graph of f). For a family F of functions
we denote by AF the partition

∨

f∈F Af . Two useful observations are
that AF∪G = AF ∨ AG and that F ⊂ G implies AF ≺ AG .

Let R0 be some irrational rotation of I, chosen completely arbitrar-
ily but fixed throughout this paper. Let Aj be a sequence of partitions
of X×I, each of which is induced by a finite family of continuous func-
tions Fj such that Fj ⊂ Fj+1. Let ηj be the diameter of the largest
set in Aj (in the product metric on X × I). We will require that
2ηj+1 < ηj (which obviously implies that the ηj tend to 0). We will
also request that (T ×R0)

−1(Aj) ∨ Aj ∨ (T ×R0)Aj ≺ Aj+1.
Let π(1) denote the projection of X×I onto X. Consider the space

of all formal arrays y = yj,n (j ≥ 1, n ∈ S), such that yj,n ∈ Aj (we
treat each finite partition Aj as the alphabet in row j). For an array
y define the sets Kj,n(y) =

{

x ∈ X : d(x, π(1)(yj,n)) ≤ ηj
}

. (Kj,n(y)
is the ηj-neighborhood of the projection onto X of the cell of AFj

appearing as a symbol in y at the position (j, n)). An array y will be
said to satisfy the column condition if for each n the sequence Kj,n(y)
is descending (as j increases). Since the diameter of Kj,n tends to 0
with j, the column condition implies that the intersection

⋂∞
j=0Kj,n(y)

is a single point in X which we will denote by xn(y). Note that xn(y)
is within ηj of each set π(1)(yj,n) – a fact that will be useful later.

Now, let YC be the space of all arrays y satisfying the column
condition with the additional requirement that xn+1(y) = T (xn(y)). It
is easy to see that with the action of the horizontal shift S, YC forms a
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continuous extension of (X,T ), where the factor map is πX(y) = x0(y)
(by which we mean xn(y) for n = 0). We will construct the desired
faithful zero-dimensional principal extension, Y , as a subsystem of
YC which will in some sense be the limit of an auxiliary sequence of
(disjoint) mutually conjugate subsystems Yk ⊂ YC . We will define Yk
inductively, by constructing the maps Φk : Yk−1 → Yk (these maps will
in fact be block codes defined on rectangles of some order). The main
goal will be to ensure that for any k and all k′ > k the set MS(Yk′) is
contained within an open set Uk ⊂ MS(YC), where the sequence {Uk}
(which we will also define inductively) satisfies the following properties:

U1. Uk+1 ⊂ Uk.

U2. For any k > 0 and any measure ν ∈ Uk we have h(ν,Rk|X) < εk,
(where, recall, Rk is the partition defined by cylinders of height
k and length 1).

U3. For any k > 0 and any two measures ν1, ν2 ∈ Uk the condition
πX(ν1) = πX(ν2) implies that d∗(ν1, ν2) < εk, where d∗ is a cho-
sen metric on MS(YC) consistent with the weak-star topology.

U4. For any k > 0, Uk does not contain any periodic measures of
period less than k.

To begin with, let Y0 be the closure of the set of array-names of
points inX×I under the action of T×R0 with respect to the partitions
Aj . In other words, Y0 is the closure of the set of all points y ∈ YC
such that for some pair (x, t) ∈ X × I and for any j and n we have
(Tnx,Rn0 t) ∈ yj,n. By a standard argument, Y0 is an extension of X×I
(we will denote the corresponding map by π0) as well as of X itself
and the following diagram commutes:

Y0

π0

{{xx
xx

xx
xx

x

πX

��

X × I
π(1)

##GG
GG

GG
GG

G

X

Let the set U0 be all of MS(YC) (all our requirements on the properties
of Uk only apply to the case k > 0).

