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Abstract

We establish certain topological and algebraic properties of rank
understood as a function on the set of invariant measures on a topo-
logical dynamical system. To be exact, we show that rank is of Young
class LU (i.e., it is the limit of an increasing sequence of upper semi-
continuous functions) and that the rank of a convex combination of
mutually singular measures equals the sum of their ranks.

1 Introduction
For a topological dynamical system (X, T ), where X is a compact
metric space and T : X → X is continuous, we consider the setMT (X)
of all T -invariant Borel probability measures on X. It is well known
that this is a nonempty, compact metric (in the weak-star topology),
convex set, whose extreme points are precisely the ergodic measures
(the collection of which we denote by exMT (X)). Moreover, MT (X)
is in fact a Choquet simplex, that is, every invariant measure µ admits
a unique representation as an integral average of the ergodic measures
(the ergodic decomposition). Thus, the system (X, T ) gives rise to
what we call an assignment, a function Ψ whose domain is a simplex
K, and “values” are ergodic measure-preserving systems identified up
to isomorphism. Every such assignment is determined by its restriction
to the set exK of extreme points of K; the restriction assumes only
ergodic “values” and the entire assignment can be reconstructed from
Ψ|ex K according to the ergodic decomposition.

Trying to understand the interplay between topological and mea-
surable dynamics, one encounters the following natural problem: char-
acterize these abstract assignments that can be realized in topological
dynamical systems.
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At the moment the complete solution of this problem seems beyond
our reach. There should exist some “continuity” or at least “measura-
bility” obstructions, but we have at our disposal no good topological or
measurable structure in the collection of classes of measure-preserving
systems modulo isomorphism. Nonetheless, we can produce a number
of necessary consitions by studying the behavior of some isomorphism
invariants with values in more friendly spaces. For instance, it is fairly
intuitive, that if we consider an isomorphism invariant in form of a
real number r (for example the Kolmogorov-Sinai entropy or rank),
then r(Ψ) should be measurable on the simplex K. Indeed, in any
topological system the entropy function h : MT (X) → [0,∞] is not
only measurable; it is a nondecreasing limit of upper semicontinuous
functions (i.e., of Young class LU), see [DS].1 Since (except on some
domains, e.g. discrete or countable) not every nonnegative function is
of class LU, the entropy obstruction is nonvoid; it implies that not all
possible assignments are admissible in topological systems.2

Following the same lines of investigation, in this paper we will
seek for an obstruction related to another real-valued (in fact integer-
valued) isomorphism invariant, namely the rank (as defined by Orn-
stein, Rudolph and Weiss in [ORW]). Notice that rank distinguishes
systems of zero Kolmogorov-Sinai entropy, hence any obstruction that
we find is complementary to the entropy obstruction.

Although its definition does not require ergodicity, rank has been
studied mainly for ergodic systems. So, we will begin by examining
how does rank react to convex combinations of mutually singular mea-
sures (and more general integral averages). We discover that instead of
being affine (which is impossible for integer-valued functions) is obeys
certain “additive rule”. Next, we will show that just like the entropy
function, the rank function is also of Young class LU. This restricts
nontrivially the variety of assignments which assume “values” with en-
tropy zero at uncountably many extreme points.

1The entropy function is also affine. In [DS] it is shown that there are no other en-
tropy obstructions: every affine LU function h : ex K → [0,∞] defined on any metrizable
Choquet simplex can be modeled as the entropy function in a topological system.

2Interestingly, it has been proved (independently in [KO] for homeomorphisms an in
[D1] for continuous maps) that if the simplex K has at most countably many extreme
points then every assignment Ψ on K assuming ergodic but not periodic “values” on the
extreme points (and extended to the rest of the simplex by averaging) can be realized in
a topological (even minimal) system. This is in no collision with the entropy obstruction;
on a countable set every function is of class LU. Notice that this fact generalizes the
celebrated Jewett–Krieger Theorem, which can be viewed as a special case concerning the
one-point simplex.
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2 Preliminaries
Let (X,B, µ) be a probability space. All subsets of X considered below
are assumed to be measurable, and all partitions are (measurable and)
finite.

