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Abstract

Using an agent-based modeling approach we show how peratinbltes, like conformity or
indifference, impact the opinions of individual electricity comers regarding switching to inno-
vative dynamic taft programs. We also examine the influence of advertisingpdigort of usage
and the expectations of financial savings on opinion dynsan@ur main finding is that currently
the adoption of dynamic electricity t#i$ is virtually impossible due to the high level of ifiir-
ence in today’s societies. However, if in the future the fiigdence level is reduced, e.g., through
educational programs that would make the customers moiggedgn the topic, factors like téri
pricing schemes and intensity of advertising will becaneeftical point.

Keywords: Dynamic pricing, Time-of-use t&fi Demand response, fusion of innovations,
Agent-based model.
JEL: C63, 033, Q48, Q55

1. Introduction

In the not so distant past, the construction of the poweresystias hierarchical. Electrical
energy was generated mostly from fossil fuels, like coaligmite, in large conventional power
plants. Then, the electricity was delivered via transmissand distribution lines to end users.
The position of the consumers — companies and households pagsive. Their awareness and
knowledge of energy consumption levels was generally échib the bills paid at the end of the
month.

Nowadays, the power systems are decentralized to a largatextompetition has been al-
lowed on the level of generation and sales of energy in theleglte and retail markets. This
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has created new challenges to be faced by market partisipantregulators. The biggest one is
probably the threat that demand and supply of electricityrvait match in the coming future. On
one hand, energy demand is increasing rapidly and — acgptdiexperts — further growth will
be observed due to increased ‘electrification’ of our lived population growth (BP, 2012; Birol,
2004; ExxonMobil, 2013). Energy demand has become also saphisticated: the consumers
are more aware of their rights and they want a reliable supipdyectricity of good quality. On the
other hand, due to the constantly decreasing natural resetine generation may face problems
of scarcity in supply of fossil fuels. On top of that most oé thresent generation and transmis-
sion infrastructure (i.e., power plants, transmissiordiretc.) is old and irfecient. Among other
challenges is the increasing presenceeotwable energy sourcéRES) in the power system, like
wind, solar and hydro energy. The non-dispatchable, nenrollable character of most of these
sources influences both the supply and demand in the pownsyklarris, 2006; Kirschen and
Strbac, 2004; Shively and Ferrare, 2010).

The way in which the power system will develop is defined to s@xtent by policy makers.
One of the most crucial legal regulations that has a greatatngn the future of the power system,
is the Climate Policy % 20 (EC, 2007). It obliges governments of the EU countries wgie
appropriate energy policies, which will lead to a reductio@€0O, emissions and an increase in the
participation of renewable energy in the market. Moreogeergy éiciency must be increased.
There are also EU Directives that have a great, strategiaéimgm the development of the power
system. For instance, Directive 2Q02Z/EC that establishes a common framework of measures for
the promotion of energyficiency within the EU in order to ensure the achievement o&bés
2020 20% headline target on enerdii@ency and to pave the way for further enerdiicency
improvements beyond that date (EC, 2012). In particulas,dhiective requires the introduction of
meters that would provide feedback to private householdsengy consumption and information
about energy ficiency. Moreover, energy suppliers are obliged fieioelectricity tarifs that
would motivate households to conserve energy or shift gyt consumption from peak toft
peak periods (EC, 2012; Paetz et al., 2012).

The important question that arises in this context is whetie households will switch to the
new — more energyfgcient but less comfortable — dynamic t&siand how fast or slow will this
process take place. Using an agent-based modeling appiodbls paper we show how personal
attributes, like conformity or indierence, impact the decisions of individual electricity samers.
We also examine the influence of mass-media education prsgaad the expectations of financial
savings on the decision making process.

The paper is structured as follows. In Section 2 we discussptisition of the electricity
consumer and describe the new possibilities, connectdttigt current legal regulations and the
development of innovative information and communicatechnologies (ICT). We also comment
on the results of some pilot programs that have been runtigaercurope and the U.S. The aim
of these programs was to evaluate the attitude of the efggtdonsumer to particular demand
response tools. In Section 3 we introduce our agent-basektlnamd present the Monte Carlo
simulation scheme. We also discuss the position of out miadék rich universe of agent-based
models of social influence. In Section 4 we present the resfilbur extensive simulation study.
Finally, in Section 5 we conclude, discuss policy implioag and comment on future work.



2. Consumersin today’s electricity markets

In the last couple of years, the position of electricity aomers in the power system has radi-
cally changed. Due to market decentralization and the poesef a growing number aénewable
energy sourceRES) on the lower voltage levels, new possibilities haveearifor the consumers.
They can now play an active role in the power system. They Haveight to change the energy
supplier (as a result of th€hird Party Accesgolicy, see Diaz-Rainey and Tzavara, 2012; EC,
2009) and to choose a specific pricing program. Moreovey, the now relatively easily start to
generate energy and use it for their own needs or sell théusuigthe distribution system opera-
tors. In this way they can beconpeosumersi.e., consumers, who consume and produce energy
at the same time.

