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1 Introduction

This chapter develops on risk processes which, perhaps, are most suitable
for computer visualization of all insurance objects. At the same time, risk
processes are basic instruments for any non-life actuary – they are vital for
calculating the amount of loss that an insurance company may incur. They
also appear naturally in rating triggered step-up bonds, where the interest
rate is bound to random changes of the companies’ ratings, and catastrophe
bonds, where the coupon payment amounts are conditional on the severity of
catastrophic events.

A typical model for insurance risk, the so-called collective risk model,
has two main components: one characterizing the frequency (or incidence)
of events and another describing the severity (or size or amount) of gain or
loss resulting from the occurrence of an event (Klugman, Panjer, and Willmot,
1998; Panjer and Willmot, 1992; Teugels and Sundt, 2004). Both the incidence
and severity of claims are generally assumed to be stochastic and independent
of each other. Together they form the backbone of a realistic risk process.
Consequently, both have to be calibrated to the available historical data. All
three visualization techniques discussed in Section 3:

• mean excess function,
• limited expected value function,
• and probability plot,

are relatively simple, yet, at the same time provide valuable assistance in the
estimation process.

Once the stochastic models governing the incidence and severity of claims
have been identified, they can be combined into the so called aggregate claim
process:

St =
Nt∑

k=1

Xk, (1)
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where the claim severities are described by the random sequence {Xk} with
finite mean and the number of claims in the interval (0, t] is modeled by a
counting process Nt, often called the claim arrival process. The risk process
{Rt}t≥0 describing the capital of an insurance company is then defined as:

Rt = u+ c(t) − St, (2)

where the non-negative constant u stands for the initial capital of the company
and c(t) is the premium the company receives for sold insurance policies.

The simplicity of the risk process (2) is only illusionary. In most cases
no analytical conclusions regarding the time evolution of the process can be
drawn. However, it is this evolution that is important for practitioners, who
have to calculate functionals of the risk process like the expected time to
ruin and the ruin probability. All this calls for efficient numerical simulation
schemes (Burnecki, Härdle, and Weron, 2004) and powerful inference tools.
In Section 4 we will present four such tools:

• ruin probability plot,
• density evolution plot,
• quantile lines,
• and probability gates.

All four techniques allow for immediate evaluation of the models’ adequacy
and the risks faced by the company based on visual inspection of the gener-
ated plots. As such they are especially useful for high-level managers who are
interested in a general overview of the situation and do not need to study all
the computational details underlying the final results.

To illustrate the usefulness of the presented visualization tools, throughout
this chapter we will apply them to two datasets. The first one, studied in detail,
is the Property Claim Services (PCS) dataset, which covers losses resulting
from catastrophic events in USA. The data includes 1990-1999 market’s loss
amounts in USD adjusted for inflation using the Consumer Price Index. Only
natural perils which caused damages exceeding 5 million dollars were taken
into account, see Fig. 1. The second dataset, used here for illustration of the
risk process inference tools only, concerns major inflation-adjusted Danish fire
losses in profits (in Danish Krone, DKK) that occurred between 1980 and 1990
and were recorded by Copenhagen Re.

2 Software

Visualization tools would not be of much help without adequate software.
All methods discussed in this chapter are demonstrated using two software
libraries and one standalone application. The Insurance Library of XploRe
(www.xplore-stat.de) is a collection of quantlets that illustrate various top-
ics related to insurance (Čižek, Härdle, and Weron, 2005). It is accompa-
nied by on-line, hyperlinked and freely downloadable from the web tutorials
(www.xplore-stat.de/tutorials/ Xpl Tutorials.html).
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Fig. 1. Graph of the PCS catastrophe loss data, 1990-1999. Two largest losses in
this period were caused by Hurricane Andrew (24 August 1992) and the Northridge
Earthquake (17 January 1994). From: XploRe.

The Ruin Probabilities toolbox for Matlab is a set of m-functions with a
graphical user interface (GUI) intended primarily for visualizing risk processes
and evaluating ruin probabilities (Místa, 2002). It can be downloaded from
www.im.pwr.wroc.pl/˜hugo/stronaHSC/Podstrony/Programy.html.