Definition 2.1. We say that a sequence of partitions {Pm}m≥1 se-
quentially generates if, given any set A and ε > 0, for every large
enough m there exists a set Am being a union of elements of Pm, such
that µ(Am4A) < ε.3

Given a partition P of X and a subset Y ⊂ X, the symbol P|Y
denotes the partition {P ∩ Y : P ∈ P} of Y .

Definition 2.2. For partitions P and Q we will write P Âε Q if there
exists a set Yε of measure at least 1− ε such that P|Yε Â Q|Yε (i.e., P
refines Q relatively on Yε).

A fairly straightforward proof of the following statement is left to
the reader as an exercise:

Lemma 2.3. A sequence of finite partitions {Pm}m≥1 sequentially
generates if and only if, given any finite partition Q and ε > 0, we
have Pm Âε Q for all large enough m.

Throughout the rest of this section X denotes a separable metric
space. Most of the definitions and statements hold for more general
topological spaces, but we will not need a wider generality. Exception-
ally, the space X from this part of preliminaries will be later interpreted
as either MT (X) or exMT (X) rather than the phase space X in a
dynamical system.

Definition 2.4. A function f : X → R ∪ {−∞,∞} is called upper
semicontinuous (u.s.c.) if for all t ∈ R the sets {x ∈ X : f(x) < t} are
open.4

For example, the characteristic function of a closed set is upper
semicontinuous. It is an easy exercise to verify that a function f is
upper semicontinuous if and only if it is the pointwise limit of a non-
increasing sequence of continuous functions from X to R ∪ {−∞,∞}.

3Note that if a sequence of partitions {Pm}m≥1 sequentially generates, then it also
generates, i.e.,

∨
m Pm = B up to measure µ. Clearly, the reverse implication is not true.

4One is accustomed to real-valued u.s.c. functions, and such are always bounded from
above. In our setup a u.s.c. function is either bounded from above or it assumes infinity
as a value (necessarily on a closed set).
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Definition 2.5. A function f : X → R ∪ {−∞,∞} is of Young class
LU (an LU function for short) if it is the pointwise limit of a nonde-
creasing sequence fn of upper semicontinuous functions.

The reader will easily verify the class LU is closed under finite
sums, finite infima and countable suprema.

Lemma 2.6. A function f : X → R∪{−∞,∞} is of Young class LU
if and only if, for any t ∈ R, the set {x : f(x) > t} is of type Fσ.

Proof. If f is of class LU, then f = limn→∞ ↑ fn, where the fn are
u.s.c. Therefore

{x : f(x) ≤ t} =
⋂

k

{
x : ∀n fn(x) < t + 1

k

}
=

⋂

n,k

{
x : fn(x) < t + 1

k

}

and thus it is of type Gδ, so its complement is of type Fσ.
To prove the other implication, let ft = t · 1{x:f(x)>t}. By assump-

tion, the set {x : f(x) > t} is of type Fσ, so its characteristic function
is of Young class LU (being a nondecreasing limit of characteristic
functions of closed sets, which are u.s.c). Now it remains to note that
f = sup fq with q ranging over the rationals (and use the fact that the
class LU is closed under countable suprema). ¥

3 Rank of measure preserving systems
Let (X,B, µ, T ) be a measure-preserving dynamical system on a stan-
dard probability space.5 We will be studying the properties of an
isomorphism invariant called rank. The notion has been known since
1982 (see [ORW]). In fact rank-one was known much earlier (since the
1970’s) but the term “rank” was not yet used. The reader is referred
also to the survey by Ferenczi ([F]) for more details and information
concerning finite rank. The definition we provide below (Definition 3.2)
is not identical, yet equivalent (in standard spaces) to the one found
in the aforementioned sources.

Definition 3.1. Let n1, . . . , nk ∈ N. Let T1 = {B1, TB1, . . . , T
n1−1B1},

T2 = {B2, TB2, . . . , T
n2−1B2}, . . . , Tk = {Bk, TBk, . . . , T

nk−1Bk} be k

5We adopt the definition of a standard probability space as one isomorphic to a compact
metric space with a Borel probability measure extended to the completed sigma-algebra
of Borel sets. The assumption that the space is standard is needed only to avoid prob-
lems with ergodic decomposition, which requires disintegration (over the sigma-algebra of
invariant sets).
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disjoint measurable towers, i.e. all the sets T iBl appearing in the tow-
ers are measurable and

T iBl ∩ T i′Bl′ = ∅ for (l, i) 6= (l′, i′).