The ambitious goals set by the EU will have a great impact nit on power generation but
also on consumption. As the power system of the future ha® tmdre sustainable, built on a
greater energyficiency and a high share of renewable energy, the changesestdlinly impact
the households. In order to increase enengigiency, the consumers will need to decrease their
electricity consumption and may need to make new investimanbre dficient home appliances.
Furthermore, they will be required to shift loads, which nadégo involve changes in everyday be-
havior and routines (FORSA, 2010; Jongejan et al., 2010zRdetl., 2012). Increasedieiency
of energy usage should result in cost savings (electri@yahd shifted to the time zones when
the electricity price is lower, decreased total amount @rgy consumption, energy saving home
appliances, etc.). On the other hand, new investment cogbeaecessary, for instance, cost of
smart meters, smart appliances, smart plugs, etc.

Due to the mentioned structural changes, the economidaetdtips between market partic-
ipants are becoming more sophisticated and require a frésble As a result, a new approach
has been proposed recently. The so-caBetart Gridsuse modern communication technologies
to exchange information between market agents (generat@nket operators and end-users) in
order to improve the féciency of energy production and consumption (see e.g. dack10;
Palensky and Dietrich, 2011; Zhang and Nuttall, 2011). Termation gathered bgmart me-
terscan be used to improve the market structure and increasethpatitiveness of the energy
sector (Darby, 2006, 2010). The popularity of the Smart &cdoncept induces discussion on the
role of consumers in the power system. By the means of advdndeadready available informa-
tion and communication technologies (ICT), consumers cae kaols that will enable them to
control their electricity consumption on a daily basis.

One of the crucial challenges of the coming years is to optntiie use of existing capacity
while meeting ever-increasing demand for electricity agdiuicing CQ emissions. It seems that
this could be achieved at a relatively low cost by introdgddemand Side Management (DSM)
and Demand Response (DR) instruments (Darby and McKenna; Eafijui, 2012; Gerpott and
Mahmudova, 2010; Strbac, 2008; Zugno et al., 2013). The [M#FMtools are designed to in-
fluence consumption patterns and enerfficiency of end-users and therefore to reduce energy
production and load variability. The literature considBlSM/DR instruments ranging from ed-
ucation (encouragingficient usage of energy), through time-based pricing (tifnese rates,
critical peak pricing, real-time pricing) to incentivedsal DR (direct load control, emergency de-
mand response programs, capacity market programs). Anherg$MDR tools, dynamic taffs
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Figure 1: Sample daily electricity demand schedules. Ukonat demand day-ahead forecasts for two Mondays: 18
June 2012 and 17 December 2012.

are one of the most common and interesting.

2.1. Dynamic pricing programs

So far most of residential electricity consumers have cotiweal electricity meters that mea-
sure only the total electricity consumption. The majoritgonsumers use simple one- or two-time
zone tarffs (flat tarits, like days and night tefs) and are even not aware what kind of aftdhiey
have and what impact on their energy costs it has. A typicatggndemand curve shows two
peaks: one in the morning and another one, more pronoundée iWinter (or cold season), in
the afternoon-evening hours, see Figure 1. Dynamiff$drave been invented to flatten the curve
and to shift the demand from on-peak hours thpeak hours. On one hand, the shift of load
implies a change in consumers’ habits and daily routinesgtiones it may be connected with the
reduction of the overall energy consumption. On the otheeduces the imbalance between peak
demand and peak supply and helps to manage the power sujdy Earthermore, it is expected
that the flattened energy demand curve will lower the gerggrafation costs of the distribution
system operators and lead to a reduction of wholesale poageatnprices (Procter, 2013).

Dynamic tarifs differ a lot from typical or traditional taffis. In a variable electricity tafi the
price of electricity is dependent on the balance betweeplgugnd demand in the market. With
such a taff the consumer may experience several changes in price lgwefsy the day due to
the fluctuations of supply and demand (Faruqui, 2012; Gegyat Paukert, 2013; Strbac, 2008;
Thorsens et al., 2012; Zugno et al., 2013). Among varialdetgtity tarits, the following can be
distinguished (Darby and McKenna, 2012; Ehlen et al., 26@ruqui and Sergici, 2010; Jongejan
et al., 2010):

e Time-of-use pricingTOU) — within this tarff the electricity prices are divided into a couple
of time zones, depending on the time of usage: the elegtpcite during on-peak hours is
higher than the price duringlepeak hours. The goal is to flatten the load curve by reducing
on-peak demand and increasintpeak demand.
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e Critical peak pricing(CPP) — in this taff on-peak times are limited to just a few days per
year, when demand is expected to be the highest, such ag dunigat wave in the Summer
or a cold spell in the Winter. CPP on-peak electricity priggsdally range between 400%
and 700% of the fb-peak electricity price. The idea behind CPPfiaris to create a financial
incentive to reduce electricity consumption during extegnhigh demand days.

