Asymptotic behavior of measures of dependence for ARMA(1,2) models with stable innovations. Stationary and non-stationary coefficients

Agnieszka Wyłomańska*

* Hugo Steinhaus Center, Wrocław University of Technology, Poland

Hugo Steinhaus Center
Wrocław University of Technology
Wyb. Wyspiąńskiego 27, 50-370 Wrocław, Poland
http://www.im.pwr.wroc.pl/~hugo/
Asymptotic behavior of measures of dependence for ARMA(1,2) models with stable innovations. Stationary and non-stationary coefficients.

December 9, 2004

Abstract

We derive the asymptotic behavior of two measures of dependence (Codifference and Covariation) for ARMA(1,2) models with symmetric α-stable innovations and non-stationary coefficients.

1 Introduction

Definition 1 The system ARMA(1,q) is given by the following formula:

\[X_n - b_n X_{n-1} = \sum_{j=0}^{q-1} a_{n-j} \xi_{n-j}, \]

(1)

where the innovations (\(\xi_n\)) are independent, symmetric α-stable with the scale parameter \(1\), i.e. with the characteristic function given by:

\[E \exp(i\theta \xi_n) = \exp(-|\theta|^\alpha), 0 < \alpha \leq 2. \]

Moreover the coefficients \((a_n)\) and \((b_n)\) are nonzero and complex for all \(n \in \mathbb{Z}\).

In [7] Weron and Wylomanska show the conditions, which give a bounded solutions of system ARMA(1,q), where the innovations are uncorrelated complex random variables with mean 0 and variance 1. In this case we have three conditions, which give bounded solution of the system, but only two give its unique solution. Therefore we consider two cases:

I. \(\sup_q |B_q^0| = \infty \)

II. \(\sup_q |B_q^0|^{-1} = \infty. \)

In this paper \(X_n = Y\) (\(X_n\)-the sequence of random variables, \(Y\)- the random variable) means \(\lim_n ||X_n - Y|| = 0\) and \(B_r^s = \prod_{j=r}^{s} b_j\) (with the convention that \(B_s^r = 1\) if \(r > s\)). In the analysis we consider the system ARMA(1,2) given by the following equation:

\[X_n - b_n X_{n-1} = a_n \xi_n + a_{n-1} \xi_{n-1}, \]

(3)

where the innovations and coefficients have the same properties like in the general model.
Definition 2 Measures of dependence of jointly symmetric α–stable random variables X_1 and X_2 \cite{[6]}.

- **Covariation** $\text{CV}(X_1, X_2)$ of X_1 on X_2 defined for $1 < \alpha \leq 2$ is the real number

$$\text{CV}(X_1, X_2) = \int_{S^2} s_1 s_2^{<\alpha-1>} \Gamma(ds),$$

where Γ is the spectral measure of the random vector (X_1, X_2), $z^{<p>} = |z|^{p-1} \bar{z}$.

- **Codifference** $\text{CD}(X_1, X_2)$ of X_1 on X_2 defined for $0 < \alpha \leq 2$ equals

$$\text{CD}(X_1, X_2) = \ln E\exp\{i(X_1 - X_2)\} - \ln E\exp\{iX_1\} - \ln E\exp\{-iX_2\}. \quad (5)$$

Unlike the codifference, the covariation is not symmetric, but is linear in the first argument. The covariation is closely related to the quantity $E[X_1X_2^{<p>}]$. In this paper the norm $||X||$, where X is a symmetric α–stable random variable, is defined $||X|| = (\text{CV}(X, X))^{1/\alpha}$ (the covariation norm \cite{[6]}). If $\alpha = 2$ the following identities hold