The SDE-Solver is a standalone application for the Windows environment.
It allows for construction and visualization of solutions of stochastic differen-
tial equations (SDE’s) with Gaussian, Poisson, and stable random measures
(Janicki, Izydorczyk, and Gradalski, 2003); for SDE modeling concepts con-
sult also Kloeden and Platen (1995). The graphics makes use of quantile lines
and density evolution techniques and introduces an interesting concept of
interactive probability gates, which give the probability that the simulated
process passes through a specified interval at a specified point in time (for
details see Section 4.4). More information about the software can be found at
www.math.uni.wroc.pl/˜janicki/solver.html.
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3 Fitting Loss and Waiting Times Distributions

The derivation of loss and waiting times (inter-arrival) distributions from in-
surance data is not an easy task. There are three basic approaches: empirical,
analytical, and moment based. The analytical approach is probably the most
often used in practice and certainly the most frequently adopted in the ac-
tuarial literature. It reduces to finding a suitable analytical expression which
fits the observed data well and which is easy to handle (Daykin, Pentikainen,
and Pesonen, 1994).

Having a large collection of distributions to choose from, we need to narrow
our selection to a single model and a unique parameter estimate. The type of
the objective loss distribution (the waiting times distribution can be analyzed
analogously) can be easily selected by comparing the shapes of the empirical
and theoretical mean excess functions. Goodness-of-fit can be verified by plot-
ting the corresponding limited expected value functions or making probability
plots. Finally, the hypothesis that the modeled random event is governed by a
certain loss distribution can be statistically tested (but is not discussed in this
chapter; for a recent review of goodness-of-fit hypothesis testing see Burnecki,
Misiorek, and Weron, 2005).

In the following subsections we will apply the above mentioned visual
inference tools to PCS data. They will narrow our search for the optimal
analytical model of the loss and waiting times distributions to one or two
probability laws. Moreover, they will allow for a visual assessment of the
goodness-of-fit.

3.1 Mean Excess Function

For a claim amount random variable X , the mean excess function or mean
residual life function is the expected payment per claim on a policy with a
fixed amount deductible of x, where claims with amounts less than or equal
to x are completely ignored:

e(x) = E(X − x|X > x) =

∫ ∞
x

{1 − F (u)} du
1 − F (x)

. (3)

In practice, the mean excess function e is estimated by ên based on a
representative sample x1, . . . , xn:

ên(x) =

∑
xi>x xi

#{i : xi > x} − x. (4)

Note, that in a financial risk management context, switching from the right
tail to the left tail, e(x) is referred to as the expected shortfall (Weron, 2004).

When considering the shapes of mean excess functions, the exponential
distribution with cumulative distribution function (cdf) F (x) = 1−exp(−βx)
plays a central role. It has the memoryless property, meaning that whether
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the information X > x is given or not, the expected value of X−x is the same
as if one started at x = 0 and calculated E(X). The mean excess function for
the exponential distribution is therefore constant. One in fact easily calculates
that for this case e(x) = 1/β for all x > 0.

If the distribution of X is heavier-tailed than the exponential distribution
we find that the mean excess function ultimately increases, when it is lighter-
tailed e(x) ultimately decreases. Hence, the shape of e(x) provides important
information on the sub-exponential or super-exponential nature of the tail
of the distribution at hand. That is why, in practice, this tool is used not
only for discovering the relevant class of claim size distributions, but also for
investigating all kinds of phenomena. We will apply it to both PCS loss and
waiting times data.

Mean excess functions of the well known and widely used distributional
classes are given by the following formulas (selected shapes are sketched in Fig.
2, while the empirical mean excess functions ên(x) for the PCS catastrophe
data are plotted in Fig. 3):

• log-normal distribution with cdf F (x) = Φ{(log x− µ)/σ}:

e(x) =
exp

(
µ+ σ2

2

) {
1 − Φ

(
ln x−µ−σ2

σ

)}
{

1 − Φ
(

ln x−µ
σ

)} − x,

where Φ(·) is the standard normal (with mean 0 and variance l) distribution
function;

• Pareto distribution with cdf F (x) = 1 − {λ/(λ+ x)}α:

e(x) =
λ+ x

α − 1
, α > 1;