A k-tower partition P associated with T1, T2, . . . , Tk is the partition of
X consisting of the sets T iBl (l ∈ {1, 2, . . . , k}, i ∈ {0, 1, . . . , nl − 1})
and R := X \⋃

(l,i) T iBl. We will write

P = {T iBl, R}l∈{1,2,...,k},i∈{0,1,...,nl−1}

skipping the ranges of the indices whenever possible, and we will call
the sets Bl the bases of the towers, the sets T iBl (including the bases)
the level sets, and R will be referred to as the the remainder.

Definition 3.2. We are going to define rank of the system (X,B, µ, T )
which we will denote by rank(µ). Let k ∈ N. We say that rank(µ) ≤ k
if there exists a generating sequence of k-tower partitions, such that
the measures of the remainders tend to zero.6 Otherwise we say that
rank(µ) > k. rank(µ) = k means that rank(µ) ≤ k and rank(µ) > k−1.
Finally, rank(µ) = ∞ if rank(µ) > k for any natural k.

Notice that the definition does not require µ to be ergodic. If µ
is not ergodic then we have the following formula (called the ergodic
decomposition

µ =
∫

νy dξµ(y),

where ξµ is the projection of µ onto the sigma-algebra Σ of invariant
sets, and the measures νy are ergodic and supported by the atoms y
of Σ. Distinct ergodic measures are mutually singular.

Remark 3.3. It is well known (for ergodic systems, but easily extends
nonergodic systems as well) that finite rank implies zero Kolmogorov–
Sinai entropy, which further implies that the transformation T is in-
vertible (µ-almost everywhere). We will use this fact several times.

We will prove the following “additive rule”:

Theorem 3.4. The rank function satisfies

rank(µ) =
∑

ν∈supp(ξµ)

rank(ν).

6The requirement on the remainders is meant to assure that every periodic orbit of
positive measure eventually requires a separate tower. Without this condition a fixpoint
of positive measure could be included in all remainders and the resulting “rank” would be
lowered by 1. The condition is automatically fulfilled for nonatomic measures, and can be
dropped in any ergodic systems except the trivial one-point system.
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In other words, rank(µ) is finite only for measures which are convex
combinations of finitely many ergodic measures, and then it equals the
sum of ranks of the ergodic components (of course only those with
strictly positive coefficients). Other measures have infinite rank.

Proof. If µ is a finite combination of ergodic measures, this follows
directly from Theorem 3.5 below. Every other measure can be rep-
resented as a convex combination of arbitrarily (still finitely) many
mutually singular measures (each of rank at least 1 – there is no rank
zero), so, by the same theorem its rank is infinite. Clearly, the sum on
the right is, for such measures, also infinite, so the equality holds. ¥

Theorem 3.5. Let (X,B, µ, T ) be a dynamical system. Suppose that
µ = pµ1 + qµ2, where p ∈ (0, 1), q = 1 − p, µ1 and µ2 are mutually
singular T -invariant measures on B. Then:

rank(µ) = rank(µ1) + rank(µ2).

We begin the proof with a simple lemma.

Lemma 3.6. In a probability space consider a two-element partition
Q = {Q1, Q2} and another finite partition P = {P1, . . . , Pl} such that
P Âε Q. Let

S1 =
⋃
{P ∈ P : µ(P ∩Q1) > µ(P ∩Q2)},

S2 =
⋃
{P ∈ P : µ(P ∩Q1) ≤ µ(P ∩Q2)},

and let R = {S1, S2}. Then R Âε Q.

Proof. In order to create a set on which (relatively) P refines Q, we
must discard from the space, for each i = 1, 2, . . . , l, either Pi ∩ Q1

or Pi ∩Q2. Of course, we will discard least (in measure) if each time
we discard the smaller part (if the parts are equal we discard, say,
Pi ∩ Q1). Since P Âε Q, in the above manner we will discard a set
of joint measure at most ε (the rest is our set Yε as in Definition 2.2).
But with such choice of Yε we easily see that Q1 ∩ Yε = S1 ∩ Yε and
Q2 ∩ Yε = S2 ∩ Yε, which implies R Âε Q. ¥