e Peak-time rebatéPTR) — this tafi offers a rebate to customers who reduce their electricity
demand on critical peak days.

e Real-time pricing(RTP) — within this tafi the electricity price is dependent on the actual
real-time costs of electricity based on supply and demargl, (fne power exchange spot
price). By means of advanced ICT solutions, consumers arenig in real-time about the
electricity price. This taff is rarely chosen by electricity consumers, as it is too urfoom
able to monitor the constantly moving price of electricifihe only reasonable solution is
to use automatic smart appliances.

Innovative advanced technologies like ARBlufomated meter readipgnd AMI (advanced
metering infrastructurpare necessary to enable implementation of dynamic prigiagrams and
extended usage of other DZDR tools. In most cases, a so-called enabling technologgesied
to increase the positive impact of a dynamicftawn the energy demand. Such an enabling tech-
nology is an equipment that enables the customer to autocoateol of the load consumption
according to the specific price and time ranges. Moreovemnsures transparency of electricity
prices. Such enabling technologies include smart mete+spine displays, smart thermostats,
web based consumer portals, smart plagpliances ohome area network@aruqui and George,
2005; FORSA, 2010; Gerpott and Paukert, 2013; Jongejan, &0dl0; Paetz et al., 2012; Star et
al., 2010). A dynamic taffi is not a modern product, but when combined with enablingrteld
gies, advanced ICT technologies, it can become a real inmew&tlution, which may eventually
conquer the market.

2.2. Pilot programs in the U.S. and the EU

In the recent years, a number of pilot programs, focused ®@ndtiuction of peak demand and
energy conservation at the consumption level, have beemrine U.S. and in Europe (Ehrhardt-
Martinez et al., 2010; Faruqui, 2012; Jongejan et al., 2@Eders et al., 2009; Sopha et al., 2011;
Star et al., 2010). Many experiments were conducted in @amgit to understand consumers’
responsiveness to variations in retail electricity prig&kcott, 2011; ATKearney, 2012; Faruqui
and George, 2005; Faruqui and Sergici, 2010; Grans et d3;20zaki, 2011; Thorsens et al.,
2012).

It has been shown that in the case of flatffarihe electricity demand is price inelastic. On the
other hand, implementation of time-of-use rates (TOU) dical-peak pricing (CPP) programs
increases price elasticity over time, due to consumersigabadaptation of daily routines to the
new tarffs. TOU rates induce a drop in peak demand that ranges form 3%tavhile CPP
tariffs induce a drop in peak demand from 13% to 20%. However, tiati@ty level depends
on climate conditions, seasons of the year, income levelsappliance ownership (Faruqui and
Sergici, 2010; Thorsens et al., 2012).
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When accompanied by enabling technologies, the introductidOU rates leads to a drop in
peak demand up to 15% and of CPP rates to a drop in peak demand4¥t(Ehrhardt-Martinez
etal., 2010; Star et al., 2010). Moreover, according to Adikey (2012) and Darby and McKenna
(2012), a reduction of energy consumption increases frondidb%0% with enabling technologies.
Enabling technologies greatly improve the overall impdatlemand response and significantly
increase the savings in both avoided capacity and avoidsadrigity for the utility. The main
problem with this solution is that the cost of the enablincht®logies is currently higher than
potential savings (Gerpott and Paukert, 2013; Jongejain @04.0; Paetz et al., 2012).

In many experiments, the conventional electricity meteesemeplaced with smart meters.
Together with in-home displays they were used as a sourcef@imation for customers about
the real energy consumption. The information was also gexVto the clients in an indirect way,
via billing. It has been shown that energy conservation a&aaiction of peak demand increases
because of receiving better information about electrioitysumption (in a direct gand an indirect
way), see Darby (2006); Ehrhardt-Martinez et al. (2010);08# and Paukert (2013); Grans et al.
(2013); Matsukawa (2005); Thorsens et al. (2012).

Although promising results have been achieved in many pilograms, another problem has
been defined. Namely, only a small amount of participantbefpilot programs decided to sign
up for the new tafts. For instance, in Illinois in the AIU Power Smart Pricingpgram only 18%
of customers, where the pilot program was run, were aware dfloreover, only 10% of them
understood the program and only 5% were interested in thgrgmo. In the end, under 1% of
customers enrolled in the program (Star et al., 2010). Lddkterest and fear of change were
named as the main reasons for such low program participettes (ATKearney, 2012; Darby and
McKenna, 2012).