• Burr distribution with cdf F (x) = 1 − {λ/(λ+ xτ )}α:

e(x) =
λ1/τΓ

(
α− 1

τ

)
Γ

(
1 + 1

τ

)
Γ (α)

·
(

λ

λ+ xτ

)−α

·

·
{

1 − B
(

1 +
1
τ
, α− 1

τ
,

xτ

λ+ xτ

)}
− x,

where Γ (·) is the standard gamma function and B(·, ·, ·) is the beta func-
tion;

• Weibull distribution with cdf F (x) = 1 − exp(−βxτ ):

e(x) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1
τ
, βxτ

)}
exp (βxτ ) − x,

where Γ (·, ·) is the incomplete gamma function;
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Fig. 2. Top panel: Shapes of the mean excess function e(x) for the log-normal (green
dashed line), gamma with α < 1 (red dotted line), gamma with α > 1 (black solid
line) and a mixture of two exponential distributions (blue long-dashed line). Bottom
panel: Shapes of the mean excess function e(x) for the Pareto (green dashed line),
Burr (blue long-dashed line), Weibull with τ < 1 (black solid line) and Weibull with
τ > 1 (red dotted line) distributions. From: XploRe.
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Fig. 3. The empirical mean excess function ên(x) for the PCS catastrophe loss
amounts in billion USD (top panel) and waiting times in years (bottom panel).
Comparison with Fig. 2 suggests that log-normal, Pareto, and Burr distributions
should provide a good fit for loss amounts, while log-normal, Burr, and exponential
laws for the waiting times. From: XploRe.
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• gamma distribution with cdf F (x) =
∫ x

0
β(βs)α−1 exp(−βs)/Γ (α)ds:

e(x) =
α

β
· 1 − F (x, α+ 1, β)

1 − F (x, α, β)
− x,

where F (x, α, β) is the gamma cdf;
• mixture of 2 exponential distributions with cdf F (x) = a{1−exp(−β1x)}+

(1 − a){1 − exp(−β2x)}:

e(x) =
a
β1

exp (−β1x) + 1−a
β2

exp (−β2x)

a exp (−β1x) + (1 − a) exp (−β2x)
.

Comparison of Figures 2 and 3 suggests that log-normal, Pareto, and Burr
distributions should provide a good fit for the loss amounts. The maximum
likelihood estimates of the parameters of these three distributions are the
following: µ = 18.4478 and σ = 1.1554 (log-normal), α = 1.9975 and λ =
2.3248 · 108 (Pareto), and α = 0.4135, λ = 3.235 · 1018 and τ = 2.4135 (Burr).
Unfortunately, the parameters of the Burr distribution imply that the first
moment is infinite which contradicts the assumption that the claim amount
random sequence {Xk} has finite mean. This assumption seems natural in
the insurance world since any premium formula usually includes the expected
value of Xk. Therefore, we exclude the Burr distribution from the analysis of
claim severities.

The classification of waiting times data is not that straightforward. If we
discard large observations then log-normal and Burr laws should yield a good
fit. However, if all waiting times are taken into account then the empirical
mean excess function ên(x) approximately forms a straight line (though some-
what oscillating) and suggests that the exponential law could be a reasonable
alternative.

3.2 Limited Expected Value Function

The limited expected value function L of a claim size variable X , or of the
corresponding cdf F (x), is defined by

L(x) = E{min(X,x)} =
∫ x

0

ydF (y) + x {1 − F (x)} , x > 0. (5)

The value of the function L at point x is equal to the expectation of the
cdf F (x) truncated at this point. In other words, it represents the expected
amount per claim retained by the insured on a policy with a fixed amount
deductible of x. The empirical estimate is defined as follows:

L̂n(x) =
1
n

⎛
⎝ ∑

xj<x

xj +
∑
xj≥x

x

⎞
⎠ . (6)
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In order to fit the limited expected value function L of an analytical distri-
bution to the observed data, the estimate L̂n is first constructed. Thereafter
one tries to find a suitable analytical cdf F , such that the corresponding lim-
ited expected value function L is as close to the observed L̂n as possible.

