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Abstract

Using an agent-based modeling approach we show how personalattributes, like conformity or
indifference, impact the opinions of individual electricity consumers regarding switching to inno-
vative dynamic tariff programs. We also examine the influence of advertising, discomfort of usage
and the expectations of financial savings on opinion dynamics. Our main finding is that currently
the adoption of dynamic electricity tariffs is virtually impossible due to the high level of indiffer-
ence in today’s societies. However, if in the future the indifference level is reduced, e.g., through
educational programs that would make the customers more engaged in the topic, factors like tariff
pricing schemes and intensity of advertising will became the focal point.

Keywords: Dynamic pricing, Time-of-use tariff, Demand response, Diffusion of innovations,
Agent-based model.
JEL: C63, O33, Q48, Q55

1. Introduction

In the not so distant past, the construction of the power system was hierarchical. Electrical
energy was generated mostly from fossil fuels, like coal or lignite, in large conventional power
plants. Then, the electricity was delivered via transmission and distribution lines to end users.
The position of the consumers – companies and households – was passive. Their awareness and
knowledge of energy consumption levels was generally limited to the bills paid at the end of the
month.

Nowadays, the power systems are decentralized to a large extent. Competition has been al-
lowed on the level of generation and sales of energy in the wholesale and retail markets. This
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has created new challenges to be faced by market participants and regulators. The biggest one is
probably the threat that demand and supply of electricity will not match in the coming future. On
one hand, energy demand is increasing rapidly and – according to experts – further growth will
be observed due to increased ‘electrification’ of our lives and population growth (BP, 2012; Birol,
2004; ExxonMobil, 2013). Energy demand has become also moresophisticated: the consumers
are more aware of their rights and they want a reliable supplyof electricity of good quality. On the
other hand, due to the constantly decreasing natural resources the generation may face problems
of scarcity in supply of fossil fuels. On top of that most of the present generation and transmis-
sion infrastructure (i.e., power plants, transmission lines, etc.) is old and inefficient. Among other
challenges is the increasing presence ofrenewable energy sources(RES) in the power system, like
wind, solar and hydro energy. The non-dispatchable, non-controllable character of most of these
sources influences both the supply and demand in the power system (Harris, 2006; Kirschen and
Strbac, 2004; Shively and Ferrare, 2010).

The way in which the power system will develop is defined to some extent by policy makers.
One of the most crucial legal regulations that has a great impact on the future of the power system,
is the Climate Policy 3× 20 (EC, 2007). It obliges governments of the EU countries to design
appropriate energy policies, which will lead to a reductionin CO2 emissions and an increase in the
participation of renewable energy in the market. Moreover,energy efficiency must be increased.
There are also EU Directives that have a great, strategic impact on the development of the power
system. For instance, Directive 2012/27/EC that establishes a common framework of measures for
the promotion of energy efficiency within the EU in order to ensure the achievement of theEU’s
2020 20% headline target on energy efficiency and to pave the way for further energy efficiency
improvements beyond that date (EC, 2012). In particular, this directive requires the introduction of
meters that would provide feedback to private households onenergy consumption and information
about energy efficiency. Moreover, energy suppliers are obliged to offer electricity tariffs that
would motivate households to conserve energy or shift electricity consumption from peak to off-
peak periods (EC, 2012; Paetz et al., 2012).

The important question that arises in this context is whether the households will switch to the
new – more energy-efficient but less comfortable – dynamic tariffs and how fast or slow will this
process take place. Using an agent-based modeling approach, in this paper we show how personal
attributes, like conformity or indifference, impact the decisions of individual electricity consumers.
We also examine the influence of mass-media education programs and the expectations of financial
savings on the decision making process.

The paper is structured as follows. In Section 2 we discuss the position of the electricity
consumer and describe the new possibilities, connected with the current legal regulations and the
development of innovative information and communication technologies (ICT). We also comment
on the results of some pilot programs that have been run recently in Europe and the U.S. The aim
of these programs was to evaluate the attitude of the electricity consumer to particular demand
response tools. In Section 3 we introduce our agent-based model and present the Monte Carlo
simulation scheme. We also discuss the position of out modelin the rich universe of agent-based
models of social influence. In Section 4 we present the results of our extensive simulation study.
Finally, in Section 5 we conclude, discuss policy implications and comment on future work.
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2. Consumers in today’s electricity markets

In the last couple of years, the position of electricity consumers in the power system has radi-
cally changed. Due to market decentralization and the presence of a growing number ofrenewable
energy sources(RES) on the lower voltage levels, new possibilities have arisen for the consumers.
They can now play an active role in the power system. They havethe right to change the energy
supplier (as a result of theThird Party Accesspolicy, see Diaz-Rainey and Tzavara, 2012; EC,
2009) and to choose a specific pricing program. Moreover, they can now relatively easily start to
generate energy and use it for their own needs or sell the surplus to the distribution system opera-
tors. In this way they can becomeprosumers, i.e., consumers, who consume and produce energy
at the same time.

The ambitious goals set by the EU will have a great impact not only on power generation but
also on consumption. As the power system of the future has to be more sustainable, built on a
greater energy efficiency and a high share of renewable energy, the changes willcertainly impact
the households. In order to increase energy efficiency, the consumers will need to decrease their
electricity consumption and may need to make new investmentin more efficient home appliances.
Furthermore, they will be required to shift loads, which mayalso involve changes in everyday be-
havior and routines (FORSA, 2010; Jongejan et al., 2010; Paetz et al., 2012). Increased efficiency
of energy usage should result in cost savings (electricity demand shifted to the time zones when
the electricity price is lower, decreased total amount of energy consumption, energy saving home
appliances, etc.). On the other hand, new investment cost may be necessary, for instance, cost of
smart meters, smart appliances, smart plugs, etc.

Due to the mentioned structural changes, the economic relationships between market partic-
ipants are becoming more sophisticated and require a fresher look. As a result, a new approach
has been proposed recently. The so-calledSmart Gridsuse modern communication technologies
to exchange information between market agents (generators, market operators and end-users) in
order to improve the efficiency of energy production and consumption (see e.g. Jackson, 2010;
Palensky and Dietrich, 2011; Zhang and Nuttall, 2011). The information gathered bysmart me-
ters can be used to improve the market structure and increase the competitiveness of the energy
sector (Darby, 2006, 2010). The popularity of the Smart Grids concept induces discussion on the
role of consumers in the power system. By the means of advancedbut already available informa-
tion and communication technologies (ICT), consumers can have tools that will enable them to
control their electricity consumption on a daily basis.