What is interesting, is that such results were obtained imc@s like the U.S., Canada, U.K.
and Germany, where the population was generally aware ofansitive to issues related to en-
ergy dficiency, smart grids and dynamic pricing. In those socigiikkd programs have been run
for years, and most people should have been familiar witedglierms and issues. However, ac-
cording to a survey conducted in 2010 in the U.K. only 8% opogslents think that energy needs
‘attention and improvement’ (OFGEM, 2010). The report ofk&arney (2012) provides even
more dramatic numbers: 60-75% of consumers are not awahe @xistence of smart grids and
are not willing to shift their consumption tdtgpeak hours. Similar results have been obtained in
Germany (FORSA, 2010; Gerpott and Paukert, 2013; Paetz, @04I2). For example, in project
MeRegioMobil, which is part of the broad EU projdciternet of Energy currently run in six
German regions (BMWi, 2012), the customers’ attitude towatgnamic pricing programs and
smart technologies has been evaluated. The results of #tgs@have shown that as long as the
consumers are not familiar with the new technologies andatraware of the potential energy and
cost savings, they will not be interested in changing amgthin their daily routines. Their basic
lack of knowledge is responsible for thandiferenceto the energy market and energji@ency.
Most people are not interested in changing the energy srpgtid looking for another attractive
pricing program (Paetz et al., 2012).

The level of awareness, understanding and interest is evegr in Central and Eastern Eu-
ropean (CEE) countries. For instance, knowledge and awssasestimated at 24% in Poland
compared to 49% in the U.S. Smart grids, enerfiiciency or demand response tools are rather
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new in CEE and very few people are familiar with these termswéier, first pilot programs
have been started. In most of these programs, conventitawtieity meters have been replaced
with smart meters. Consumers are also trained how to use smedets for a more rational and
conscious use of energy (ATKearney, 2012).

Promoting a sustainable use of electricity can ialilt, because electricity fiiers from other
consumer goods. As mentioned by Fisher (2007) and Harggsesiva. (2010), it is invisible and
untouchable and consumed indirectly by related activitldswever, when people are informed
their interest increases and most of them gain a positivei@ét towards DR tools and smart
technologies. Their main motivation for a potential chanfehe energy seller or the pricing
program is cost savings. Environmental benefits are seepstvp side-fects. On the other
hand, people have doubts about the real potential of thegsegsa They would prefer to get all the
necessary equipment (e.g., smart meters, home-disptayis@ €. In case, when they need to invest
their own money, they want to get a fast payback from thesestmvents. The biggest disadvantage
for them is the possible reduction in comfort by reschedulime daily routine in response to
electricity prices dictated by the variable electricityfia(FORSA, 2010; Paetz et al., 2012). To
reduce this disadvantage a typical energy consumer wokgdtdi have enabling technologies,
that adjust work of the home appliances according to theepgeel of electricity. Moreover, to
increase the participation and engagement rates, the coomemic or one-fi incentives, like an
offer of a free programmable thermostat, could be helpful (par McKenna, 2012; Faruqui
and Sergici, 2010; Peters et al., 2009). To reach a highédezirollment, the design of the pricing
rate, education and marketing of new solutions afidrings must be appropriate. Without that,
there will be no significant demand response as a result dhtteof knowledge, high level of
indifference and ignorance of the consumers.

3. Model description

3.1. Historical background

In the last two decades, agent-based computational ecoad®CE) has become a widely
accepted approach to solving both theoretical and pragircdlems in economics in general
(Cincotti et al., 2008; Farmer et al., 2012; Hommes, 2006 a3goni, 2010; Tesfation, 2003) and
energy economics in particular (Bunn and Martoccia, 2005;nBammd Oliveira, 2001; Cincotti
and Gallo, 2013; Ehlen et al., 2007; Guerci et al., 2010; darck2010; Sun and Tesfatsion, 2007;
Zhang and Nuttall, 2011). The basic tool of ACE — an agentdbasedel (ABM; sometimes
referred to as a ‘multi-agent systgimulation’) — is a class of computational structures aresru
for simulating the actions and interactions of autonomayengs (both individual or collective
entities, such as organizations or groups) with the ultnmdjective to assess theitects on the
system as a whole.

For a couple of decades, scientists have been proposinglsnmdedescribing how a new
product, like the iPhone or the iPad, enters the market. dlags of problems is calletiffusion of
innovationsand has been extensively studied to date, starting withl#ssical works of Rogers
(1962) and Bass (1969), continuing through the second halfeoKX century and in recent-day
publications, see Goldenberg et al. (2007, 2010); Kiesirag. (2011); Nyczka and Sznajd-Weron
(2013); Przybyta et al. (2013); Weyant (2011) to name a femterkstingly, nearly all models
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describing the diusion of innovations have a common feature: the adaptagbraor of the
agent is represented by means of a single dichotomous iextaing the values-1 (potential
adopter, customer of the old product)-et (adopter, customer of the innovative product).