There are two important observations to be made here: Firstly, the
only points in X × I that have multiple preimages under π0 are the
ones whose orbits enter the graph of a function from some Fj (we are
using the fact that the graphs of continuous functions are closed). The
product measure µ× λ of the graph of any function is 0 (recall that λ
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denotes the Lebesgue measure on the circle). Therefore whenever ν is
a measure on Y0 that factors onto a measure µ×λ on X × I, then the
set of points in X × I with multiple preimages by π0 has zero measure
µ× λ. This implies that the measure-theoretic systems (Y0, S, ν) and
(X × I, T × R0, µ × λ) are isomorphic and ν is a unique preimage of
µ×λ. Secondly, any j by n rectangle in Y0 is associated with a unique
cell of An

j , the closure of which is the image (by π0) of this rectangle.
We will now proceed to create the systems Yk, requiring them to

have the following properties:

Y1. For each k, MS(Yk) ⊂ Uk.

Y2. For each k, Yk = Φk(Yk−1), where Φk is a conjugacy, and there
exists an increasing sequence jk such that Φk leaves the rows with
indices greater than or equal to jk+1 unchanged.

Observe that the property (Y2) ensures that the diagram

Y0
oo

Φ0 //

π0

{{xx
xx

xx
xx

x

πX

��

Y1

πX

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

oo
Φ1 // Y2

πX

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

oo
Φ2 // · · ·

X × I
π(1)

##GG
GG

GG
GG

G

X

commutes and that for j ≥ jk we still have the one-to-one corre-
spondence between rectangles of size j by n in Yk and the cells of
An
j , since this correspondence depends only on the contents of row j.

Throughout, πk will denote the factor map of Yk onto X × I defined
by composing the factorization π0 of Y0 with the conjugacy between
Y0 and Yk.

To facilitate describing the steps of the induction (and demonstrat-
ing the properties of the obtained systems), we will endow YC (and thus
every Yk) with two additional rows, each of them over the alphabet
{0, 1, . . . ,∞}. We will call them the −1st row (the marker row) and
the −2nd row (the jump-point row). (To avoid accumulation of refer-
ences to the index zero, we do not define the 0th row.) These new rows
are purely auxiliary; they are determined by other rows, and whenever
we calculate entropies or the distance between measures, we ignore
them (that is, we technically calculate entropies and distances on the
factor of YC obtained by discarding these two rows). Furthermore,
for any Yk the marker and jump-point rows contain only symbols not
exceeding k, in particular in Y0 both rows consist entirely of zeroes.
We will say that a point y ∈ Yc has a marker of order l at position k if
y−1,n ≥ k. Let F ∗

k be the set of points that have a marker of order k
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at position 0 and let N∗
k be the smallest gap between markers of order

k for all y ∈ YC .
We proceed with the induction. Y0 (and U0) has already been

defined. Suppose we have defined the system Yk−1 and the set Uk−1

(and the numbers j1 through jk−1). Our task is to create the set
Uk satisfying the requirements (U1)-(U4) and a system Yk such that
MS(Yk) ⊂ Uk. Let Pk−1 be the set of all measures on Yk−1 that factor
by πk−1 onto measures of the form µ× λ on X × I. As stated above,
if ν ∈ Pk−1 and ν factors onto µ × λ, then (Y, S, ν) and (X × I, T ×
R0, µ×λ) are measure-theoretically isomorphic. It follows that for any
ν in Pk−1 we have

h(ν|X) = h(µ× λ|X) = 0,

so in particular hν(Rk|X) = 0. As we have noted earlier, h(ν,Rk|X)
is upper semicontinuous at ν, provided ν(∂R) = 0 for every R ∈ Rk.
This is the case for any ν since cylinders (being clopen) have empty
boundaries. Therefore every measure in Pk−1 has a neighborhood
where h(ν,Rk|X) < εk. Pk−1 is compact, so by choosing a finite
number of such neighborhoods covering Pk−1 we can simply assume
that there exists some neighborhood Vk of Pk−1 such that for any
measure ν ∈ Vk we have h(ν,Rk|X) < εk. Since Yk−1 is conjugate
to Y0, each µ × λ has a unique preimage on Yk, which is to say that
every measure µ on X has exactly one preimage in Pk−1. This implies
that there exists a neighborhood V ′

k of Pk−1 satisfying the condition
(U3). Finally, since the sets Pk−1 and the set of all periodic measures
with period up to k − 1 are closed and disjoint (Pk−1 contains no
periodic measures), there exists an open neighborhood V ′′

k of Pk−1

that does not contain any periodic measures with period up to k − 1.
It is clear that the set Uk = Uk−1 ∩ Vk ∩ V ′

k ∩ V ′′
k has the properties

(U1)-(U4). We must now construct the system Yk whose invariant
measures satisfy the condition (Y1), i.e. are all in Uk (also making
sure to satisfy the requirement (Y2)). In other words, we must ensure
that every invariant measure on Yk is close (in the space MS(YC))
to some measure on Yk−1 that factors onto a product measure of the
form µ× λ on X × I. To this end we will employ the following lemma
(which we copy from [D-H] with the proof):