One of the crucial challenges of the coming years is to optimize the use of existing capacity
while meeting ever-increasing demand for electricity and reducing CO2 emissions. It seems that
this could be achieved at a relatively low cost by introducing Demand Side Management (DSM)
and Demand Response (DR) instruments (Darby and McKenna, 2012; Faruqui, 2012; Gerpott and
Mahmudova, 2010; Strbac, 2008; Zugno et al., 2013). The DSM/DR tools are designed to in-
fluence consumption patterns and energy efficiency of end-users and therefore to reduce energy
production and load variability. The literature considersDSM/DR instruments ranging from ed-
ucation (encouraging efficient usage of energy), through time-based pricing (time-of-use rates,
critical peak pricing, real-time pricing) to incentive-based DR (direct load control, emergency de-
mand response programs, capacity market programs). Among the DSM/DR tools, dynamic tariffs
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Figure 1: Sample daily electricity demand schedules. UK national demand day-ahead forecasts for two Mondays: 18
June 2012 and 17 December 2012.

are one of the most common and interesting.

2.1. Dynamic pricing programs

So far most of residential electricity consumers have conventional electricity meters that mea-
sure only the total electricity consumption. The majority of consumers use simple one- or two-time
zone tariffs (flat tariffs, like days and night tariffs) and are even not aware what kind of a tariff they
have and what impact on their energy costs it has. A typical energy demand curve shows two
peaks: one in the morning and another one, more pronounced inthe Winter (or cold season), in
the afternoon-evening hours, see Figure 1. Dynamic tariffs have been invented to flatten the curve
and to shift the demand from on-peak hours to off-peak hours. On one hand, the shift of load
implies a change in consumers’ habits and daily routines; sometimes it may be connected with the
reduction of the overall energy consumption. On the other, it reduces the imbalance between peak
demand and peak supply and helps to manage the power supply costs. Furthermore, it is expected
that the flattened energy demand curve will lower the generaloperation costs of the distribution
system operators and lead to a reduction of wholesale power market prices (Procter, 2013).

Dynamic tariffs differ a lot from typical or traditional tariffs. In a variable electricity tariff, the
price of electricity is dependent on the balance between supply and demand in the market. With
such a tariff the consumer may experience several changes in price levelsduring the day due to
the fluctuations of supply and demand (Faruqui, 2012; Gerpott and Paukert, 2013; Strbac, 2008;
Thorsens et al., 2012; Zugno et al., 2013). Among variable electricity tariffs, the following can be
distinguished (Darby and McKenna, 2012; Ehlen et al., 2007;Faruqui and Sergici, 2010; Jongejan
et al., 2010):

• Time-of-use pricing(TOU) – within this tariff the electricity prices are divided into a couple
of time zones, depending on the time of usage: the electricity price during on-peak hours is
higher than the price during off-peak hours. The goal is to flatten the load curve by reducing
on-peak demand and increasing off-peak demand.
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• Critical peak pricing(CPP) – in this tariff on-peak times are limited to just a few days per
year, when demand is expected to be the highest, such as during a heat wave in the Summer
or a cold spell in the Winter. CPP on-peak electricity prices typically range between 400%
and 700% of the off-peak electricity price. The idea behind CPP tariffs is to create a financial
incentive to reduce electricity consumption during extremely high demand days.

• Peak-time rebate(PTR) – this tariff offers a rebate to customers who reduce their electricity
demand on critical peak days.

• Real-time pricing(RTP) – within this tariff the electricity price is dependent on the actual
real-time costs of electricity based on supply and demand (e.g., the power exchange spot
price). By means of advanced ICT solutions, consumers are informed in real-time about the
electricity price. This tariff is rarely chosen by electricity consumers, as it is too uncomfort-
able to monitor the constantly moving price of electricity.The only reasonable solution is
to use automatic smart appliances.

Innovative advanced technologies like ARM (automated meter reading) and AMI (advanced
metering infrastructure) are necessary to enable implementation of dynamic pricingprograms and
extended usage of other DSM/DR tools. In most cases, a so-called enabling technology is needed
to increase the positive impact of a dynamic tariff on the energy demand. Such an enabling tech-
nology is an equipment that enables the customer to automatecontrol of the load consumption
according to the specific price and time ranges. Moreover, itensures transparency of electricity
prices. Such enabling technologies include smart meters, in-home displays, smart thermostats,
web based consumer portals, smart plugs/appliances orhome area networks(Faruqui and George,
2005; FORSA, 2010; Gerpott and Paukert, 2013; Jongejan et al., 2010; Paetz et al., 2012; Star et
al., 2010). A dynamic tariff is not a modern product, but when combined with enabling technolo-
gies, advanced ICT technologies, it can become a real innovative solution, which may eventually
conquer the market.

2.2. Pilot programs in the U.S. and the EU

In the recent years, a number of pilot programs, focused on the reduction of peak demand and
energy conservation at the consumption level, have been runin the U.S. and in Europe (Ehrhardt-
Martinez et al., 2010; Faruqui, 2012; Jongejan et al., 2010;Peters et al., 2009; Sopha et al., 2011;
Star et al., 2010). Many experiments were conducted in an attempt to understand consumers’
responsiveness to variations in retail electricity prices(Allcott, 2011; ATKearney, 2012; Faruqui
and George, 2005; Faruqui and Sergici, 2010; Grans et al., 2013; Ozaki, 2011; Thorsens et al.,
2012).