Such agents have been used in statistical physics for almosihtury and are referred to as
spins(Ising, 1925). Initially spins have been introduced to ustind the magnetic properties of a
physical system. However, spins turned out to be a usefudegarior many interdisciplinary appli-
cations; already three decades ago Galam et al. (1982) mechodel social collective behavior.
In sociophysics — a statistical physics approach to sog&iess (for a recent, comprehensive re-
view see Galam, 2012) — the tespinis used interchangeably with the teagent Both typically
represent dichotomous variables (‘binary individuals’).

On the other hand, the field of agent-based modeling has amelconsiderably since the
pioneering work of Schelling (1971) and nowadays in ecomsmagents are often described by
more complex structures than simple binary variables. hrega, agents can be characterized by
many traits, can have their own strategies, etc. To distafgiinese more ‘complex’ agents from
their ‘simpler’ cousins a new termspinson- has been used recently by Nyczka and Sznajd-Weron
(2013) and Przybyta et al. (2013) to describe a particulsiryple agent that is characterized by a
single binary £1) trait. The term spinson is derived from two words: spin padson. Graphically
it is a combination of an arrow (a spin) and a person (head adlg)bas in Figs. 2-3. In this
paper, we will interchangeably use the terms spinson, agastomer, individual and household
to represent a simple agent that is characterized by a donggey (+1) trait. By using the terms
referring to the more complex variables and structures, &etwo emphasize the fact that our
model is just a ‘simple spinson model’ of the complex reahi}h interacting agents, customers,
individuals or households.

In this paper, we focus on the process of adoption of elégtmonsumers to a new dynamic
tariff. As in the classical diusion of innovations theory (Bass, 1969; Rogers, 2003), asaseh
ACE studies (Moldovan and Goldenberg, 2004; Goldenberg €2@07, 2010), in our model the
new product adoption is driven by two forces:

¢ Internal influencehat comes from the interactions between consumers (eogd,@f mouth).
In our case the nature of these interactions is motivatetiéypsychological observation of
the social impact and has been introduced originally in §g&iVeron and Sznajd, 2000) to
describe opinion dynamics.

e External influencdgor external field), which in our case describes not only tteekating
efforts (advertising, promotions, etc.) but also productuesd (potential savings, com-
fort/discomfort of usage of a particular térietc.).

Before going into details, let us stress two maiffetiences between our model and other
models of difusion of innovations (Bass, 1969; Moldovan and Goldenbed§42Goldenberg et
al., 2007, 2010):

e In classical models and many recent ABM models, the tramsitloetween the states are
assumed to be irreversible. The customers cannot ‘un-adéipt adoption to the new
product, i.e., once they switch to the new electricityffahey cannot return to the original
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one even if the new tdfiturns out to be unsuitable for them. In our model the revdrsal
the original product is possible.

¢ In most difusion of innovations models, the internal and external erfbes are given by
some constant parameters, i.e., there is some probapilfigt in a certain time period the
individual will be influenced by the external factor and paibbity q that the hgshe will be
affected by the neighbor(s). In our model the form of interntdriactions comes from social
motivations (discussed in the following section).

3.2. Model construction

We consider a set af= 1,.., N spinsons on a square grid (i.e., a chessboard). Each spinson
represents a household and is characterized by its att8utisvard an innovative dynamic elec-
tricity tariff. If S; = —1 the household prefers a traditional uniformfiaif S; = +1 it prefers the
new dynamic taff. At a given timet, the opinion of a particular spinson depends on three factor

e Conformity which represents a specific response to interactions (gagd of mouth) be-
tween the spinson and its neighbors. The neighborhood camtdspreted in terms of either
physical or social connection. As in Sznajd-Weron and Sk()00) the nature of these in-
teractions is motivated by the psychological observatadiise social impact dating back to
Asch (1955): if a group of spinson’s neighbors unanimoukBres an opinion, the spinson
will also accept it, see Fig. 2.

¢ Product featureswhich are modeled by a global field, as in Sznajd-Weron anad2003,
2008), see Fig. 3. The strength of the field depends on featiditbe new dynamic electric-
ity tariff: potential savings, (dis)comfort of usage, intensity ofextising, etc.