Proof of Theorem 3.5. Let k = rank(µ) and ki = rank(µi) (i = 1, 2).
Fix Q1 and Q2 so that Q1 ∩Q2 = ∅ and µ1(Q1) = µ2(Q2) = 1 (hence
Q1 ∪ Q2 = X mod µ). By replacing Qi by

⋂
k∈N∪{0} T−kQi, we can

assume that Qi are (forward) invariant. If {P(i)
m }m≥1 are sequences of

ki-tower partitions of Qi satisfying the conditions in Definition 3.2 for
µi and ki, respectively, then it is easy to see that {P(1)

m ∪P(2)
m }m≥1 is a
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sequence of (k1+k2)-tower partitions of Q1 ∪Q2 which satisfies these
conditions for µ and k implying k ≤ k1 + k2.

Now suppose that k < k1 + k2 (notice that this implies in par-
ticular k < ∞, hence the entropy of µ is zero and hence the map
T is invertible µ-almost everywhere). Let {Pm}m≥1 be a sequence
of k-tower partitions with remainders Rm satisfying the conditions in
Definition 3.2 for µ and k. Let εm → 0 be such that µ(Rm) < εm

and Pm Âεm Q for each m, where Q = {Q1, Q2}. Temporarily fix
some m. By Lemma 3.6, the special two-element partition R (whose
element S1 is the union of the elements of Pm with larger part in Q1

than in Q2, and S2 is the rest) also refines Q up to εm. But by invari-
ance of Q1 and Q2 and by invertibility of T , the proportion of parts
is constant throughout all levels of one tower. This implies that every
tower of Pm is entirely contained in one element of R. For i = 1, 2
let k′i denote the number of towers contained in Si. These towers can
be thought of as a k′i-tower partition (which we now denote by P(i)

m )
of the space (X,B, µi). The remainder of this partition is contained
in the union of three sets: Q3−i (which has measure µi equal to zero),
the remainder Rm whose measure µi is smaller than εm

min{p,q} , and the
complement of the set Yεm (as defined in Lemma 3.6) which also has
measure µi smaller than εm

min{p,q} . So, the measure µi of the remainder

of P(i)
m tends to zero. Since k′1 + k′2 = k < k1 + k2, we have k′i < ki

for either i = 1 or i = 2. By restricting to a subsequence of {m} we
can assume that the index i and the number of towers k′i (< ki) are
common for all m. Combining the two facts:

• since the partitions {Pm}m≥1 sequentially generate for µ, the
partitions {Pm|Qi}m≥1 sequentially generate for µi,

• the partition P(i)
m differs from Pm|Qi only on the set Yεm (of

measure decreasing to zero with m),

we deduce that the k′i-tower partitions {P(i)
m } also sequentially generate

for µi, which yields rank(µi) ≤ k′i < ki, a contradiction. ¥

4 Rank in topological systems

Throughout, by a topological dynamical system we will mean a pair
(X,T ), where X is a metric space (with the metric denoted by d)
and T : X → X is continuous. We will denote by MT (X) the set of
all T -invariant Borel probability measures on X and by exMT (X) ⊂
MT (X) the set of ergodic measures. It is well known that both sets
are nonempty and the former set equals the simplex whose extreme
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points constitute the latter set. For µ ∈MT (X) we obtain a measure-
theoretic dynamical system (X,Bµ, µ, T ), where Bµ denotes the sigma-
algebra of Borel sets completed with respect to µ. So, there is a well
defined rank function rank : MT (X) → N ∪ {∞}. We are going to
investigate convex and topological properties of this function.

The first observation is that the “additive rule” of Theorem 3.5
(also in form of Theorem 3.4) hold in this context. A small issue we
need be careful about is that now the sigma-algebra formally depends
on the measure. But in topological systems rank does not depend on
the completion: if the rank computed for the completed sigma-algebra
is infinite then clearly it is also infinite for the Borel sigma-algebra.
Otherwise the map is invertible mod µ and then any tower is equal
mod µ to a tower with Borel level sets. It suffices to replace the base
by its subset (of equal measure) of type Fσ, and note that type Fσ is
preserved by forward images of continuous maps on compact spaces.
By invertibility, the forward images of the discarded part of the base
have measure zero and can be discarded from the level sets.

The main goal of this section is proving the following theorem:

Theorem 4.1. In any topological dynamical system (X,T ) the rank
function rank : MT (X) → N ∪ {∞} is of Young class LU.