$$\text{CV}(X_1, X_2) = \frac{1}{2} \text{Cov}(X_1, X_2),$$

$$\text{CD}(X_1, X_2) = \text{Cov}(X_1, X_2).$$

In contrast to \cite{[3, 4]} we study here time series ARMA(1,2) with non-stationary coefficients. The presented new general proofs use the form of the bounded solution of ARMA(1,2) model from \cite{[7]}. This leads us to consider two separately cases described by Condition 1 and Condition 2. The main results are included in Theorem 1 and Theorem 2. They give the asymptotic behavior of the quotients $\text{CD}(X_1, X_{n+kq})/\text{CV}(X_1, X_{n+kq})$ and $\text{CD}(X_n, X_{n-kq})/\text{CV}(X_n, X_{n-kq})$ for both cases, respectively. Formulas 10 and 20 generalize the earlier result of Nowicka in \cite{[4]}. However formulas 11 and 21 produce a new type of result even in the case of stationary coefficients.

2 Condition 1

If $\sup_q |B^q_0| = \infty$, then there exist sequence (k_q) of positive integers such that $\lim_q |B^q_n| = \infty$, and for all $n \in Z$ $\lim_q |B^q_{n+1}| = \infty$. In this case the solution of (3) is given by (see \cite{[7]}):

$$X_n = -\lim_{q} \frac{a_{n} \xi_{n} + \xi_{n+1}}{B^q_{n+1}} \left(1 + \frac{1}{b_{n+1}} + \frac{a_{n+k-q} \xi_{n+k-q}}{B^q_{n+1}}\right).$$

If we denote:

$$c_n(\xi) = \begin{cases}
0 & j > k_q \\
\frac{-a_{n+k-q}}{B^q_{n+1}} & j = k_q \\
\frac{a_{n} \xi_{n+1}}{b_{n+1}} + \frac{a_{n+k-q} \xi_{n+k-q}}{B^q_{n+1}} & 0 < j < k_q \\
\frac{-a_{n}}{b_{n+1}} & j = 0 \\
0 & j < 0,
\end{cases}$$

\[2\]
then we can write:

$$X_n = \lim_{q} \left[\sum_{j=n}^{k_q + n} c_n(j - n) \xi_j \right].$$

In this case the covariance of X_n on X_{n+k_q} is given by:

$$CV(X_n, X_{n+k_q}) = c_n(k_q)c_{n+k_q}^{<\alpha-1>}(0) = \frac{|a_{n+k_q}|^\alpha}{b_{n+k_q+1}|a-2B_{n+k_q+1}^{n+1}B_{n+1}^n}. \quad (6)$$

However the covariance of X_{n+k_q} on X_n has the following form:

$$CV(X_{n+k_q}, X_n) = c_{n+k_q}(0)c_n^{<\alpha-1>}(k_q) = \frac{|a_{n+k_q}|^\alpha}{b_{n+k_q+1}|a-2B_{n+k_q}^{n+1}B_{n+1}^n}. \quad (7)$$

If the coefficients satisfy condition 1, then the codifference of X_n on X_{n+k_q} is given by the formula:

$$CD(X_n, X_{n+k_q}) = |c_n(k_q)|^\alpha + |c_{n+k_q}(0)|^\alpha - |c_n(k_q) - c_{n+k_q}(0)|^\alpha.$$

Therefore:

$$CD(X_n, X_{n+k_q}) = \frac{a_{n+k_q}}{b_{n+k_q+1}}^\alpha + \frac{a_{n+k_q}}{b_{n+k_q+1}}^\alpha - \frac{a_{n+k_q}}{b_{n+k_q+1}}^\alpha - \frac{a_{n+k_q}}{b_{n+k_q+1}}^\alpha. \quad (8)$$

The codifference takes the form:

$$CD(X_n, X_{n+k_q}) = \frac{a_{n+k_q}}{b_{n+k_q+1}}^\alpha (1 + \frac{b_{n+k_q+1}}{B_{n+1}^{n+1}}^\alpha - |1 - \frac{b_{n+k_q+1}}{B_{n+1}^{n+1}}^\alpha|). \quad (9)$$

