Unit 3
 Functions and Properties of Functions

Jarostaw Gruszka

1 Functions

A function f is a relation between two sets that associates every element of a first set X with exactly one element of the second set. This is written as

$$
\begin{equation*}
f: X \rightarrow Y . \tag{1}
\end{equation*}
$$

Set X is called the domain of the function and elements are arguments. Set Y is called the codomain or the target set. A set of all the elements of Y which have some element of X assigned to them is called the image of the function and elements of this set are values.

A function may be interpreted as a transformation of one number $x \in X$ into another one $y \in Y$ which is written as

$$
\begin{equation*}
f(x)=y . \tag{2}
\end{equation*}
$$

A graph of a function f is a visualisation of all points (x, y) such that $y=f(x)$.

Exercises

1.1. Assess, if the following relations are functions
a)

b)

c)

d)

1.2. Assess, if the following graphs represent functions
a)

c)

b)

d)

1.3. Determine the domain of the following functions
a) $f(x)=x^{2}+2 x-3$;
b) $f(x)=\frac{1-x}{x^{2}+4}$;
c) $f(x)=\sqrt{x^{2}+1}$;
d) $f(x)=\frac{1}{x}$;
e) $f(x)=\frac{2 x-1}{(6 x-2)\left(\frac{1}{2} x-1\right)}$;
f) $f(x)=\frac{3}{(x-2)(x+1)(2 x-8)}$;
g) $f(x)=\frac{x^{2}}{x^{2}-2 x}$;
h) $f(x)=\frac{1}{x^{2}-4 x+4}$;
i) $f(x)=\frac{2-x}{x^{2}-1}$;
k) $f(x)=\sqrt{x-1}$;
l) $f(x)=\sqrt{2 x-6}$;
m) $f(x)=3 \sqrt{5-x}$;
n) $f(x)=\sqrt{\sqrt{3} x-9}$;
o) $f(x)=\frac{2}{\sqrt{\frac{1}{2} x-6}}$;
p) $f(x)=\frac{x+1}{\sqrt{6-2 x}}$;
q) $f(x)=\frac{3 x}{x^{2}-4}+\sqrt{x}$;
r) $f(x)=\frac{3-x}{x-2}+\frac{1}{x^{2}-9}$;
s) $f(x)=\frac{\sqrt{x}}{x^{2}+3}-\frac{1}{\sqrt{5-x}}$.
1.4. Based on the graphs, determine the image of the functions
a)

c)

b)

d)

1.5. Determine the image of the following functions on the given domains
a) $f(x)=2 x-1, X=\{1,2,4,6,10\}$;
b) $f(x)=-x^{2}+1, X=\{-\sqrt{2},-1, \sqrt{2}, \sqrt{3}\}$;
c) $f(x)=\frac{3}{x-2}, X=\{-1,0,1,3,5\}$;
d) $f(x)=2^{-x}, X=\{-2,-1,0,1,2\}$.
1.6. For the following functions and their domains check which points of set A belong to the image of the function
a) $A=\{4,7,8\}, f(x)=3 x+1, X=\{1,2,3\}$;
b) $A=\left\{-1,0, \frac{1}{3}, 4\right\}, f(x)=x^{2}, X=\mathbb{Q}$;
c) $A=\left\{0, \frac{1}{2},\right\}, f(x)=\frac{6}{x+1}, X=\mathbb{Q} \backslash\{-1\}$.
1.7. Verify if the given point P, Q and R belong to the given function with a specified domain
a) $P=(3,6), Q=(2,-5), R=(2 \sqrt{3}, 9), f(x)=x^{2}-3, X=\mathbb{R}$;
b) $P=(2,2), Q=(1,-1), R=\left(\frac{1}{4}, 2\right), f(x)=3-4 x, X=\mathbb{Z}$;
c) $P=(-3,1), Q=\left(\frac{9}{4}, \frac{5}{2}\right), R=(5,3), f(x)=\sqrt{x+4}, X=\mathbb{N}$.
1.8. Draw the graphs of the following functions on specified domains
a) $f(x)=2 x-1, X=\mathbb{R}$;
b) $f(x)=-x+2, X=\mathbb{N}$;
c) $f(x)=\sqrt{x-3}, X=[3, \infty)$;
d) $f(x)=\frac{2}{x}, X=\left\{\frac{1}{4}, \frac{1}{2}, 1,2,4\right\}$

2 Zero of a function

A zero, also called a root of a function f is an argument x_{0} such that the function attains the value of 0 at x_{0}

$$
\begin{equation*}
f\left(x_{0}\right)=0 . \tag{3}
\end{equation*}
$$

Exercises

2.1. Find the zeros of the following functions on a given domain
a) $f(x)=2 x-8, X=(-3,4]$;
b) $f(x)=-x+3, X=\{0,2,4,6\}$;
c) $f(x)=\frac{1}{2} x^{2}-\frac{25}{2}, X=\mathbb{Q}$;
d) $f(x)=(x-4)(x+6), X=\left\{x: x^{2}=16\right\}$.
2.2. Find the zeros of the following functions on their natural domains
a) $f(x)=\frac{x+4}{x^{2}-16}$;
b) $f(x)=\frac{\frac{1}{2} x-1}{(x-2)(x+3)}$;
c) $f(x)=\frac{(x-3)(4 x+12)}{x^{2}-9}$;
d) $f(x)=\frac{7-x}{x^{2}+1}$;
e) $f(x)=\frac{x^{2}-4}{\sqrt{x-3}}$;
f) $f(x)=\frac{x+5}{\sqrt{4-x}}$;
g) $f(x)=\frac{x^{2}+2 x}{\sqrt{x+2}}$;
h) $f(x)=\frac{(x+1)(x+2)(x+3)}{\sqrt{-x+2}}$.