It has been shown that in the case of flat tariffs the electricity demand is price inelastic. On the
other hand, implementation of time-of-use rates (TOU) or critical-peak pricing (CPP) programs
increases price elasticity over time, due to consumers’ gradual adaptation of daily routines to the
new tariffs. TOU rates induce a drop in peak demand that ranges form 3% to6%, while CPP
tariffs induce a drop in peak demand from 13% to 20%. However, the elasticity level depends
on climate conditions, seasons of the year, income levels and appliance ownership (Faruqui and
Sergici, 2010; Thorsens et al., 2012).
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When accompanied by enabling technologies, the introduction of TOU rates leads to a drop in
peak demand up to 15% and of CPP rates to a drop in peak demand up to 44% (Ehrhardt-Martinez
et al., 2010; Star et al., 2010). Moreover, according to ATKearney (2012) and Darby and McKenna
(2012), a reduction of energy consumption increases from 5%to 10% with enabling technologies.
Enabling technologies greatly improve the overall impact of demand response and significantly
increase the savings in both avoided capacity and avoided electricity for the utility. The main
problem with this solution is that the cost of the enabling technologies is currently higher than
potential savings (Gerpott and Paukert, 2013; Jongejan et al., 2010; Paetz et al., 2012).

In many experiments, the conventional electricity meters were replaced with smart meters.
Together with in-home displays they were used as a source of information for customers about
the real energy consumption. The information was also provided to the clients in an indirect way,
via billing. It has been shown that energy conservation and reduction of peak demand increases
because of receiving better information about electricityconsumption (in a direct or/and an indirect
way), see Darby (2006); Ehrhardt-Martinez et al. (2010); Gerpott and Paukert (2013); Grans et al.
(2013); Matsukawa (2005); Thorsens et al. (2012).

Although promising results have been achieved in many pilotprograms, another problem has
been defined. Namely, only a small amount of participants of the pilot programs decided to sign
up for the new tariffs. For instance, in Illinois in the AIU Power Smart Pricing Program only 18%
of customers, where the pilot program was run, were aware of it. Moreover, only 10% of them
understood the program and only 5% were interested in the program. In the end, under 1% of
customers enrolled in the program (Star et al., 2010). Lack of interest and fear of change were
named as the main reasons for such low program participationrates (ATKearney, 2012; Darby and
McKenna, 2012).

What is interesting, is that such results were obtained in countries like the U.S., Canada, U.K.
and Germany, where the population was generally aware of andsensitive to issues related to en-
ergy efficiency, smart grids and dynamic pricing. In those societiespilot programs have been run
for years, and most people should have been familiar with those terms and issues. However, ac-
cording to a survey conducted in 2010 in the U.K. only 8% of respondents think that energy needs
‘attention and improvement’ (OFGEM, 2010). The report of ATKearney (2012) provides even
more dramatic numbers: 60-75% of consumers are not aware of the existence of smart grids and
are not willing to shift their consumption to off-peak hours. Similar results have been obtained in
Germany (FORSA, 2010; Gerpott and Paukert, 2013; Paetz et al., 2012). For example, in project
MeRegioMobil, which is part of the broad EU projectInternet of Energy, currently run in six
German regions (BMWi, 2012), the customers’ attitude towards dynamic pricing programs and
smart technologies has been evaluated. The results of the analysis have shown that as long as the
consumers are not familiar with the new technologies and arenot aware of the potential energy and
cost savings, they will not be interested in changing anything in their daily routines. Their basic
lack of knowledge is responsible for theirindifferenceto the energy market and energy efficiency.
Most people are not interested in changing the energy supplier and looking for another attractive
pricing program (Paetz et al., 2012).

The level of awareness, understanding and interest is even lower in Central and Eastern Eu-
ropean (CEE) countries. For instance, knowledge and awareness is estimated at 24% in Poland
compared to 49% in the U.S. Smart grids, energy efficiency or demand response tools are rather

6



new in CEE and very few people are familiar with these terms. However, first pilot programs
have been started. In most of these programs, conventional electricity meters have been replaced
with smart meters. Consumers are also trained how to use smartmeters for a more rational and
conscious use of energy (ATKearney, 2012).

Promoting a sustainable use of electricity can be difficult, because electricity differs from other
consumer goods. As mentioned by Fisher (2007) and Hargreaves et al. (2010), it is invisible and
untouchable and consumed indirectly by related activities. However, when people are informed
their interest increases and most of them gain a positive attitude towards DR tools and smart
technologies. Their main motivation for a potential changeof the energy seller or the pricing
program is cost savings. Environmental benefits are seen as positive side-effects. On the other
hand, people have doubts about the real potential of these savings. They would prefer to get all the
necessary equipment (e.g., smart meters, home-displays) for free. In case, when they need to invest
their own money, they want to get a fast payback from these investments. The biggest disadvantage
for them is the possible reduction in comfort by rescheduling the daily routine in response to
electricity prices dictated by the variable electricity tariff (FORSA, 2010; Paetz et al., 2012). To
reduce this disadvantage a typical energy consumer would like to have enabling technologies,
that adjust work of the home appliances according to the price level of electricity. Moreover, to
increase the participation and engagement rates, the non-economic or one-off incentives, like an
offer of a free programmable thermostat, could be helpful (Darby and McKenna, 2012; Faruqui
and Sergici, 2010; Peters et al., 2009). To reach a high levelof enrollment, the design of the pricing
rate, education and marketing of new solutions and offerings must be appropriate. Without that,
there will be no significant demand response as a result of thelack of knowledge, high level of
indifference and ignorance of the consumers.

3. Model description

3.1. Historical background

In the last two decades, agent-based computational economics (ACE) has become a widely
accepted approach to solving both theoretical and practical problems in economics in general
(Cincotti et al., 2008; Farmer et al., 2012; Hommes, 2006; Squazzoni, 2010; Tesfation, 2003) and
energy economics in particular (Bunn and Martoccia, 2005; Bunn and Oliveira, 2001; Cincotti
and Gallo, 2013; Ehlen et al., 2007; Guerci et al., 2010; Jackson, 2010; Sun and Tesfatsion, 2007;
Zhang and Nuttall, 2011). The basic tool of ACE – an agent-based model (ABM; sometimes
referred to as a ‘multi-agent system/simulation’) – is a class of computational structures and rules
for simulating the actions and interactions of autonomous agents (both individual or collective
entities, such as organizations or groups) with the ultimate objective to assess their effects on the
system as a whole.