The limited expected value function (LEVF) has the following important
properties:

(i) the graph of L is concave, continuous and increasing;
(ii) L(x) → E(X), as x→ ∞;
(iii) F (x) = 1 − L′(x), where L′(x) is the derivative of the function L at

point x; if F is discontinuous at x, then the equality holds true for the
right-hand derivative L′(x+).

The reason why the limited expected value function is a particularly suit-
able tool for our purposes is that it represents the claim size distribution in
the monetary dimension. For example, we have L(∞) = E(X) if it exists. The
cdf F , on the other hand, operates on the probability scale, i.e. takes values
between 0 and 1. Therefore, it is usually difficult to see, by looking only at
F (x), how sensitive the price for the insurance – the premium – is to changes
in the values of F , while the LEVF shows immediately how different parts of
the claim size cdf contribute to the premium. Apart from curve-fitting pur-
poses, the function L turns out to be a very useful concept in dealing with
deductibles (Burnecki, Nowicka-Zagrajek, and Wy�lomańska, 2005). It is also
worth mentioning, that there exists a connection between the limited expected
value function and the mean excess function:

E(X) = L(x) + P(X > x)e(x). (7)

The limited expected value functions (LEVFs) for all distributions consid-
ered in this chapter are given by:

• exponential distribution:

L(x) =
1
β
{1 − exp(−βx)} ;

• log-normal distribution:

L(x) = exp
(
µ+

σ2

2

)
Φ

(
lnx− µ− σ2

σ

)
+ x

{
1 − Φ

(
lnx− µ

σ

)}
;

• Pareto distribution:

L(x) =
λ− λα(λ+ x)1−α

α− 1
;

• Burr distribution:

L(x) =
λ1/τΓ

(
α− 1

τ

)
Γ

(
1 + 1

τ

)
Γ (α)

B
(

1 +
1
τ
, α− 1

τ
;

xτ

λ+ xτ

)

+ x

(
λ

λ+ xτ

)α

;
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• Weibull distribution:

L(x) =
Γ (1 + 1/τ)

β1/τ
Γ

(
1 +

1
τ
, βxα

)
+ xe−βxα

;

• gamma distribution:

L(x) =
α

β
F (x, α+ 1, β) + x {1 − F (x, α, β)} ;

• mixture of 2 exponential distributions:

L(x) =
a

β1
{1 − exp (−β1x)} +

1 − a

β2
{1 − exp (−β2x)} .

From the curve-fitting point of view the use of the LEVFs has the ad-
vantage, compared with the use of the cdfs, that both the analytical and the
corresponding observed function L̂n, based on the observed discrete cdf, are
continuous and concave, whereas the observed claim size cdf Fn is a discon-
tinuous step function. Property (iii) implies that the limited expected value
function determines the corresponding cdf uniquely. When the limited ex-
pected value functions of two distributions are close to each other, not only
are the mean values of the distributions close to each other, but the whole
distributions as well.

Since the LEVF represents the claim size distribution in the monetary di-
mension, it is usually used exclusively for analyzing price data. In Figure 4 we
depict the empirical and analytical LEVFs for the two distributions suggested
by the mean excess function to best fit the PCS catastrophe loss amounts.
We can see that the Pareto law is definitely superior to the log-normal one.

3.3 Probability plot

The purpose of the probability plot is to graphically assess whether the data
comes from a specific distribution. It can provide some assurance that this
assumption is not being violated, or provide an early warning of a problem
with our assumptions.

The probability plot is constructed in the following way. First, the observa-
tions x1, ..., xn are ordered from the smallest to the largest: x(1) ≤ ... ≤ x(n).
Next, they are plotted against their observed cumulative frequency, i.e. the
points (pluses in Figs. 5-8) correspond to the pairs (x(i), F

−1([i − 0.5]/n)),
for i = 1, ..., n. If the hypothesized distribution F adequately describes the
data, the plotted points fall approximately along a straight line. If the plotted
points deviate significantly from a straight line, especially at the ends, then
the hypothesized distribution is not appropriate.