Lemma 3.3. For any measure µ on X and any neighborhood Uµ×λ
of µ× λ in M(X × I) there exists a neighborhood Uµ of µ in M(X),
an irrational rotation Rµ of the one-dimensional torus and a number
Nµ such that for any (x, t) ∈ X × I and any n > Nµ the condition

A
T
n (δx) ∈ Uµ implies that A

T×Rµ
n (δ(x,t)) ∈ Uµ×λ.
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Proof: First note that for any measure µ in MT (X) there exists an
irrational rotation Rµ disjoint from µ (i.e. the only (T ×Rµ)-invariant
measure on X × I with marginals µ and λ is µ × λ). Indeed, if µ
is an ergodic measure and eα2πi is rationally independent from all its
eigenvalues, then the rotation of the circle by α is disjoint from µ.
Since an ergodic measure has at most countably many eigenvalues, for
any ergodic µ there exist at most countably many rotations that are
not disjoint from µ. If µ is not ergodic, denote its ergodic decompo-
sition by ξ (ξ is a measure on the set Me

T (X) of ergodic measures
on X) and consider the product Me

T (X) × I with the measure ξ × λ.
The set

{

(ν, α) : eα2πi is an eigenvalue of ν
}

is a measurable subset of
the product and has measure 0 (because all its vertical sections are
countable), so almost every horizontal section of this set has measure
0. Therefore there exists an α such that the measures for which eα2πi

is an eigenvalue have zero mass in the ergodic decomposition of µ.
Setting Rµ to be the rotation by α we obtain a rotation disjoint from
µ.

Suppose the statement of the lemma is not true. Then there exists
a sequence of measures A

T×Rµ
n (δ(xn,tn)) such that A

T
n (δxn) converge

to µ yet the A
T×Rµ
n (δ(xn,tn)) all lie outside Uµ×λ (remember that the

averaging in X × I is with respect to T × Rµ). Choose the limit ν of

some subsequence of A
T×Rµ
n (δ(xn,tn)). It is a T×Rµ-invariant measure

which is outside Uµ×λ and whose marginals are µ (being the limit of
A
T
n (δxn)) and λ (being the only Rµ-invariant measure on I). But the

only T ×Rµ-invariant measure with marginals µ and λ is µ×λ, which
is in Uµ×λ – a contradiction. �

Note that Y0 has the property that each of its elements is entirely
determined by its rows with indices larger than some j (this is true
for every j ≥ 1). Since Yk−1 is topologically conjugate to Y0 and has
the same rows from jk−1 onwards, every element of Yk−1 is entirely
determined by the rows from jk−1 onwards. Recall that the system
Yk−1 is equipped with two extra rows: the marker row labeled −1 and
the jump-point row labeled −2 (which we have not discussed yet, and
which are entirely zeros in Y0), which are determined by the positive-
indexed rows. From what was said in the preceding sentence, the
rows −1,−2 are determined by the rows from jk−1 onwards. It follows
that for any y ∈ Yk−1 we can determine yj,0 for j ≤ jk−1 (including
j = −1,−2) by looking at a large enough rectangle (symmetric about
column zero) in y, of size independent of y, contained in the rows from
jk−1 onwards.