¢ Indifference which introduces indetermination in the system throughw@onomous behav-
ior of the individuals (Boudon and Bourricaud, 2003). In theecaf indiference the spinson
is immune to the influence of the neighbors and the field, sged-i

The concept of indference requires a further explanation. In the general sreswordindif-
ferencedenotes the lack of importance, care or concern, but carsbeahted to the autonomy of
the individuals. In the agent-based model of Przybyta ef28l13) such an autonomy was due to
the so-calledndependenceavhich is one of the possible responses to social influendelanotes
a particular type of non-conformity. The level of independe can be connected with the level of
individualism in the society (Hofstede, 2001) and in mostesais expected to be rather low. An
autonomous behavior can be also reflected byfiedince, as noted by Boudon and Bourricaud
(2003). They argue that it can arise if two products (e.gditronal and dynamic electricity t&is)
offer both advantages and disadvantages and these advantdg#isadvantages are not clearly
comparable. In such a case, the strategy finally adopted mdamdual is broadly unpredictable.
There is also a third interpretation of ifidirence, related to its general meaning. In this case, it
expresses insignificance and is not directly related to ticpdar product (e.g., taffis) but reflects
the importance or popularity of the whole topic in the societg., energy saving, ecology).
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Figure 2: Interactions between spinsons (representingdfmlids in our model) are described by the social influence
of the unanimous majority. With probability & p) a randomly chosen agent (the one in the circle) follows tages
(or shares the opinion) of thex22 panel (the one in the middle) if it is unanimous. If the paselot unanimous the
spinson is responsive to the external force, see Fig. 3.
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Figure 3: External force (or external field) represents pobdeatures like potential savings, (dis)comfort of usage
intensity of advertising, etc. It has affect on spinsons only if they are not ifi@rent. With probability (= p) a
randomly chosen spinson (the one in the circle) is resperisithe field if the 2< 2 panel is not unanimous. With
probability h the spinson adopts to the advertised prodtighf) and with probability (1- h) it remains unchanged
(left).
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Figure 4: Indiference is introduced to the model as a kind of noise and repiegemporary) resistance to word of
mouth and global advertising. With probabilipya randomly chosen spinsoéfthe one in the circle) flipS§;(t + dt) =
—S;(t) with probability f (right) or remains unchanges(t + dt) = S;(t) with probability 1— f (left), independently
of the state of the & 2 panel and the external force.
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We wish to emphasize that the broad concephdifferenceplays a central role in our model.
We introduce it mainly to reflect the dependence of tHeudion of the new product on its per-
ception and social significance. In energy markets, consuare often confused and unable to
evaluate electricity taffis. There are a few causes for this confusion:

e The tarif consists of a few components (electricity, transmissiervises, etc.). The price
of each components is calculatedfeiently and for most of users it is not clear how the
final sum is computed.

e Agents do not have the information about their consumptiattepns nor the knowledge
about the power consumption of equipment. Therefore, thepat easily calculate potential
savings.

e The new tarfis are associated with a hard to quantify discomfort in usddeme appli-
ances. It is hard to compare financial gains with discomfesulting from shifting the
consumption to fi-peak hours.

Moreover, consumers do not considerftegelection as an important and interesting issue. OFGEM
(2011) analysis indicated that the majority of panel pgréints could be classified as ‘disengaged’,
meaning that they neither knew their t&inor were willing to change them. Star et al. (2010)
obtained similar results on the basis of a market survey:obitlee reasons of low enroliment in
the pilot program in lllinois was disinterest (respondediits not want to complicate their lives,
were happy how things were). To sum up, electricity conssnesannot evaluate fiierent tarff
features and generally are not interested in the problemceéjahey are characterized by a high
indifference level.

On the contrary, when products like smartphones or tabtets@sidered, a low infference
level is observed. The conforming behavior results from faais: diferent models are easy to
compare and high-tech products are perceived as symbaisiaf status. People willingly discuss
and compare new phones, laptops, etc., and hence are moepshle to the opinions of others.

3.3. Spinson dynamics

The behavior of a randomly chosen spins@t timet is illustrated in Fig. 5. First, we check
whether the spinson is in@érent to social pressure. With probabiliyi.e., if r; < p for a ran-
domly generated uniform number ~ U(0, 1), the spinson is inélierent and not interested in
discussing electricity taffis; with probability (1- p), i.e., if ry > p, the spinson is likely to be
influenced by the opinions of his neighbors. Similarly ashe model proposed by Przybyta et
al. (2013), we assume that the behavior of theffiedent spinson is characterized by the flexibil-
ity parameterf, describing how frequently the spinson changes its opjréee Fig. 4. In the
simulations, for simplicity we set = 0.5, but it has been shown that for any valuefo$ 0 the
simulation results can be rescaled using the remaining hpadameters (Przybyta et al., 2013).
It should be noted that the behavior of an fifielient spinson is in some sense not rational (the
spinson may not even bother to check the features of the tiftsjaand purely random. Hence,
the existence of indierence introduces noise into the system. Moreover, undéference, the
system never reaches an absorbing steady state, in whigfpealts share the same opinion.
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Figure 5: Flowchart of the model described in Section 3.