In order to prove the theorem we define an approximate notion of
rank applicable to measure-theoretic dynamical systems (X,B, µ, T )
equipped with a metric d.

Definition 4.2. We are going to define ε-rank of the measure µ which
we will denote by rankε(µ). Let k ∈ N. We say that rankε(µ) ≤ k if
there exist a measurable k-tower partition P of X whose remainder
satisfies µ(R) < ε, and a measurable set Xε such that µ(Xε) > 1−ε and
all elements of P|Xε have diameters smaller than ε. Otherwise we say
that rankε(µ) > k. rankε(µ) = k if rankε(µ) ≤ k and rankε(µ) > k− 1.
rankε(µ) = ∞ if rankε(µ) > k for all natural numbers k.

Remark 4.3. The definition does not imply existence of a k-tower par-
tition whose all sets except the remainder (of small measure) have
diameters smaller than ε. To achieve small diameters, we may need to
discard large (in relative measure) parts from some level sets scattered
along the tower. This destroys the tower structure on a globally large
set.

Observe that if ε < ε′ then rankε ≥ rankε′ .

Lemma 4.4. Let (X,T ) be a topological dynamical system. Let µ ∈
MT (X). Then rank(µ) ≤ k if and only if rankε(µ) ≤ k for all ε > 0.
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In other words (by monotonicity)

rank(µ) = lim
m
↑ rankεm(µ),

whenever εm ↘ 0.

Proof. Assume that rankε(µ) ≤ k for all ε > 0. This means that there
is a sequence of measurable k-tower partitions {Pm}m≥1 satisfing the
conditions of Definition 4.2 for a decreasing to zero sequence εm and
with sets Xεm (which we will abbreviate as Xm). We will show that
this sequence sequentially generates, which will imply rank(µ) ≤ k.
Fix a set A and an ε > 0. The measure µ (being a Borel measure on a
metric space) is regular, therefore there exist an open set U ⊃ A with
µ(U \A) < ε. Using continuity of µ from below, we find δ > 0 so that
µ(U−δ) > µ(U)− ε, where

U−δ := {x ∈ U : d(x,X \ U) ≥ δ}.
Let m be such that εm < min{δ, ε}. Define:

C =
⋃
{P ∩Xm : P ∈ Pm, P ∩Xm ⊂ U}.

We will show that U ⊃ C ⊃ U−δ ∩Xm. The first inclusion is obvious.
Further, let x belong to the latter set. Clearly x belongs to some
P ∈ Pm and then it belongs to P ∩Xm. This intersection has diameter
at most εm < δ and contains x ∈ U−δ which implies that P ∩Xm ⊂ U ,
which makes it a component in the sum defining C. Because µ(Xm) >
1−εm > 1−ε we conclude that µ(U \C) < 2ε. The triangle inequality
for the metric µ(·4·) now gives µ(C4A) < 3ε. The set

Am =
⋃
{P ∈ Pm : P ∩Xm ⊂ U}

is a union of elements of Pm and Am∩Xm = C. Thus Am differs from
C (in measure) by at most ε and hence µ(Am4A) < 4ε. This ends
the proof of the generating.

The reversed implication will be first handled for nonatomic mea-
sures µ. Assume there exists a generating sequence of k-tower parti-
tions {Pm}m≥1 with remainders’ measures tending to zero. Let ε > 0.
For large enough m all remainders have measures smaller than ε.
Since µ is nonatomic, there exists a partition Q = {Q1, . . . , Ql} of
X whose elements have measures smaller than ε and, moreover, diam-
eters smaller than ε. By Lemma 2.3, we can find m so large that (in
addition to the remainder condition) Pm Âε Q. This determines a set
Yε with µ(Yε) > 1− ε and such that Pm|Yε Â Q|Yε . Thus the elements
of the former partitions have diameters smaller than ε. According to
Definition 4.2, we have shown that rankε(µ) ≤ k.
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If µ has atoms then µ = pµ′+
∑n

i=1 qiµi (0 ≤ p < 1, p+
∑

qi = 1),
where µ′ is nonatomic and each µi is a periodic measure supported by
an individual periodic orbit. Since the measures µ′, µ1, µ2, . . . , µn are
mutually singular and the rank of any measure is at least 1, we conclude
(using the “additive rule” of Theorem 3.5) that k ≥ k′ + n, where k′ =
rank(µ′) (this also explains why the number n of periodic orbits must
be finite). Given ε > 0, let P be the (k′+n)-tower partition consisting
of the n periodic orbits (each viewed as a tower with singleton level
sets) and a k′-tower partition of the rest of the space, satisfying the
conditions of Definition 4.2 for µ′ (with some set X ′