In Figure 5 the Pareto probability plot of the PCS loss data is displayed.
Apart from the two very extreme observations (corresponding to Hurricane
Andrew and Northridge Earthquake) the points more or less constitute a
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Fig. 4. The empirical (black solid line) and analytical limited expected value func-
tions (LEVFs) for the log-normal (green dashed line) and Pareto (blue dotted line)
distributions for the PCS loss catastrophe data. From: XploRe.

straight line, validating the choice of the Pareto distribution. In Figures 6
and 7 the log-normal probability plots of the PCS data are presented. To this
end we applied the standard normal probability plots to the logarithms of the
losses and waiting times, respectively. Figure 6 suggests that the log-normal
distribution for the loss severities is not the best choice, whereas Figure 7
justifies the use of that particular distribution to the waiting times data.
Figure 8 depicts the exponential probability plot of the latter dataset. We
can see that the exponential distribution is not a very good candidate for the
underlying distribution of the waiting times data – the points deviate from a
straight line in the far end. Nevertheless, the deviation is not that large and
the exponential law may be an acceptable model.

The presented probability plots suggest that, as far as the loss amounts
are concerned, the Pareto law provides a much better fit than the log-normal
distribution. In fact, apart from the two very extreme observations (Hurricane
Andrew and Northridge Earthquake), it does provide a very good fit. Note,
that the procedure of trimming the top 1-5% of the data before calibration is
known as robust estimation and leads to very similar conclusions (see a recent
paper by Chernobai et al., 2006).

From the probability plots we also infer that the waiting times data can
be described by the log-normal and – to some degree – the exponential dis-
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Fig. 5. Pareto probability plot of the PCS loss data. Apart from the two very
extreme observations (Hurricane Andrew and Northridge Earthquake) the points
(pluses) more or less constitute a straight line, validating the choice of the Pareto
distribution. The inset is a magnification of the bottom left part of the original plot.
From: Ruin Probabilities Toolbox.
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tribution. The maximum likelihood estimates of the parameters of these two
distributions are given by: µ = −3.9431 and σ = 0.9685 (log-normal) and
β = 34.572 (exponential).

4 Risk Process and its Visualization

The risk process (2) is a sum of the initial capital and the premium function
minus the aggregate claim process governed by two random phenomena – the
severity and incidence of claims. In many practical situations it is reasonable
to consider the counting process Nt (responsible for the incidence of events) to
be (i) a renewal process, i.e. a counting process with inter-arrival times being
i.i.d. positive random variables with mean 1/λ, and (ii) independent of the
claim severities {Xk}. In such a case, the premium function can be defined
in a natural way as c(t) = (1 + θ)µλt, where µ is the expectation of Xk’s
and θ > 0 is the relative safety loading on the premium which “guarantees”
survival of the insurance company. The (homogeneous) Poisson process (HPP)
is a special case of the renewal process with exponentially distributed waiting
times.

Two standard ways of presenting sample trajectories of the risk process
are displayed in Figs. 9 and 10. Here, we use the Danish fire losses dataset,
which can be modeled by a log-normal claim amount distribution with param-
eters µ = 12.6795 and σ = 1.4241 (obtained via maximum likelihood) and a
HPP counting process with monthly intensity λ = 4.81. The company’s initial
capital is assumed to be u = 10 million DKK. In Figure 9 five real (discontin-
uous) sample realizations of the resulting risk process are presented, whereas
in Figure 10 the trajectories are shown in a continuous fashion. The latter
way of depicting sample realizations seems to be more illustrative. Notice also
that one of the trajectories falls below zero indicating a scenario leading to a
bankruptcy of the insurance company.

4.1 Ruin Probability Plots

In examining the nature of the risk associated with a portfolio of business, it is
often of interest to assess how the portfolio may be expected to perform over
an extended period of time. In this context the ruin theory (Grandell, 1991)
comes in handy. Ruin theory is concerned with the excess of the income c(t)
(with respect to a portfolio of business) over the outgo, or claims paid, S(t).
This quantity, referred to as insurer’s surplus, varies in time. Specifically, ruin
is said to occur if the insurer’s surplus reaches a specified lower bound, e.g.
minus the initial capital. This can be observed in Figure 10 where the time
of ruin is denoted by a star. One measure of risk is the probability of such an
event, clearly reflecting the volatility inherent in the business. In addition, it
can serve as a useful tool in long range planning for the use of insurer’s funds.