For a couple of decades, scientists have been proposing models for describing how a new
product, like the iPhone or the iPad, enters the market. Thisclass of problems is calleddiffusion of
innovationsand has been extensively studied to date, starting with the classical works of Rogers
(1962) and Bass (1969), continuing through the second half ofthe XX century and in recent-day
publications, see Goldenberg et al. (2007, 2010); Kieslinget al. (2011); Nyczka and Sznajd-Weron
(2013); Przybyła et al. (2013); Weyant (2011) to name a few. Interestingly, nearly all models
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describing the diffusion of innovations have a common feature: the adaptation behavior of the
agent is represented by means of a single dichotomous variable taking the values−1 (potential
adopter, customer of the old product) or+1 (adopter, customer of the innovative product).

Such agents have been used in statistical physics for almosta century and are referred to as
spins(Ising, 1925). Initially spins have been introduced to understand the magnetic properties of a
physical system. However, spins turned out to be a useful concept for many interdisciplinary appli-
cations; already three decades ago Galam et al. (1982) used it to model social collective behavior.
In sociophysics – a statistical physics approach to social systems (for a recent, comprehensive re-
view see Galam, 2012) – the termspinis used interchangeably with the termagent. Both typically
represent dichotomous variables (‘binary individuals’).

On the other hand, the field of agent-based modeling has developed considerably since the
pioneering work of Schelling (1971) and nowadays in economics agents are often described by
more complex structures than simple binary variables. In general, agents can be characterized by
many traits, can have their own strategies, etc. To distinguish these more ‘complex’ agents from
their ‘simpler’ cousins a new term –spinson– has been used recently by Nyczka and Sznajd-Weron
(2013) and Przybyła et al. (2013) to describe a particularlysimple agent that is characterized by a
single binary (±1) trait. The term spinson is derived from two words: spin andperson. Graphically
it is a combination of an arrow (a spin) and a person (head and body) as in Figs. 2-3. In this
paper, we will interchangeably use the terms spinson, agent, customer, individual and household
to represent a simple agent that is characterized by a singlebinary (±1) trait. By using the terms
referring to the more complex variables and structures, we want to emphasize the fact that our
model is just a ‘simple spinson model’ of the complex realitywith interacting agents, customers,
individuals or households.

In this paper, we focus on the process of adoption of electricity consumers to a new dynamic
tariff. As in the classical diffusion of innovations theory (Bass, 1969; Rogers, 2003), as well as in
ACE studies (Moldovan and Goldenberg, 2004; Goldenberg et al., 2007, 2010), in our model the
new product adoption is driven by two forces:

• Internal influencethat comes from the interactions between consumers (e.g., word of mouth).
In our case the nature of these interactions is motivated by the psychological observation of
the social impact and has been introduced originally in (Sznajd-Weron and Sznajd, 2000) to
describe opinion dynamics.

• External influence(or external field), which in our case describes not only the marketing
efforts (advertising, promotions, etc.) but also product features (potential savings, com-
fort/discomfort of usage of a particular tariff, etc.).

Before going into details, let us stress two main differences between our model and other
models of diffusion of innovations (Bass, 1969; Moldovan and Goldenberg, 2004; Goldenberg et
al., 2007, 2010):

• In classical models and many recent ABM models, the transitions between the states are
assumed to be irreversible. The customers cannot ‘un-adopt’ after adoption to the new
product, i.e., once they switch to the new electricity tariff they cannot return to the original
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one even if the new tariff turns out to be unsuitable for them. In our model the reversalto
the original product is possible.

• In most diffusion of innovations models, the internal and external influences are given by
some constant parameters, i.e., there is some probabilityp that in a certain time period the
individual will be influenced by the external factor and probability q that the he/she will be
affected by the neighbor(s). In our model the form of internal interactions comes from social
motivations (discussed in the following section).

3.2. Model construction

We consider a set ofi = 1, ..,N spinsons on a square grid (i.e., a chessboard). Each spinson
represents a household and is characterized by its attitudeSi toward an innovative dynamic elec-
tricity tariff. If Si = −1 the household prefers a traditional uniform tariff, if Si = +1 it prefers the
new dynamic tariff. At a given timet, the opinion of a particular spinson depends on three factors:

• Conformity, which represents a specific response to interactions (e.g., word of mouth) be-
tween the spinson and its neighbors. The neighborhood can beinterpreted in terms of either
physical or social connection. As in Sznajd-Weron and Sznajd (2000) the nature of these in-
teractions is motivated by the psychological observationsof the social impact dating back to
Asch (1955): if a group of spinson’s neighbors unanimously shares an opinion, the spinson
will also accept it, see Fig. 2.

• Product features, which are modeled by a global field, as in Sznajd-Weron and Weron (2003,
2008), see Fig. 3. The strength of the field depends on features of the new dynamic electric-
ity tariff: potential savings, (dis)comfort of usage, intensity of advertising, etc.

• Indifference, which introduces indetermination in the system through anautonomous behav-
ior of the individuals (Boudon and Bourricaud, 2003). In the case of indifference the spinson
is immune to the influence of the neighbors and the field, see Fig. 4.

The concept of indifference requires a further explanation. In the general sense, the wordindif-
ferencedenotes the lack of importance, care or concern, but can be also related to the autonomy of
the individuals. In the agent-based model of Przybyła et al.(2013) such an autonomy was due to
the so-calledindependence, which is one of the possible responses to social influence and denotes
a particular type of non-conformity. The level of independence can be connected with the level of
individualism in the society (Hofstede, 2001) and in most cases is expected to be rather low. An
autonomous behavior can be also reflected by indifference, as noted by Boudon and Bourricaud
(2003). They argue that it can arise if two products (e.g., traditional and dynamic electricity tariffs)
offer both advantages and disadvantages and these advantages and disadvantages are not clearly
comparable. In such a case, the strategy finally adopted by anindividual is broadly unpredictable.
There is also a third interpretation of indifference, related to its general meaning. In this case, it
expresses insignificance and is not directly related to a particular product (e.g., tariffs) but reflects
the importance or popularity of the whole topic in the society (e.g., energy saving, ecology).
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Figure 2: Interactions between spinsons (representing households in our model) are described by the social influence
of the unanimous majority. With probability (1− p) a randomly chosen agent (the one in the circle) follows the state
(or shares the opinion) of the 2× 2 panel (the one in the middle) if it is unanimous. If the panelis not unanimous the
spinson is responsive to the external force, see Fig. 3.