If the spinson is not indiierent, its opinion may be subject to change due to the so®atpre
of its neighbors. In this case, in the second step a neighdgp@s 2 panel of four spinsons is chosen
randomly. If the opinion of the panel is unanimous, spinistmiiows the opinion of the panel, see
Fig. 2. On the other hand, if the panel is not unanimous, therspinson will be exposed to the
influence of the external field (i.e., product featrues). $torplicity, we assume that the external
field is uniform and canféect all spinsons in the same way. The strength of the fieldssrdeed by
the parametdn. It defines the probability with which the spinson can be @ored to switch to the
new dynamic taff because of its features. Consequently, with probability ) the spinson will
stay unconvinced, see Fig. 3. The strength of the field deppendhe particular taffi expected
bills and potential savings, (dis)comfort of usage, inignsf advertising, etc.

3.4. Simulation setup

In the simulation, we rurM experiments. A single experiment consistsToMonte Carlo
steps (MCS), which can be interpreted in terms of time intsrf@g., days). In each MC stel,
elementary sub-steps (illustrated in Fig. 5) are repedkbd.number of the sub-steps is equal to
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the size of the population\) to ensure that on average each spinson is chosen once igla sin
MCS. As the outcome of a single MC simulation experimenive compute the ratio,(T) of
spinsons in favor of the new dynamic t@mfter timeT to the total number of spinsoméin the
system i SM=1
[T =

N (1)
wherem = 1,..., M. Next, we compute the average of the ratios of convincedsspis oveiM
experiments

Cm(T) =

1 M
o(T) = 37 2 &n(T) o

The results depend on the length of simulatidn &nd the parameter valuep, (f andh). The
longer the time horizon, measured By the closer is the system to the stationary solution. The
influence of the simulation parametepsandh; note that flexibility f = 0.5 is fixed in our study)
will be discussed in the following section.

In the simulations, we use the following specifications:

e Initially all spinsons are down, i.ec(0) = 0. This corresponds to a situation in which the
innovation is still not available, so no one can be a conswhtre new product.

e The population inhabits a square lattice 20000 and consists dff = 10000 spinsons. It is
worth to mention that other system sizes were also invdstiigand all results presented in
this paper are consistent with those for other lattice sizes

e We count the number of convinced spinsons after 720 Monte Carlo steps, which corre-
sponds to a two year period. Longer and shorter time horim@me also investigated, for a
detailed discussion see Przybyta et al. (2013).

e The results are averaged oWdr= 1000 experiments.

4. Results

4.1. Pre-simulation expectations

Before moving on to discuss the simulation results, let usas&elves what can we expect of
the model. Usually some predictions or expectations caredeakd from a heuristic analysis of
the model. Performing this step prior to running the expenttan be considered as a ‘best prac-
tice’ of social studies (Myers, 2006). Recall, that in our mldtiree factors influence a spinson’s
opinion:

¢ social validation (conformity) that should be responsibleincreasing homogeneity in the
society and is present in any social system,

e external fieldh that forces spinsons to choose the new product (i.e., a dgnalectricity

tariff),
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Figure 6: Simulation snapshots showing a sample time deolwf a system of 10& 100 spinsons for the initial
concentration of spinsong0) = 0, indifferencep = 0.01 and the external field = 0.11. As a result of social
influence (e.g., word-of-mouth) small clusters of convih¢dark green) appear. Some of these clusters disappear
(hollow arrows) and other — if a critical size is reached -esprlike a virus (filled arrow).

e indifference that introduces indetermination, which is alwagsemt due to a non-zero level
of independence, and might increase in case of uncertaintyetevance.

Based on this knowledge, at least two conjectures can be fateal

1. The number of convinced individuals should graduallyease with the level of the external
field h.

2. In our model, an innovation cannot spread in the socidtyeifare no autonomous spinsons.
Imagine that initially all spinsons are down, i.e., all com®rs use the old product (tradi-
tional electricity tarit). If the level of indiference is zero = 0), the changes in the system
can be caused only by social validation or the external figlolever, if all spinsons have
the same opinion conformity always works due to the verymgjreocial pressure and there
is no influence of the external field (see Fig 5). Therefordifiarence is needed to break

unanimity.
The dependence between the number of convinced individumalshe level of indterence is not
easy to predict. It may have ambiguoukeets. On one hand, the irftérence boosts thefdliision

process, by weakening the social pressure. On the other hamisloduces noise, which reduces
the impact of the external field. Hence, the fiielience may hamper the spread of new ideas.