The ruin probability in finite time T is given by
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Fig. 9. Discontinuous visualization of the trajectories of a risk process. The initial
capital u = 10 million DKK, the relative safety loading θ = 0.05, the claim size
distribution is log-normal with parameters µ = 12.6795 and σ = 1.4241, and the
driving counting process is a HPP with monthly intensity λ = 4.81. From: Ruin
Probabilities Toolbox.
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Fig. 10. Alternative (continuous) visualization of the trajectories of a risk process.
The bankruptcy time is denoted by a star. The parameters of the risk process are
the same as in Fig. 9. From: Ruin Probabilities Toolbox.
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Fig. 11. Ruin probability plot with respect to the time horizon T (left axis, in
months) and the initial capital u (right axis, in million DKK). The relative safety
loading θ = 0.15; other parameters of the risk process are the same as in Fig. 9.
From: Ruin Probabilities Toolbox.

ψ(u, T ) = P
(

inf
0<t<T

{Rt} < 0
)
. (8)

Most insurance managers will closely follow the development of the risk busi-
ness and increase the premium if the business behaves badly. The planning
horizon may be thought of as the sum of the following: the time until the
risk business is found to behave “badly”, the time until the management
reacts, and the time until a decision of a premium increase takes effect
(Grandell, 1991).

In Figure 11 a 3-dimensional (3D) visualization of the ruin probability
with respect to the initial capital u varying from 0 to 8 million DKK and
the time horizon T changing from 0 to 5 months is depicted. The remaining
parameters of the risk process are the same as those used in Figs. 9 and 10,
only the relative safety loading was raised from θ = 0.05 to θ = 0.15. We can
see that the ruin probability increases with the time horizon and decreases as
the initial capital grows.

The ruin probability in finite time can always be computed directly using
Monte Carlo simulations. Naturally, the choice of the intensity function and
the distribution of claim severities heavily affects the simulated values and
the ruin probability. Graphical tools that are presented below can help in
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Fig. 12. 3-dimensional visualization of the density evolution of a risk process with
respect to the risk process value Rt (left axis) and time t (right axis). The parameters
of the risk process are the same as in Fig. 11. From: Ruin Probabilities Toolbox.

assessing whether the choices made result in a reasonable risk process and,
hence, greatly reduce the time needed to construct an adequate model.

4.2 Density Evolution

Density evolution plots (and their 2-dimensional projections) are a visually
attractive method of representing the time evolution of a process. At each
time point t = t0, t1, ..., tn, a density estimate of the distribution of process
values at this time point is evaluated, see Fig. 12 (the same parameters of
the risk process as in Fig. 11 were used). Then the densities are plotted on a
grid of t values. The obtained 3-dimensional surface can be further rotated to
better present the behavior of the process in a particular interval.

A 2-dimensional projection of the density evolution plot (see Fig. 13) re-
veals equivalent information to that represented by the quantile lines (see
Section 4.3). Only in this case the presented visual information is more at-
tractive to the eye, however, not that rigid. Depending on the discretization
of the time and process value intervals and the kernel density estimate used,
slightly different density evolution plots can be obtained (Janicki and Izydor-
czyk, 2001; Místa, 2002).
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Fig. 13. 2-dimensional projection of the density evolution depicted in Fig. 12. From:
Ruin Probabilities Toolbox.

4.3 Quantile Lines

The function x̂p(t) is called a sample p-quantile line if for each t ∈ [t0, T ],
x̂p(t) is the sample p-quantile, i.e. if it satisfies Fn(xp−) ≤ p ≤ Fn(xp), where
Fn is the empirical distribution function (edf). Recall, that for a sample of
observations {x1, . . . , xn} the edf is defined as:

Fn(x) =
1
n

#{i : xi ≤ x}, (9)

i.e. it is a piecewise constant function with jumps of size 1/n at points xi

(Burnecki, Misiorek, and Weron, 2005).
Quantile lines are a very helpful tool in the analysis of stochastic processes.

For example, they can provide a simple justification of the stationarity (or the
lack of it) of a process, see Janicki and Weron (1994). In Figures 14, 15, and
16 they visualize the evolution of the risk process.