Figure 3: External force (or external field) represents product features like potential savings, (dis)comfort of usage,
intensity of advertising, etc. It has an effect on spinsons only if they are not indifferent. With probability (1− p) a
randomly chosen spinson (the one in the circle) is responsive to the field if the 2× 2 panel is not unanimous. With
probabilityh the spinson adopts to the advertised product (right) and with probability (1− h) it remains unchanged
(left).

Figure 4: Indifference is introduced to the model as a kind of noise and represents (temporary) resistance to word of
mouth and global advertising. With probabilityp a randomly chosen spinsoni (the one in the circle) flipsSi(t + dt) =
−Si(t) with probability f (right) or remains unchangedSi(t + dt) = Si(t) with probability 1− f (left), independently
of the state of the 2× 2 panel and the external force.
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We wish to emphasize that the broad concept ofindifferenceplays a central role in our model.
We introduce it mainly to reflect the dependence of the diffusion of the new product on its per-
ception and social significance. In energy markets, consumers are often confused and unable to
evaluate electricity tariffs. There are a few causes for this confusion:

• The tariff consists of a few components (electricity, transmission, services, etc.). The price
of each components is calculated differently and for most of users it is not clear how the
final sum is computed.

• Agents do not have the information about their consumption patterns nor the knowledge
about the power consumption of equipment. Therefore, they cannot easily calculate potential
savings.

• The new tariffs are associated with a hard to quantify discomfort in usage of home appli-
ances. It is hard to compare financial gains with discomfort resulting from shifting the
consumption to off-peak hours.

Moreover, consumers do not consider tariff selection as an important and interesting issue. OFGEM
(2011) analysis indicated that the majority of panel participants could be classified as ‘disengaged’,
meaning that they neither knew their tariffs nor were willing to change them. Star et al. (2010)
obtained similar results on the basis of a market survey: oneof the reasons of low enrollment in
the pilot program in Illinois was disinterest (respondentsdid not want to complicate their lives,
were happy how things were). To sum up, electricity consumers cannot evaluate different tariff
features and generally are not interested in the problem. Hence, they are characterized by a high
indifference level.

On the contrary, when products like smartphones or tablets are considered, a low indifference
level is observed. The conforming behavior results from twofacts: different models are easy to
compare and high-tech products are perceived as symbols of social status. People willingly discuss
and compare new phones, laptops, etc., and hence are more susceptible to the opinions of others.

3.3. Spinson dynamics

The behavior of a randomly chosen spinsoni at timet is illustrated in Fig. 5. First, we check
whether the spinson is indifferent to social pressure. With probabilityp, i.e., if r1 < p for a ran-
domly generated uniform numberr1 ∼ U(0,1), the spinson is indifferent and not interested in
discussing electricity tariffs; with probability (1− p), i.e., if r1 > p, the spinson is likely to be
influenced by the opinions of his neighbors. Similarly as in the model proposed by Przybyła et
al. (2013), we assume that the behavior of the indifferent spinson is characterized by the flexibil-
ity parameterf , describing how frequently the spinson changes its opinion, see Fig. 4. In the
simulations, for simplicity we setf = 0.5, but it has been shown that for any value off > 0 the
simulation results can be rescaled using the remaining model parameters (Przybyła et al., 2013).
It should be noted that the behavior of an indifferent spinson is in some sense not rational (the
spinson may not even bother to check the features of the two tariffs) and purely random. Hence,
the existence of indifference introduces noise into the system. Moreover, under indifference, the
system never reaches an absorbing steady state, in which allagents share the same opinion.

11



Randomly choose  

i-th spinson 

Unanimous 

panel ? 

<  ? 

<  ? 

Randomly choose  

[0,1] 

INDIFFERENCE 

 

CONFORMITY 

Spinson adjusts  

to the panel 

Randomly choose  

[0,1] 

EXTERNAL FIELD 

1 

YES 

NO YES 

YES NO 

NO 

Randomly choose  

a neighboring  

2 × 2 panel 

Figure 5: Flowchart of the model described in Section 3.

If the spinson is not indifferent, its opinion may be subject to change due to the social pressure
of its neighbors. In this case, in the second step a neighboring 2×2 panel of four spinsons is chosen
randomly. If the opinion of the panel is unanimous, spinsoni follows the opinion of the panel, see
Fig. 2. On the other hand, if the panel is not unanimous, then the spinson will be exposed to the
influence of the external field (i.e., product featrues). Forsimplicity, we assume that the external
field is uniform and can affect all spinsons in the same way. The strength of the field is described by
the parameterh. It defines the probability with which the spinson can be convinced to switch to the
new dynamic tariff because of its features. Consequently, with probability (1− h) the spinson will
stay unconvinced, see Fig. 3. The strength of the field depends on the particular tariff: expected
bills and potential savings, (dis)comfort of usage, intensity of advertising, etc.

3.4. Simulation setup

In the simulation, we runM experiments. A single experiment consists ofT Monte Carlo
steps (MCS), which can be interpreted in terms of time intervals (e.g., days). In each MC step,N
elementary sub-steps (illustrated in Fig. 5) are repeated.The number of the sub-steps is equal to
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the size of the population (N) to ensure that on average each spinson is chosen once in a single
MCS. As the outcome of a single MC simulation experimentm we compute the ratiocm(T) of
spinsons in favor of the new dynamic tariff after timeT to the total number of spinsonsN in the
system

cm(T) =
#{i : Si(T) = 1}

N
(1)

wherem = 1, . . . ,M. Next, we compute the average of the ratios of convinced spinsons overM
experiments

c(T) =
1
M

M∑

m=1

cm(T) (2)

The results depend on the length of simulation (T) and the parameter values (p, f andh). The
longer the time horizon, measured byT, the closer is the system to the stationary solution. The
influence of the simulation parameters (p andh; note that flexibility f = 0.5 is fixed in our study)
will be discussed in the following section.

In the simulations, we use the following specifications:

• Initially all spinsons are down, i.e.,c(0) = 0. This corresponds to a situation in which the
innovation is still not available, so no one can be a consumerof the new product.