Moreover, for j ≥ jk−1, the inequality (T × R0)
−1(Aj) ∨ Aj ∨

(T × R0)Aj ≺ Aj+1 means that each symbol determines the three
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consecutive symbols in the preceding row (i.e. knowing yj,m we know
yj−1,m−1, yj−1,m and yj−1,m+1). Therefore if we choose jk large enough,
the symbol yjk−1,0 alone suffices to determine the aforementioned rect-
angle in y, and thus to determine yj,0 for all j ≤ jk−1 (including
j = −1 and j = −2). Clearly, the symbols yj,0 for jk−1 < j ≤ jk − 1
are also determined by yjk−1,0. Concluding, for every y ∈ Yk−1 and
every n, the symbol yjk−1,n determines all the symbols yj,n for j =
−1,−2, 1, 2, . . . , jk − 1.

As the open set Uk contains the compact set Pk−1, there exists
some number ε such that the ε-neighborhood of Pk−1 is contained in
Uk. By increasing jk (if necessary) we can find δ and d0 such that if
two measures differ by less than δ on all rectangles of height jk− 1 (in
rows 1 through jk−1) and length d0 (call the family of these rectangles
Dk), then the distance between these measures is less than ε.

Let d be an integer so large that d0
d
< δ

5 . For any T d-invariant

measure µ on X the partition Ad0
jk−1 (where the “exponent” d0 refes to

the action of T rather than T d, i.e., Ad0
jk−1 =

∨d0−1
n=0 (T×R0)

−n(Ajk−1))
has boundaries of measure µ × λ equal to 0. Therefore there ex-
ists a neighborhood Uµ×λ of µ × λ in M(X × I) such that if ν ∈

Uµ×λ then |ν(A) − (µ× λ)(A)| < δ
5 for every A ∈ Ad0

jk−1. More-
over, by making, in necessary, Uµ×λ even smaller, we can also have
∣

∣(T j ×R0)(ν)(A) − (T j ×R0)(µ× λ)(A)
∣

∣ < δ
5 for j = 0, . . . , d− 1.

Applying Lemma 3.3 to Uµ×λ and T d, we obtain for every µ ∈
MT d(X) an open set Uµ around µ in M(X). Out of these we select a
finite family W of measures such that the union of Uµ, with µ ranging
over W, covers MT d(X) in M(X). The union of this cover is an open
set in M(X). There exists a number N such that every measure of

the form A
T d

N (δx) is in Uµ for some µ ∈ W (we are using Fact 2.3).
We can also assume that N is larger than the numbers Nµ of Lemma
3.3 for all µ ∈ W.

The system Yk−1 is aperiodic, since it is an extension of the aperi-
odic system (X × I, T ×R0). By applying the marker lemma (Lemma
2.1) to Yk−1 with the constant Nk = Nd, we obtain a set Fk (which
we can assume to be contained in the set F ∗

k−1) such that every point
of Yk−1 visits Fk with gaps between Nk and 2Nk. The set Fk decom-
poses into disjoint, clopen sets F 0

k , F
1
k , . . . , F

Nk

k , such that F ik consists
of points returning to Fk after exactly Nk + i steps. Each F ik can
in turn be decomposed into disjoint sets of the form F ik ∩ R, where

R ∈ RNk+i
jk

(i.e. all points in the same F ik ∩R have the same symbols
in rows 1 through jk between the coordinate 0 and the next occurrence
of the marker). Therefore we can decompose Fk into a family Ck of
disjoint clopen sets (of the form C = F ik ∩ R) such that all points in
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a chosen C ∈ Ck return to Fk after the same time and they all have
the same content of rows 1 through jk until that time. We will call
such sets k-rectangles. Notice that, by the above described rules of
determining the symbols in rows −1,−2, the k-rectangle also deter-
mines the symbols in these two rows at the corresponding horizontal
coordinates.

To summarize, all points in the same k-rectangle share the following
properties:

• They have a marker of order k at position 0.

• They all have the same symbols in rows 1 through jk between
coordinate zero and the next marker of order k.

• They all have the same content of the marker and jump-point
rows at the above coordinates.

• All the above is entirely determined by the last row jk between
coordinates zero and the next marker of order k.