Quantile lines can be also a useful tool for comparing two processes, see
Fig. 14. It depicts quantile lines and two sample trajectories of the risk process
and its diffusion approximation; consult Burnecki, Místa, and Weron (2005)
for a discussion of different approximations in the context of ruin probability.
The parameters of the risk process are the same as in Fig. 11. We can see that
the quantile lines of the risk process and its approximation coincide. This
justifies the use of the Brownian approximation for such parameters of the
risk process.
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Fig. 14. A Poisson-driven risk process (discontinuous thin lines) and its Brownian
motion approximation (continuous thin lines). The quantile lines allow for an easy
and fast comparison of the processes. The thick solid lines represent the sample 0.1,
..., 0.9-quantile lines based on 10000 trajectories of the risk process, whereas thick
dashed lines correspond to their approximation counterparts. The parameters of the
risk process are the same as in Fig. 11. From: Ruin Probabilities Toolbox.

Now we return to the PCS dataset. To study the evolution of the risk pro-
cess we simulate sample trajectories and compute quantile lines. We consider
a hypothetical scenario where the insurance company insures losses resulting
from catastrophic events in the United States. The company’s initial capital
is assumed to be u = 100 billion USD and the relative safety loading used is
θ = 0.5. We choose two different models of the risk process whose application
is justified by the statistical analysis, see Section 3: a homogeneous Poisson
process (HPP) with log-normal claim sizes and a renewal process with Pareto
claim sizes and log-normal waiting times. The results are presented in Fig.
15. The thick solid line is the “real” risk process, i.e. a trajectory constructed
from the historical arrival times and values of the losses. The different shapes
of the “real” risk process in the subplots are due to the different forms of the
premium function c(t). The thin solid line is a sample trajectory. The dotted
lines are the sample 0.001, 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99, 0.999-quantile
lines based on 3000 trajectories of the risk process. The quantile lines visual-
ize the evolution of the density of the risk process. Clearly, if claim severities
are Pareto distributed then extreme events are more probable to happen than
in the log-normal case, for which the historical trajectory falls even outside
the 0.001-quantile line. Figure 15 suggests that the second model (Pareto dis-
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Fig. 15. The PCS data simulation results for a homogeneous Poisson process with
log-normal claim sizes (top panel) and a renewal process with Pareto claim sizes
and log-normal waiting times (bottom panel). The dotted lines are the sample 0.001,
0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on 3000 trajectories
of the risk process. From: XploRe.
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Fig. 16. “Probability gates” are an interactive graphical tool used for determining
the probability that the process passes through a specified interval. The 0.1, ..., 0.9-
quantile lines (thick red lines) are based on 1000 simulated trajectories (thin blue
lines) of the risk process originating at u = 100 billion USD. The parameters of the
α-stable Lévy motion approximation of the risk process were chosen to comply with
PCS data. From: SDE-Solver.

tributed claim sizes and log-normal waiting times) yields a reasonable model
for the “real” risk process.

4.4 Probability gates

“Probability gates” are an interactive graphical tool implemented in SDE-
Solver. They can be of invaluable assistance in real-time analysis of the risk
process and its models. A “probability gate” gives the so-called cylindrical
probability P{Xt0 ∈ (a, b]} that the simulated process Xt passes through
a specified interval (a, b] at a specified point in time t0 (Janicki and Izy-
dorczyk, 2001; Janicki, Izydorczyk, and Gradalski, 2003). In Figure 16 two
probability gates are defined; Monte Carlo simulations can be used to obtain
the probability estimates. One yields the probability of the risk process falling
below 75 billion after 4 years, i.e. P{R4 ∈ (0, 75]} = 0.096. The other yields
the probability of the risk process being in the range (125, 200] billion after 8
years, i.e. P{R8 ∈ (125, 200]} = 0.515. Additionally, product probabilities of
the process passing through all defined gates are provided. In the above ex-
ample the product probability of the risk process first falling below 75 billion
(after 4 years) and then recovering to over 125 billion but less than 200 bil-
lion (after 8 years) is equal to: P{R4 ∈ (0, 75], R8 ∈ (125, 200]} = 0.009. The
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parameters of the α-stable Lévy motion approximation (Furrer, Michna, and
Weron, 1997) of the risk process were chosen to comply with the catastrophic
data example.
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