ε), whose existence
is established in the preceding paragraph. It is clear that P fulfills the
requirements of Definition 4.2 showing that rankε(µ) ≤ k′+n ≤ k; the
set Xε equals the union of X ′

ε and the periodic orbits (then µ(Xε) >
1− pε > 1− ε). ¥

The following theorem is the key observation of this work. For
easier proof we assume invertibility (albeit this need not be necessary).
The noninvertible case will be handled later.

Theorem 4.5. Let (X,T ) be an invertible (i.e., in which T is a hemoe-
morphism) topological dynamical system. For any ε > 0 the function
rankε(µ) : MT (X) → N ∪ {∞} is upper semicontinuous.

Proof. We need to show that for each t ∈ R, rankε(µ) < t holds on an
open set of invariant measures. Since rankε assumes only natural values
(or ∞) this set of measures is nonempty only for t > 1 and then the
condition rankε(µ) < t can be equivalently replaced by rankε(µ) ≤ k
for some k ∈ N.

So assume rankε(µ) ≤ k. That means there exists a measurable
k-tower partition P = {T iBl, R}l∈{1,2,...,k},i∈{0,1,...,nl−1} with µ(R) < ε
and a set Xε with µ(Xε) > 1 − ε such that P|Xε consists of sets
with diameters smaller than ε. Throughout this proof, every time we
refer to a pair of indices (l, i) we assume (without reminding) that
l ∈ {1, 2, . . . , k} and i ∈ {0, 1, . . . nl − 1}. We will now explain why we
can assume that all level sets of the towers are closed. Choose a positive
number ξ such that µ(R)+ ξ < ε and µ(Xε)− ξ > 1−ε. By regularity
we can find closed subsets sets B′

l ⊂ Bl so that µ(Bl\B′
l) < ξ

knl
. Then,

for all pairs (l, i) the images T iB′
l are closed, contained in T iBl and

µ(T iBl \ T iB′
l) < ξ

knl

(here we use the assumption that T is invertible). Let P ′ = {T iB′
l, R

′}
be the k-tower partition associated with the new (smaller) bases B′

l and
a new (larger) remainder set R′. The difference R′\R equals the union
of the parts dicarded from the level sets, so its measure is smaller than
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ξ. Thus µ(R′) ≤ µ(R) + ξ < ε. Similarly, the set X ′
ε = Xε \ (R′ \ R)

has measure larger than µ(Xε)−ξ > 1−ε. Because X ′
ε differs from Xε

only within the new remainder, the partition P ′|X′
ε
consists of the sets

T iB′
l ∩ X ′

ε = T iB′
l ∩ Xε ⊂ T iBl ∩ Xε (which have diameters smaller

than ε) and R′ ∩X ′
ε = R ∩Xε (also of diameter smaller than ε).

From now we assume that the original k-tower partition P =
{T iBl, R} has closed level sets. We are going to modify the tower
and the set Xε once more, so that R becomes closed and Xε open.
Once again, choose a positive ξ such that µ(Xε) − ξ > 1 − ε (the
other conditions involving the remainder will not be needed). Find δ
such that µ(R \R−δ) < ξ (this is possible since R is now open; recall
that R−δ is the closed set “δ-deep” inside R). Let α denote a pos-
itive number smaller than half of the smallest distance between two
distinct closed sets from the family {T iBl, R

−δ} (clearly α ≤ δ
2). Let

β > 0 be so small that d(x, y) < β =⇒ d(T ix, T iy) < α for all
0 ≤ i < max{n1, . . . nk} (clearly β ≤ α). Define B′

l = Bβ
l (i.e., the

open β-neighborhood around Bl).
For every pair (l, i) we have T iB′

l ⊂ (T iBl)α which implies that the
sets T iB′

l are pairwise disjoint, hence form a new k-tower partition P ′
with a new smaller and closed remainder R′.