Now, let C be a k-rectangle in Yk−1 and let NC be its length (i.e.
the shared return time to Fk for all points in C; a number between
Nd and 2Nd). Set N ′

C = ⌈NC/d⌉ (the number of non-overlapping
subblocks of length d in C). Since row jk has so far remained unaltered
(and it determines the other rows in C), πk−1(C) is the closure of a
single cell of ANC

k . We choose a point (xC , tC) from the (easily seen
to be nonempty) interior of this cell, and we choose µC ∈ W such

that A
T d

N ′

C
(δxC

) belongs to UµC
(this is possible since N ′

C ≥ N). We

can assume that (xC , R
i
µC
R−i·d

0 tC) (for all i = 0, 1, 2, . . . , N ′
C) does not

enter the boundary of any set from Ajk over 2Nk iterations of T ×R0.
This implies that, for each i as above, all preimages by πk−1 of

the point (xC , R
i
µC
R−i·d

0 tC) have a common k-rectangle (the content
of the rows 1 through jk at the coorinates 0 through NC). We denote
this k-rectangle by Ci (in particular, C0 = C).

We now establish the jump points of order k for C as follows: For
i = 1, . . . , N ′

C , let ni be the closest number to i · d such that:

• For each l < k, if we set Ll(i) to be the last marker of order l
before position ni in Ci−1, and Rl(i) to be the first marker of
order l after position ni in Ci, then both Rl(i)−ni and ni−Rl(i)
are greater than Nl

3 .

• With the notation as above, there are no jump points of order
greater than l between the positions Ll(i) and ni in Ci−1, and
between ni and Rl(i) in Ci.

In informal terms, ni is a position close to i · d that is “reasonably”
distant from all markers and does not fall between such pairs of con-
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secutive markers of order l, which are already separated by a jump
point of order greater than l (and smaller than k). It is not hard to
see that if Nk grow fast enough, such numbers ni exist, moreover, we
can assume that each ni differs from i ·d by no more than N∗

k−1 (recall
that N∗

k−1 is the smallest possible gap between markers of order k−1).
To make the notation in the following formula homogeneous, we also
let n0 = 0.

Now we define the image Φk(C) of C as follows: For each i =
1, . . . , N ′

C , in rows from 1 to jk − 1, we replace in C the content of the
columns ni up to (not including) ni+1 with the content of the same
columns from Ci, including markers and jump points. (Note that we
make no changes in row jk, the final row of C). Also, for every i (as
above) we put the symbol k at the position ni of the jump point row.
The mapping Φk (formally defined on k-rectangles) induces a map
on Yk−1 (which we will denote by the same symbol Φk) in a natural
way, as a code replacing k-rectangles by their images. Let Yk be the
image of Yk−1 by this block code. Note that the column condition is
preserved (hence Yk ⊂ YC): Since the code replaces the columns up to
row jk − 1 by other columns existing in Yk−1, it can only introduce a
violation of the column condition between rows jk−1 and jk. However,
observe that the symbols in an image k-rectangle Φk(C) appearing in
rows jk − 1 and jk at the same position n both correspond to cells (of
the partitions Ajk−1 and Ajk , respectively) whose projections on the
first coordinate both contain the point TnxC , which easily implies the
column condition.

We will now show that any invariant measure on Yk is in Uk. In
order to do this, it suffices to show that if C is a k-rectangle in Yk,
then any rectangle D ∈ Dk (of length d0) occurs in C with frequency
close to some νC(D), where νC ∈ Pk. For ease of calculation, we first
assume that the jump points in C are placed exactly every d positions,
i.e. that ni = i · d. Since d0

d
< δ

5 , the frequency of occurrences of D

in C (say, FC(D)) differs by at most δ
5 from the average frequency

of its occurrences in consecutive segments of length d, i.e. from the
expression

1

N ′
C

N ′

C−1
∑

i=0

FC[i·d,(i+1)·d−1](D).