The codifference is symmetric, therefore:

$$CD(X_n, X_{n+k_q}) = CD(X_{n+k_q}, X_n).$$

If $1 < \alpha \leq 2$ and $\sup_q |B_{n+1}^{n+1+k_q}| = \infty$, then the following fact is true for all $n \in Z$:

$$\lim_{k_q \to \infty} \frac{b_{n+k_q+1}}{b_{n+k_q+1}} [1 + \frac{b_{n+k_q+1}}{B_{n+1}^{n+1}}^\alpha - |1 - \frac{b_{n+k_q+1}}{B_{n+1}^{n+1}}^\alpha|] = \alpha. \quad (9)$$

Theorem 1 Suppose (X_n) is the solution of system (3) and $\sup_q |B_{n+1}^q| = \infty$, then for $1 < \alpha \leq 2$ and for all $n \in Z$ the following are fulfilled:

$$\lim_{k_q \to \infty} \frac{CD(X_n, X_{n+k_q})}{CV(X_n, X_{n+k_q})} = \alpha. \quad (10)$$

$$\lim_{k_q \to \infty} \frac{|b_{n+k_q+1}|^{\alpha-2}CD(X_n, X_{n+k_q})}{|B_{n+1}^{n+1+k_q}|^{\alpha-2}CV(X_{n+k_q}, X_n)} = \alpha \quad (11)$$

if $CV(X_n, X_{n+k_q}) \neq 0$ and $CV(X_{n+k_q}, X_n) \neq 0$.

3
PROOF: We use formulas (6), (8) and (9) to compute (10). We obtain (11) from (7), (8) and (9).

For \(\alpha = 2 \) naturally we have:

\[
\lim_{k_q \to \infty} \frac{CD(X_n, X_{n+k_q})}{CV(X_n, X_{n+k_q})} = \frac{CD(X_{n+k_q}, X_n)}{CV(X_{n+k_q}, X_n)} = \alpha.
\]

Corollary 1 If we take \(n - k_q \) instead \(n \) in formulas (10) and (11), then we obtain the following formulas:

\[
\lim_{k_q \to \infty} \frac{CD(X_{n-k_q}, X_n)}{CV(X_{n-k_q}, X_n)} = \alpha
\]

and

\[
\lim_{k_q \to \infty} \frac{|b_{n+1}|^{\alpha-2}CD(X_n, X_{n-k_q})}{|B_{n-k_q+1}|^{\alpha-2}CV(X_n, X_{n-k_q})} = \alpha.
\]

Remark 1 System ARMA(1,2) with the time varying coefficients given by the formula:

\[
X_n - b_nX_{n-1} = a_0(n)\xi_n + a_1(n)\xi_{n-1}
\]

do not have property (10), because for the system we obtain the following formulas:

\[
CV(X_n, X_{n+k_q}) = \frac{a_0(n+k_q)}{B_{n+1}^{n+k_q}} \frac{|a_1(n+k_q+1)|^{\alpha-2}a_1(n+k_q+1)}{b_{n+k_q+1}^{n+k_q}} - \frac{|a_0(n+k_q)+1|^{\alpha-2}a_0(n+k_q+1)}{b_{n+k_q+1}^{n+k_q}}.
\]

Therefore the asymptotic behaviour of the measures \(CV \) and \(CD \) has the following forms:

\[
\lim_{k_q \to \infty} \frac{|a_1(n+k_q+1)|^{\alpha-2}a_1(n+k_q+1)CD(X_n, X_{n+k_q})}{|a_0(n+k_q)|^{\alpha-2}a_0(n+k_q)CV(X_n, X_{n+k_q})} = \alpha.
\]

Example 1 We consider now ARMA(1,2) model given by the equation:

\[
X_n + 2X_{n-1} = \sqrt{2^{n-1}} \xi_n + \sqrt{2^{n-1}} \xi_{n-1}.
\]