Let γ be such that (T iBl)γ ⊂ T iB′
l for all pairs (l, i) (here we use

again that T is a homeomorphism, so the new level sets are all open
neighborhoods of the old closed level sets). Clearly, γ ≤ β ≤ α. We
can choose γ also smaller than half of the difference between ε and
the largest diameter of an element of P|Xε . We can now define the
modified open version of Xε:

X ′
ε =

⋃

(l,i)

(T iBl ∩Xε)γ ∪ (R−δ ∩Xε)γ .

Notice that X ′
ε contains Xε except its part contained in R \R−δ (this

is seen even if we disregard the γ-neighborhoods). So the measure of
X ′

ε has dropped by at most ξ and thus is still larger than 1− ε. Since
(T iBl ∩Xε)γ ⊂ T iB′

l ⊂ (T iBl)α for all pairs (l, i) and (R−δ ∩Xε)γ ⊂
(R−δ)α, the items of the union defining X ′

ε are pairwise disjoint, and
each new level set TiB′

l intersects only one of them, namely (T iBl ∩
Xε)γ . So,

T iB′
l ∩X ′

ε = (T iBl ∩Xε)γ .

This implies that the last item (R−δ ∩Xε)γ equals the intersection of
X ′

ε with the remainder R′ of the new tower. We have just proved that
the items of the union defining X ′

ε correspond to the elements of the
partition P ′|X′

ε
. By the choice of γ (second requirement) (and since

R−δ ⊂ R), the diameters of all these items are smaller than ε.
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To summarize, we have shown that if rankε(µ) ≤ k then we can
arrange the partition P with a closed reminder R, so that the con-
ditions in Definition 4.2 are fulfilled with an open set Xε. Because
the measure of a closed set is an upper semicontinuous function of the
measure, we have µ′(R) < ε and µ′(X \Xε) < ε (i.e., µ′(Xε) > 1− ε)
on an open set of measures (containing µ). The same partition P and
the same set Xε now give that rankε(µ′) ≤ k for all these measures,
concluding the proof. ¥

We can now prove the main result of this paper.

Proof of Theorem 4.1. If T is a homeomorphism, the result is a direct
consequence of the preceding Theorem 4.5 and Lemma 4.4. For nonin-
vertible maps we refer to the notion of a topological natural extension.
Every topological dynamical system (X, T ) can be embedded (as a
subsystem) in another, (X ′, T ′) such that T ′ is surjective on X ′. Fur-
ther, the surjective system (X ′, T ′) has a topological natural extension
(X ′′, T ′′) in which T ′′ is a homeomorphism and every invariant measure
µ′ of (X ′, T ′) lifts to a unique invariant measure µ′′ of (X ′′, T ′′) such
that the measure-theoretic system (X ′′, µ′′, T ′′) (we neglect marking
the obvious sigma-algebra) is isomorphic to the measure-theoretic nat-
ural extension of (X ′, µ′, T ′). Moreover, the correspondence µ′ 7→ µ′′

is a homeomorphism between MT ′(X ′) and MT ′′(X ′′) (the details of
this construction can be found e.g. in [D], pages 189-190). We will
argue that rank(µ′) = rank(µ′′). If µ′ has entropy zero then T ′ is in-
vertible modulo µ′, and then the system (X ′, µ′, T ′) is isomorphic to
its own natural extension, and thus to (X ′′, µ′′, T ′′), which obviously
implies the desired equality of the ranks. Otherwise both µ′ and µ′′

have nonzero entropy hence infinite rank. Since we already know that
the rank function is of class LU on MT ′′(X ′′), it follows that it is of
the same class onMT ′(X ′) and hence, by restriction, onMT (X). ¥

5 Final remarks
We have obtained that for any topological dynamical system, the rank
function defined on MT (X) is of Young class LU and obeys the “ad-
ditive rule” of Theorem 3.4. In particular, this function is completely
determined by its restriction to exMT (X), which obviously is also of
class LU. Two natural question arise:

1. Given a simplex K and an LU function on ex K, is its extension
to all of K by the “additive rule” automatically of class LU?

2. Are these the only “rank obstructions”? I.e., given an LU func-
tion on a metrizable Choquet simplex r : K → N ∪ {∞} which

12



obeys the “additive rule”, does there exist a topological dynami-
cal system (perhaps minimal) realizing r as the rank function on
the simplex of invariant measures?
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