• The population inhabits a square lattice 100× 100 and consists ofN = 10000 spinsons. It is
worth to mention that other system sizes were also investigated and all results presented in
this paper are consistent with those for other lattice sizes.

• We count the number of convinced spinsons afterT = 720 Monte Carlo steps, which corre-
sponds to a two year period. Longer and shorter time horizonswere also investigated, for a
detailed discussion see Przybyła et al. (2013).

• The results are averaged overM = 1000 experiments.

4. Results

4.1. Pre-simulation expectations

Before moving on to discuss the simulation results, let us askourselves what can we expect of
the model. Usually some predictions or expectations can be deduced from a heuristic analysis of
the model. Performing this step prior to running the experiment can be considered as a ‘best prac-
tice’ of social studies (Myers, 2006). Recall, that in our model three factors influence a spinson’s
opinion:

• social validation (conformity) that should be responsiblefor increasing homogeneity in the
society and is present in any social system,

• external fieldh that forces spinsons to choose the new product (i.e., a dynamic electricity
tariff),
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T=125 T=210 T=300 T=370 

T=455 T=545 T=635 T=720 

Figure 6: Simulation snapshots showing a sample time evolution of a system of 100× 100 spinsons for the initial
concentration of spinsonsc(0) = 0, indifferencep = 0.01 and the external fieldh = 0.11. As a result of social
influence (e.g., word-of-mouth) small clusters of convinced (dark green) appear. Some of these clusters disappear
(hollow arrows) and other – if a critical size is reached – spread like a virus (filled arrow).

• indifference that introduces indetermination, which is always present due to a non-zero level
of independence, and might increase in case of uncertainty or irrelevance.

Based on this knowledge, at least two conjectures can be formulated:

1. The number of convinced individuals should gradually increase with the level of the external
field h.

2. In our model, an innovation cannot spread in the society ifthe are no autonomous spinsons.
Imagine that initially all spinsons are down, i.e., all consumers use the old product (tradi-
tional electricity tariff). If the level of indifference is zero (p = 0), the changes in the system
can be caused only by social validation or the external field.However, if all spinsons have
the same opinion conformity always works due to the very strong social pressure and there
is no influence of the external field (see Fig 5). Therefore, indifference is needed to break
unanimity.

The dependence between the number of convinced individualsand the level of indifference is not
easy to predict. It may have ambiguous effects. On one hand, the indifference boosts the diffusion
process, by weakening the social pressure. On the other hand, it introduces noise, which reduces
the impact of the external field. Hence, the indifference may hamper the spread of new ideas.

4.2. Model performance
Let us first consider the general performance of the model, for both low and high values of

indifference. In Figure 6 we present snapshots showing a sample time evolution of the system of
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100× 100 spinsons, initially all preferring the traditional tariff (c(0) = 0), having a low level of
indifference (p = 0.01) and influenced by a relatively weak external field (h = 0.11). As a result of
social influence (e.g., word-of-mouth), small clusters of convinced (dark green) appear. Some of
these clusters disappear and other (if a critical size is reached) spread like a virus. Notice that after
timeT = 210 a small cluster of 73 spinsons appeared (indicated by a hollow arrow). After further
90 steps (i.e., forT = 300) it disappeared. Then at timeT = 455 two clusters formed – one of 78
spinsons (indicated by a hollow arrow) and another of 147 spinsons (indicated by a filled arrow).
The former one disappeared (90 steps later it is not visible anymore), while the latter one started
to spread like a virus.

This is an interesting phenomenon that cannot be obtained within classical theories of the
diffusion of innovation (like the Bass, 1969, model) and may correspond to the important feature
of real-world systems known as thevalley-of-death(Weyant, 2011). On the other hand, a cluster of
147 spinsons that formed afterT = 455 MCS was able to grow and spread in the society. It seems
that if some critical size of the cluster is crossed, the innovation is able to spread in the society,
which agrees with the critical mass theory (Rogers, 2003) – a crucial concept in understanding the
social nature of the diffusion process.

Note also that in classical models and many recent ABM models (see Kiesling et al., 2011, for
a review) the transitions between the states are assumed to be irreversible. The customers cannot
‘un-adopt’, even if the new product (here: the dynamic tariff) turns out to be unsuitable for them.
In our model, the reversal to the original product is possible. The vanishing clusters in Fig. 6 show
that a group of convinced spinsons can loose its interest in the new dynamic tariff and after a short
period of time can be again in favor of the traditional flat tariff.

For p > 0 the dependence between the number of convinced individuals and the indifference
level p is highly nontrivial (see the left panel in Fig. 7). It can be noticed that for very small values
of p, which are associated with problems of a great social importance and interest, a given strength
of the field is not sufficient to encourage consumers to accept a new offer. It seems that in such
a case, consumers behave conservatively and prefer to use previously known products. Strong
incentives are needed to change their attitude. As the levelof indifference increases, the ratio of
convinced spinsons jumps to almost 1.

This indicates that a minimum level of autonomy is necessaryto ensure that the new idea
spreads in the population. To some extent this result is in agreement both with the concept of
innovators and the critical mass theory. Innovators play a central role in the innovation diffusion
theory, which says that some individuals decide to adopt an innovation independently of the de-
cisions of other individuals in the social system (Bass, 1969). The critical mass theory says that
some threshold of individuals or actions has to be crossed before a social movement explodes into
being (Rogers, 2003; Granovetter, 1978; Oliver and Marwell,1985).

Moreover, for a small value of indifference there is a critical value of the external field, above
which an innovation can spread in the market (see the right panel in Fig. 7), which also is in agree-
ment with the critical mass theory. Recalling our first conjecture about the dependence between
the number of convinced spinsons and the external field, we are in a position to grasp the com-
plexity of the system described by a relatively simple ABM model. We have expected a gradual
growth of convinced spinsons with the increase of the external field h ... and this is not true, at
least for small levels of indifference. This means that for issues of high social relevance or interest
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Figure 7:Left panel: Dependence between the ratio of convinced spinsons (customers) after two years (which corre-
sponds to 720 MCS) and the level of indifferencep for several values of the external fieldh. Right panel: Dependence
between the ratio of convinced after two years and the external fieldh for several values of indifferencep. As discussed
in Section 2, today’s retail electricity markets are characterized by high levels of indifference, i.e.,p > 0.5. However,
if in the future the indifference level is reduced, the external field (i.e., tariff pricing schemes, advertisements, etc.)
will become the focal point.

a certain threshold has to be crossed in order to adopt a new idea. Moreover, once the threshold
is passed, further increase of the external field does not result in a significantly higher number of
convinced, which can be seen in the right panel of Fig.7 for indifference levelsp = 0.01 and 0.1.