The coefficients \((b_n)\) satisfy Condition 1, i.e. \(\sup q |B_q| = \sup q 2^q = \infty \). On Figure 1 we show the plot of \(\frac{CD(X_n, X_{n+k_q})}{\alpha CV(X_n, X_{n+k_q})} \) for \(k_q = 0, 1, \ldots, 50 \), \(n = 10 \) and \(\alpha = 1.2 \) and \(\alpha = 1.5 \).
Remark 2 For the comparison we consider system ARMA(1,2) with the stationary coefficients, given by the equation:

\[X_n - b_1 X_{n-1} = a_1 \xi_n + a_2 \xi_{n-1}, \quad (15) \]

where the innovations and coefficients are like in the definition 1. In this case the formulas (10) and (11) have the following forms respectively:

\[
\lim_{k_q \to \infty} \frac{CD(X_{-k_q}, X_0)}{CV(X_{-k_q}, X_0)} = \alpha
\]

and

\[
\lim_{k_q \to \infty} \frac{CD(X_0, X_{-k_q})}{|b_1|(|\alpha-2)(k_q-1)|CV(X_0, X_{-k_q})} = \alpha.
\]

3 Condition 2

If \(\sup_q |B_q^0|^{-1} = \infty \), then there exist a sequence \((k_q) \) of positive integers such that \(\lim_{k_q} |B_{n-k_q}^0|^{-1} = \infty \), and for all \(n \in \mathbb{Z} \) \(\lim_{k_q} |B_{n-k_q}^n|^{-1} = \infty \). In this case the solution of system (3) is given by the formula (see [7]):

\[
X_n = \lim_{q} \left[\sum_{j=1}^{k_q-1} a_{n-j} B_{n+2-j}^n \right] (1 + b_{n-j+1}) \xi_{n-j} + a_{n-k_q} B_{n-k_q+2}^n \xi_{n-k_q} + a_n \xi_n].
\]

If we assume:

\[
c_n(j) = \begin{cases} 0 & j > k_q \\ a_{n-k_q} B_{n-k_q+2}^n & j = k_q \\ a_{n-j} B_{n+2-j}^n (1 + b_{n+1-j}) & 0 < j < k_q \\ a_n & j = 0 \\ 0 & j < 0, \end{cases}
\]

then the solution of (3) takes the form:

\[
X_n = \lim_{q} \left[\sum_{j=n-k_q}^{n} c_n(n-j) \xi_j \right].
\]
If the coefficients b_n fulfill condition 2, then the covariation of X_n on X_{n-k_q} has the form:

$$CV(X_n, X_{n-k_q}) = c_n(k_q)c_n^{\frac{\alpha-1}{\alpha-2}}(0) = |a_{n-k_q}|^\alpha B_{n-k_q}^n + 2. \quad (16)$$

Furthermore, the covariation of X_{n-k_q} on X_n is given by the formula:

$$CV(X_{n-k_q}, X_n) = |a_{n-k_q}|^\alpha |B_{n-k_q}^n + 2|^\alpha B_{n-k_q}^n. \quad (17)$$

And the codifference of X_n on X_{n-k_q} is given by the following:

$$CD(X_n, X_{n-k_q}) = |c_n(k_q)|^\alpha + |c_n(k_q)(0)|^\alpha - |c_n(k_q) - c_{n-k_q}(0)|^\alpha =$$

$$= |a_{n-k_q}B_{n-k_q}^n|^{\alpha} + |a_{n-k_q}|^\alpha - a_{n-k_q}B_{n-k_q}^n - a_{n-k_q}|^\alpha. \quad (18)$$

If $1 < \alpha \leq 2$ and $\sup_q |B_{n-k_q}^n|^{-1} = \infty$, then the following equation is fulfilled

$$\lim_{k_q \to \infty} \frac{1}{B_{n-k_q}^n + 2}(1 + |B_{n-k_q}^n + 2|^\alpha - |B_{n-k_q}^n + 2|^\alpha) = \alpha. \quad (19)$$

Theorem 2 Suppose (X_n) is the solution of system (3) and $\sup_q |B_q^n|^{-1} = \infty$, then for $1 < \alpha \leq 2$ and for all $n \in Z$ the following is fulfilled:

$$\lim_{k_q \to \infty} CD(X_n, X_{n-k_q}) = \alpha \quad (20)$$

$$\lim_{k_q \to \infty} \frac{|B_{n-k_q}^n + 2|^{\alpha} CD(X_{n-k_q}, X_n)}{CD(X_{n-k_q}, X_n)} = \alpha \quad (21)$$

if $CV(X_n, X_{n-k_q}) \neq 0$ and $CV(X_{n-k_q}, X_n) \neq 0$.