However, due to the aforementioned correspondence between rectan-
gles and cells in the product,

FC[i·d,(i+1)·d−1](D) ≈ A
T×R0
d δ(T i·dxC ,Ri

µC
tC)(πk−1(D)),

because the bottom row of C[i · d, (i+ 1) · d − 1] is a fragment of the
orbit-name of the point (xC , R

i
µC
R−i·d

0 tC) under T × R0 with respect

15



to Ajk . The error of this approximation comes only from the “end
effect” and is at most d0

d
< δ

5 . Therefore,

FC(D)
2δ
5
≈

1

N ′
C

N ′

C−1
∑

i=0

A
T×R0
d δ(T i·dxC ,Ri

µC
tC)(πk−1(D)) =

=
1

N ′
C

N ′

C−1
∑

i=0





1

d

d−1
∑

j=0

1πk−1(D)(T
i·d+jxC , R

i
µC
Rj0tC)



 =

=
1

dN ′
C

N ′

C−1
∑

i=0

d−1
∑

j=0

1πk−1(D)(T
i·d+jxC , R

i
µC
Rj0tC) =

=
1

d

d−1
∑

j=0





1

N ′
C

N ′

C−1
∑

i=0

1πk−1(D)(T
i·d+jxC , R

i
µC
Rj0tC)



 =

=
1

d

d−1
∑

j=0

A
T d×RµC

N ′

C
δ
(T jxC ,R

j
0tC)

(πk−1(D)).

By lemma 3.3, A
T d×RµC

N ′

C
δ(xC ,tC) ∈ UµC×λ, which implies

A
T d×RµC

N ′

C
δ
(T jxC ,R

j
0tC)

(πk−1(D))
δ
5
≈ (T jµC × λ)(πk−1(D)).

Therefore,

FC(D)
3δ
5
≈

1

d

d−1
∑

j=0

(T jµC × λ)(πk−1(D)) =

=









1

d

d−1
∑

j=0

T jµC



 × λ



 (πk−1(D)).

Since 1
d

∑d−1
j=0 T

jµC is a T -invariant measure (as µC was T d-invariant),
we conclude that for every rectangle D ∈ Dk we have (provided that
d and then N were chosen large enough)

|FC(D) − νC(D)| <
3δ

5
,

where νC ∈ Pk is the unique measure on Yk−1 which projects onto
(

1
d

∑d−1
j=0 T

jµC

)

× λ. Recall that the above calculation was based on

the assumption that the jump points were exact multiples of d. Even
if that is not the case, each ni differs from i · d by less than N∗

k−1.
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Therefore, if
N∗

k−1

d
< δ

5 (which we can assume), the relative error in

ni ≈ i · d is also less than δ
5 , and thus in the general case

|FC(D) − νC(D)| <
4δ

5
.

If Nk is large enough, then for any invariant measure ν on Yk, ν(D)
differs by no more than δ

5 from some convex combination of the form
∑M

m=1 αmFCm(D) (with the αm and Cm depending only on ν, and

not on D). Therefore
∣

∣

∣
ν(D) −

∑M
m=1 αmνCm(D)

∣

∣

∣
< δ for all D. But

∑M
m=1 αmνCm ∈ Pk, and thus ν ∈ Uk, as requested.
We have now ensured that in Yk any rectangle D from Dk occurs

between two consecutive markers of order k with frequency close to
some product measure in X × I of the cell corresponding to D. How-
ever, in subsequent steps of the induction we will “cut” rectangles at
the jump points, which fall between markers. The way we choose the
jump points ensures that any rectangle between two markers of order
k will be cut at most once throughout the remaining steps and that
the cut will fall between 1/3 and 2/3 of its length. Therefore if we now
increase the length of k−rectangles so much that any D ∈ Dk will oc-
cur with controlled frequency over 1/3 of the new length, this property
will be preserved throughout the subsequent steps of the induction.

Given the above, let N∗
k = 3Nk

δ
and apply the marker lemma to Yk

with the constant N∗
k . We obtain a set F ∗

k which we can assume to be
a subset of Fk. For any y ∈ Yk, if Sn(y) ∈ F ∗

k , we put the symbol k in
the marker row. As a result, if C is any rectangle (in rows 1 through
jk) appearing in Yk, starting or ending at a marker k and extending at

least
N∗

k

3 to the right (resp. left) of it but not beyond the next marker
k, then for any D ∈ Dk FC(D) ≈ ν(D) (up to δ) for some ν ∈ Pk.
The rule of choosing the jump-points ensures that this last property
(involving the markers k) passes to elements of all systems Yk′ for all
k′ ≥ k.