For high indifference levels (p > 0.5), the ratioc of convinced spinsons is much less sensitive
to the model parameters – indifferencep (see the left panel in Fig. 7) and external fieldh (see the
right panel in Fig. 7). In the limiting case ofp = 1, the opinions are purely random because neither
the internal factors (like word-of-mouth) nor the externalfield influence individuals. Therefore in
such a case, independently of the level of the external field,the ratio of convinced spinsonsc
converges to 0.5. This result might seem paradoxical at first; it suggests that 50% of consumers
prefer dynamical tariffs. However, one should remember that forp = 1 the opinions are very
unstable. At a certain moment of time, a given spinson can have an opinion↓, in the next changes
it to ↑, then back to↓ and back again – it flips up and down randomly. Hence, a spinson’s opinion
fluctuates a lot. This reflects more the general indifference to the topic than the attitude toward a
new idea.

This high variability is illustrated in Figure 8, where we present snapshots showing the con-
figurations of systems afterT = 720 MCS, evolving from the initial concentrationc(0) = 0 for
the same intensity of the external field (h = 0.11) but two different values of indifference. For low
indifference (p = 0.01; left panel), there is a cluster of convinced, which will eventually spread
throughout the whole system. Moreover, if we would follow the time evolution of the system it
would behave similarly to the one presented in Fig. 6. The convinced spinsons very rarely flip
to the unconvinced state (light gray) or back again and therefore only small fluctuations can be
observed in the system. A completely different behavior is observed for high indifference (p = 1;
right panel). Of course, initially the whole system is gray (all spinsons are↓) becausec(0) = 0.
Yet nearly instantly the spinsons start switching back and forth, due to their autonomous behavior.
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p=0.01, h=0.11 p=1, h=0.11 

Figure 8: Snapshots showing the configurations of systems of100× 100 spinsons evolving from the initial concentra-
tion c(0) = 0 after timeT = 720 for external field levelh = 0.11 and two values of indifference:p = 0.01 andp = 1.
Although in both cases the ratio of convinced (dark green) isca. 0.5, the configurations are completely different.

p=0.01, h=0.05 p=0.01, h=0.40 p=0.80, h=0.05 p=0.80, h=0.40 

Figure 9: Snapshots showing the configurations of systems of100× 100 spinsons evolving from the initial concen-
trationc(0) = 0 after timeT = 720 for four sets of parametersp andh. Left panels: For low indifference (p = 0.01)
the external field plays a crucial role. If the external field is weak (h = 0.05) almost all individuals are unconvinced
(light gray) and if it is strong (h = 0.4) almost all individuals are convinced (dark green).Right panels: For high
indifference (p = 0.8) there is almost no influence of the external field; the system looks qualitatively the same for a
very weak (h = 0.05) and a relatively strong field (h = 0.4).

As a result the system looks qualitatively the same for the rest of the time evolution.
Let us now summarize the general Monte Carlo simulation results. First of all, our expecta-

tions put forward in Section 4.1 are fulfilled only partially. Indeed, an autonomous behavior (i.e.,
p > 0) is needed for the diffusion of innovation, which agrees with classical theories (Rogers,
2003). However, the dependencies between the ratioc of convinced and parametersp (indiffer-
ence) andh (external field) are highly complex. We have expected that the ratio of convinced
would gradually grow with the increase in the intensity of the external field. However, this is true
only for intermediate levels of indifference. For low values ofp, there is a critical value of the
external field below which there is no diffusion of innovation and above which all consumers are
convinced independently ofh. For example, ifp = 0.1 then forh < 0.09 there is no diffusion
and forh > 0.09 the ratioc is almost 1, see Fig. 7 and the two left panels in Fig. 9. On the
other hand, for large values ofp the number of convinced grows gradually withh, but the growth
is surprisingly weak, see Fig. 7 and the two right panels in Fig. 9. Moreover, it was not easy to
predictex-antethe dependence between the ratio of convinced and indifference, and indeed this
dependence is not obvious. As already mentioned, forp = 0 the ratio of convincedc = 0. Then it
increases and reaches a maximum, which ish-dependent, to finally drop to 0.5, independently of
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h.

4.3. Diffusion of electricity tariffs

Let us now focus on the diffusion of dynamic electricity tariffs. As discussed before, the retail
electricity market is characterized by:

• high values of indifference, i.e.,p > 0.5, which expresses the fact that electricity tariffs are
not a very popular discussion topic in the society and are hard to compare (i.e., are a source
of confusion),

• a weak external field, i.e.,h close to 0, which reflects the rather small potential savings,
the significant discomfort of adopting a new dynamic tariff and the generally low level of
advertising and lack of educational campaigns related to these products.

On the other hand, the results discussed in Section 4.2 show that the external field, which
describes important features of the tariff, plays a significant role only for relatively small values
of indifference. As long as the indifference level is high, the ratio of convinced depends very
weakly on the strength of the field. In the right panel of Figure 7, the curve representing the
ratio c of convinced spinsons is very flat forp = 0.8 and becomes only slightly steeper for lower
indifference levels, likep = 0.6. This indicates that even large changes in the strength of the field
will have very small effects on the diffusion process. For instance, the difference between the ratios
of convinced spinsons forh = 0.05 andh = 0.4 is 3.7% for p = 0.8 and 1.7% for p = 0.9. Hence,
we may conclude that in the context of electricity tariffs, which are nowadays characterized by
high values ofp, the features of the tariffs have a limited impact on their popularity.