3 Injection

An injective function or, in short, an injection is a function that maps distinct elements of its domain to distinct elements of its codomain. Formally

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in X \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2} \tag{4}
\end{equation*}
$$

Exercises

3.1. Draw the graphs of the following functions and assess if they are injective
a) $f(x)=\frac{1}{2} x+1$;
b) $f(x)=2$;
c) $f(x)=-x^{2}+1$;
d) $f(x)=\frac{1}{x}$;
e) $f(x)=\sqrt{x}$.
3.2. Prove that the following functions are injective
a) $f(x)=3 x-1$;
b) $f(x)=\frac{2}{3} x+4$;
c) $f(x)=\frac{2}{x}$;
d) $f(x)=\frac{x-1}{x+1}$;
e) $f(x)=3 \sqrt{x}$;
f) $f(x)=\sqrt{2 x-1}$.

4 Monotonicity

A monotonic function f is a function which is either increasing, decreasing or constant.

A function is increasing on a given subset $A \subseteq X$ if for smaller arguments it attains smaller values and for bigger arguments it attains bigger values. Formally

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \text {. } \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1}-x_{2}<0 \Longrightarrow f\left(x_{1}\right)-f\left(x_{2}\right)<0 \tag{6}
\end{equation*}
$$

A function is decreasing on a given subset $A \subseteq X$ if for smaller arguments it attains bigger values and for bigger arguments it attains smaller values. Formally

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right) \tag{7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1}-x_{2}<0 \Longrightarrow f\left(x_{1}\right)-f\left(x_{2}\right)>0 . \tag{8}
\end{equation*}
$$

A function is constant on a given subset $A \subseteq X$ if for all arguments it attains the same value. Formally

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\text { for all } x_{1}, x_{2} \in A \quad x_{1}-x_{2} \neq 0 \Longrightarrow f\left(x_{1}\right)-f\left(x_{2}\right)=0 \text {. } \tag{10}
\end{equation*}
$$

Exercises

4.1. Draw the graphs of the following functions and determine their monotonicity
a) $f(x)=\frac{1}{2} x+1$;
b) $f(x)=2$;
c) $f(x)=-x^{2}+1$;
d) $f(x)=\frac{1}{x}$;
e) $f(x)=\sqrt{x}$.
4.2. Based on the graphs, determine the intervals of monotonicity of the functions
a)

c)

b)

d)

4.3. Prove that the following functions are monotonic (in a specified way) on a given interval
a) increasing, $f(x)=3 x-1, A=\mathbb{R}$;
b) decreasing, $f(x)=-\frac{2}{3} x+4, A=\mathbb{R}$;
c) decreasing, $f(x)=\frac{2}{x}, A=(0, \infty)$;
d) increasing, $f(x)=\frac{x-1}{x+1}, A=(-\infty,-1)$;
e) constant, $f(x)=3 \sqrt{x}, A=\mathbb{R}$;
f) increasing, $f(x)=\sqrt{2 x-1}, A=\left[\frac{1}{2}, \infty\right)$.

5 Parity

To determine function's parity is to tell whether a function is even or odd. A function is even when its plot is symmetric with respect to the y-axis. Formally

$$
\begin{equation*}
\text { for any } x \in X \quad f(x)=f(-x) . \tag{11}
\end{equation*}
$$

A function is odd when its plot is symmetric with respect to the origin of the x - y-plane. Formally

$$
\begin{equation*}
\text { for any } x \in X \quad f(x)=-f(-x) \tag{12}
\end{equation*}
$$

Exercises

5.1. Based on the graphs, determine parity of the functions
a)

d)

b)

e)

c)

f)

5.2. Draw the graphs of the following functions and determine their parity
a) $f(x)=3 x$;
b) $f(x)=-x^{2}+4$;
c) $f(x)=x^{3}$;
d) $f(x)=\frac{2}{x}$;
e) $f(x)=0$;
5.3. Prove specific parity of the following functions
a) even, $f(x)=\frac{x^{2}}{x^{2}+1}$;
b) odd, $f(x)=-\frac{2}{3 x}$;
c) odd, $f(x)=x^{3}-3 x$;
d) even, $f(x)=\frac{1}{x^{4}}$;
e) even, $f(x)=2^{x}+2^{-x}$;
f) odd, $f(x)=\frac{x}{x^{2}-1}$.