We are now ready to define the desired faithful zero-dimensional
principal extension. First replace each Yk by a system obtained by
deleting the rows −1 and −2. Now set

Y =
∞
⋂

m=1

∞
⋃

k=m

Yk.

In other words, Y is the set of all points y such that y = limk yk,
yk ∈ Yk (without regard to markers and jump points).

Note that if k > k′, then any k′-rectangle in Yk is either ex-
actly some k′-rectangle from Yk′ (if it contains no jump points of
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order greater than k′) or a concatenation of fragments of two such
k′-rectangles, each being at least 1

3 (in length) of the original. Let ν
be any invariant measure on Y . For each large enough k, ν is well-
approximated by the periodic measure carried by some rectangle C of
height jk′ and length N > 2Nk′ . Since C must occur in some Yk, it is
a concatenation of segments of k′-rectangles from Yk′ (each such seg-

ment of length at least
N∗

k′

3 . This, however, means that any D ∈ Dk

occurs in C with frequency close to νk′(D) for some νk′ ∈ Pk′ , and
thus ν ∈ Uk′ .

Since any invariant measure on Y is in Uk for every k, Y obviously
has no periodic invariant measures due to property (U4).

To show that Y is a principal extension of X we need to show that
the conditional entropy of Y with respect to X is 0 for every measure
ν ∈ MS(Y ). For any k > 0 and for any k′ > k we have h(ν,Rk|X) ≤
h(ν,Rk′ |X), since Rk′ ≻ Rk. On the other hand, since ν is in the set
Uk′ , using the property U2, we know that h(ν,Rk′ |X) < εk′ . It follows
that for any k′ > k h(ν,Rk|X) < εk′ , and thus h(ν,Rk|X) = 0. Thus
we conclude that h(ν|X) = 0.

Similarly, since MS(Y ) ⊂ Uk for every k, using the property U3, if
two invariant measures on Y factor onto the same measure on X, then
they must be closer to each other than εk for all k, and thus every
invariant measure on X has exactly one preimage on Y . �

4 Final remarks

The result presented in this paper can be combined with the following
result of J. Serafin in [S], which uses the notion of extension entropy:
For a factor map φ : Y → X, we define

hφ
ext

(µ) = sup {h(S, ν) : ν ∈ MS(Y ) and φ(ν) = µ} .

The result of [S] can be phrased in two ways, the latter of which is
in terms of entropy structures and affine superenvelopes discussed in
[B-D]:

Theorem 4.1. Let (X,T ) be a finite entropy zero-dimensional dy-
namical system without periodic points, and let ψ : (Y, S) → (X,T )
be a symbolic extension. Then there exists another symbolic extension
φ : (W,S) → (X,T ) such that

1. hφ
ext

≡ hψ
ext

on MT (X);

2. Every measure in MT (X) has exactly one preimage in MS(W ).
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Theorem 4.2. Let (X,T ) be a finite entropy zero-dimensional dy-
namical system without periodic points, with a given entropy structure
H = (hk). Suppose that EA is a bounded affine superenvelope of H.
Then there exists a symbolic extension φ : (W,S) → (X,T ) such that

1. hφ
ext

= EA;

2. Every measure in MT (X) has exactly one preimage in MS(W ).

Combined with our Theorem 3.1, the above results yield the fol-
lowing corollaries:

Corollary 4.3. Let (X,T) be a finite entropy dynamical system and
let ψ : (Y, S) → (X,T ) be a symbolic extension. Then there exists
another symbolic extension φ : (W,S) → (X,T ) such that

1. hφ
ext

≡ hψ
ext

on MT (X);

2. Every measure in MT (X) has exactly one preimage in MS(W ).

Corollary 4.4. Let (X,T ) be a finite entropy dynamical system with
a given entropy structure H = (hk). Suppose that EA is a bounded
affine superenvelope of H. Then there exists a symbolic extension φ :
(W,S) → (X,T ) such that

1. hφ
ext

= EA;

2. Every measure in MT (X) has exactly one preimage in MS(W ).

In particular, note that we do not have to assume the lack of peri-
odic points in (X,T ), since the (intermediate) zero-dimensional system
we obtain in Theorem 3.1 has no periodic points, and thus we can im-
mediately apply the theorems of [S].
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