The results of Section 4.2 also indicate that the ratio of convinced can increase even if the
external field is fixed. The left panel in Figure 7 shows that the reduction of indifference level
from a very high (more than 0.5) to moderate (around 0.2) could result in a significant growth of
the ratio of convinced customers. If we analyze a market witha weak external field, sayh = 0.05,
then the ratios forp = 0.8,0.5 and 0.2 arec = 0.506,0.531 and 0.790, respectively. The change
is not only quantitative but also qualitative. For the same field intensity and a smaller indifference
level, the opinions will become more stable and will not fluctuate so often. It is an important
feature, if we want to consider not only the diffusion of opinions but also analyze the resulting
decision process, which is known to be a very complex phenomenon (Myers, 2006). It is very
likely that customers need some sense of certainty before they take an action, like signing up for a
new dynamic electricity tariff.

Finally, note that the independence between the product quality and the ratio of convinced can-
not be achieved under a classical modeling approach. If all agents behave rationally and maximize
their utilities, they should respond to the product features. Hence, one could expect that attractive
products would gain popularity. In the proposed setup, the introduction of indifference enables
modeling of consumer irrationality. This feature of our model is especially important in the con-
text of the retail electricity market because it has been observed (see the discussion in Section 2)
that new tariffs remain unpopular regardless of their attractiveness.
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5. Conclusions, policy implications and further research

In this paper, we have presented the results of an extensive simulation study on the diffusion
of dynamic tariffs in the retail electricity market. We would like to emphasize that the agent-
based model (ABM) we have used is based on established knowledge from social sciences. As
in other diffusion of innovations studies (Kiesling et al., 2011; Rogers,2003), in our model the
new product adoption is driven by the internal influence thatcomes from interactions between
agents (e.g., word of mouth) and the external field, which describes not only marketing efforts
(advertising, promotions, educational campaigns, etc.) but also product features (potential sav-
ings, comfort/discomfort of usage of dynamic electricity tariffs, etc.). The assumptions of our
model, related to the social influence of neighbors, colleagues or friends, are based on numerous
social experiments and observations (Asch, 1955; Bocchiaroand Zamperini, 2012; Myers, 2006).
What distinguishes our model among others, is the way, in which we define the immunity of some
agents to the social influence. As noted by Boudon and Bourricaud (2003), the so-called indiffer-
ence – connected with an autonomy of individuals – can arise if two options (e.g., traditional and
dynamic electricity tariffs) offer both advantages and disadvantages and these advantages and dis-
advantages are not clearly comparable. In such a case the strategy finally adopted by an individual
is broadly unpredictable. Because such an uncertainty is very strong in the case of electricity tariffs
(ATKearney, 2012; Darby and McKenna, 2012; OFGEM, 2011; Star et al., 2010), we have intro-
duced indifference as a kind of randomness into the model. Moreover, social experiments show
that people are inconsistent in their behavior and simple situational factors are more powerful than
individual traits in shaping human behavior (see Bocchiaro and Zamperini, 2012, for a review).
This fact is reflected in our model by the probability of indifference – in each time step an agent
can be indifferent or susceptible with some probability and its behaviorchanges in time.

For a model to be trusted, it has to reproduce empirical facts. One of the best-established styl-
ized facts in the field of diffusion of innovation is theS-shaped curve representing the time change
of the number of consumers having adopted to a new product. Asalready shown by Przybyła et al.
(2013), the model used in this paper reproduces this fact perfectly. In this paper we have addition-
ally shown that the model is able to describe two other phenomena that are crucial for the diffusion
of innovation – existence of the so-calledcritical mass(Granovetter, 1978; Oliver and Marwell,
1985; Rogers, 2003) and thevalley-of-death(Weyant, 2011). These results are particularly im-
portant, because neither the critical mass nor the valley-of-death effect can be obtained within
classical theories of the diffusion of innovation (like the Bass, 1969, model). Moreover, they show
that, in spite of its simplicity, our model reproduces properly the most important features of the
diffusion phenomenon.

The most important conclusion from this study is the following: The adoption of dynamic
electricity tariffs is virtually impossible due to the high level of indifference in today’s societies.
For a high level of indifference, the fluctuation of an agent’s opinion leads to his/her inability to
make a decision and switch to a new dynamic tariff, no matter how strong is the influence of the
external field. And high levels of indifference and disengagement of the consumers, who neither
have knowledge about electricity tariffs nor are willing to change them, have been confirmed by
many independent studies (ATKearney, 2012; OFGEM, 2011).

Therefore, in light of the results of our model and of the pilot programs conducted in Europe
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and the U.S., we can derive an important policy recommendation: If the indifference level of the
retail consumers is not reduced, the efforts to smooth the electricity demand via dynamic tariffs
will not bring the expected results. In order to overcome this problem, utility companies should
cooperate with the policymakers, governments and ecological organizations. A public debate is
needed. When customers engage more in the topic, the adoptionof dynamic electricity tariffs will
be much more likely. Finally, if in the future the indifference level is reduced, the external field
(i.e., tariff pricing schemes, advertisements, etc.) will become the focal point, see Fig. 7.

The research can be extended in various ways. Firstly, the presented approach can be used
to explain and model the free rider problem (Diaz-Rainey and Tzavara, 2012). If we allow for a
heterogeneous field, we will be able to distinguish regular customers from free riders. Free riders
are people, who anticipate the externalities, such as a change of future electricity prices or the
state of the environment due to other agent actions. Hence, they take into account possible profits,
which arise when other customers change their attitude intomore economical or ecological, while
evaluating the advantages and disadvantages of a new tariff. Therefore, the product features, such
as possible savings or effects on the environment, will have a much weaker effect on their opinions.
We predict that the presence of the free riders in the model can slow down or even stop the diffusion
process.

Finally, we can expand our agent-based model, in order to explain and analyze the differences
between the opinions and decisions. It is well known that there are big discrepancies between
customers’ opinions stated in market surveys and their actual participation in pilot programs and
acceptance of new tariffs (Darby and McKenna, 2012; Star et al., 2010). Our analysis already
sheds some light on the problem. We have shown that due to the high indifference level in today’s
retail electricity markets, the agent opinions are very unstable and change frequently. This may
hamper the decision process, because consumers typically need some sense of certainty before
they take any actions. It seems that reducing the indifference level can result in narrowing the gap.
Potentially it can even lead to the reverse situation, wherethe number of customers, who switch
to the new tariff, will be larger than the number of people, who currently are in favor of dynamic
tariffs.
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