PROOF: We use formulas (16), (18) and (19) to compute (20). We obtain (21) from (17), (18) and (19).

□

Corollary 2 We take in formulas (20) and (21) $n + k_q$ instead n and obtain:

$$\lim_{k_q \to \infty} CD(X_{n+k_q}, X_n) = \alpha \quad (22)$$

$$\lim_{k_q \to \infty} \frac{|B_{n+k_q}^{n+2}|^{\alpha} CD(X_n, X_{n+k_q})}{|B_{n+k_q}^{n+2}|} = \alpha. \quad (23)$$

Example 2 We consider system ARMA(1,2) model given by the equation:

$$X_n + \frac{1}{2}X_{n-1} = \sqrt{2}^n \xi_n + \sqrt{2}^{n-1} \xi_{n-1}. \quad (24)$$
The coefficients b_n satisfy Condition 1, i.e. $\sup_q |B_q^{0\rightarrow\infty}| = \sup_q 2^q = \infty$. On Figure 2 we show the plot of $\frac{CD(X_n, X_{n-k_q})}{\alpha CV(X_n, X_{n-k_q})}$ for $k_q = 0, 1, \ldots, 50$, $n = 10$ and $\alpha = 1.2$ and $\alpha = 1.5$.

![Figure 2. The plot of $\frac{CD(X_n, X_{n-k_q})}{\alpha CV(X_n, X_{n-k_q})}$ for $\alpha = 1.2$ (left) and $\alpha = 1.5$ (right).](image)

Remark 3 If X_n is the solution of system (15), then formulas (20) and (21) have the following forms:

$$\lim_{k_q \to \infty} \frac{CD(X_{n-k_q}, X_0)}{CV(X_{n-k_q}, X_0)} = \alpha$$

and

$$\lim_{k_q \to \infty} \left| b_1 \right| \frac{CD(X_0, X_{n-k_q})}{\alpha CV(X_0, X_{n-k_q})} = \alpha.$$

In [4] there are given the formulas to the covariation and codifference of stationary ARMA(p,q) models and the author described asymptotic behavior of the measures of dependence. The main result of [4] is given in Corollary 1. It is shown, that the relation \(\lim_{n \to \infty} \frac{CD(X_n, X_0)}{CV(X_n, X_0)} = \alpha \) holds, when some conditions are fulfilled. Therefore, if we assume that the coefficients in ARMA(1,2) model depend on the time (non-stationary ARMA model), then we obtain similar result like in the stationary case.

References

01 Finding the optimal exercise time for American warrants on WIG20 futures (Wyznaczanie optymalnego momentu wykonania warrantów amerykańskich na kontrakty futures na indeks WIG20) by Bartosz Stawiarski

02 Power markets in Poland and worldwide (Rynki energii elektrycznej w Polsce i na świecie) by Rafał Weron

03 Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności) by Rafał Weron and Sławomir Wójcik

04 Periodic correlation vs. integration and cointegration (Okresowa korelacja a integracja i kointegracja) by Ewa Broszkiewicz-Suwaj and Agnieszka Wyłomańska

05 Pure risk premiums under deductibles. A quantitative management in actuarial practice by Krzysztof Burnecki, Joanna Nowicka-Zagrajek and Aleksander Weron

06 Asymptotic behavior of measures of dependence for ARMA(1,2) models with stable innovations. Stationary and non-stationary coefficients by Agnieszka Wyłomańska