4.2. Model performance

Let us first consider the general performance of the modelbdth low and high values of
indifference. In Figure 6 we present snapshots showing a sam@estiotution of the system of
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100x 100 spinsons, initially all preferring the traditionalitéi(c(0) = 0), having a low level of
indifference p = 0.01) and influenced by a relatively weak external fiddd=(0.11). As a result of
social influence (e.g., word-of-mouth), small clusters afidinced (dark green) appear. Some of
these clusters disappear and other (if a critical size ©hed) spread like a virus. Notice that after
time T = 210 a small cluster of 73 spinsons appeared (indicated byi@harrow). After further
90 steps (i.e., fol = 300) it disappeared. Then at timie= 455 two clusters formed — one of 78
spinsons (indicated by a hollow arrow) and another of 14isspis (indicated by a filled arrow).
The former one disappeared (90 steps later it is not visienare), while the latter one started
to spread like a virus.

This is an interesting phenomenon that cannot be obtainddnwelassical theories of the
diffusion of innovation (like the Bass, 1969, model) and may spwad to the important feature
of real-world systems known as thalley-of-deatl{\Weyant, 2011). On the other hand, a cluster of
147 spinsons that formed aftér= 455 MCS was able to grow and spread in the society. It seems
that if some critical size of the cluster is crossed, the uaiion is able to spread in the society,
which agrees with the critical mass theory (Rogers, 2003)ru@al concept in understanding the
social nature of the éusion process.

Note also that in classical models and many recent ABM models Kiesling et al., 2011, for
a review) the transitions between the states are assumeditieebersible. The customers cannot
‘un-adopt’, even if the new product (here: the dynamicfipturns out to be unsuitable for them.
In our model, the reversal to the original product is possifihe vanishing clusters in Fig. 6 show
that a group of convinced spinsons can loose its interebeiméw dynamic tafli and after a short
period of time can be again in favor of the traditional flatftar

For p > 0 the dependence between the number of convinced indigdunl the indference
level pis highly nontrivial (see the left panel in Fig. 7). It can btined that for very small values
of p, which are associated with problems of a great social inapog and interest, a given strength
of the field is not sfficient to encourage consumers to accept a n@er.olt seems that in such
a case, consumers behave conservatively and prefer to eseusly known products. Strong
incentives are needed to change their attitude. As the tdhialifference increases, the ratio of
convinced spinsons jumps to almost 1.

This indicates that a minimum level of autonomy is necessargnsure that the new idea
spreads in the population. To some extent this result is reeagent both with the concept of
innovators and the critical mass theory. Innovators plagraral role in the innovation ffusion
theory, which says that some individuals decide to adophaavation independently of the de-
cisions of other individuals in the social system (Bass, 196%e critical mass theory says that
some threshold of individuals or actions has to be crosskmtda social movement explodes into
being (Rogers, 2003; Granovetter, 1978; Oliver and Marn4éig5).

Moreover, for a small value of infference there is a critical value of the external field, above
which an innovation can spread in the market (see the rigtelpa Fig. 7), which also is in agree-
ment with the critical mass theory. Recalling our first cotyee about the dependence between
the number of convinced spinsons and the external field, eénaa position to grasp the com-
plexity of the system described by a relatively simple ABM ralbodNVe have expected a gradual
growth of convinced spinsons with the increase of the ealdiald h ... and this is not true, at
least for small levels of indlierence. This means that for issues of high social relevanicésvest
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Figure 7:Left panel Dependence between the ratio of convinced spinsons (oes$) after two years (which corre-
sponds to 720 MCS) and the level of ifigrencep for several values of the external fifldRight panel Dependence
between the ratio of convinced after two years and the eatéigid h for several values of inffierencep. As discussed

in Section 2, today’s retail electricity markets are chtgdzed by high levels of indlierence, i.e.p > 0.5. However,

if in the future the indiference level is reduced, the external field (i.e. fitamicing schemes, advertisements, etc.)
will become the focal point.

a certain threshold has to be crossed in order to adopt a reaw Moreover, once the threshold
is passed, further increase of the external field does noltiesa significantly higher number of
convinced, which can be seen in the right panel of Fig.7 fdifiarence levelp = 0.01 and O1.

For high indiference levelsg > 0.5), the ratioc of convinced spinsons is much less sensitive
to the model parameters — ifidirencep (see the left panel in Fig. 7) and external fial(see the
right panel in Fig. 7). In the limiting case @f= 1, the opinions are purely random because neither
the internal factors (like word-of-mouth) nor the exterfield influence individuals. Therefore in
such a case, independently of the level of the external ftbkelratio of convinced spinsorts
converges to . This result might seem paradoxical at first; it suggesds 30% of consumers
prefer dynamical tafis. However, one should remember that foe= 1 the opinions are very
unstable. At a certain moment of time, a given spinson cag hawpinion|, in the next changes
itto T, then back tq and back again — it flips up and down randomly. Hence, a spmspmion
fluctuates a lot. This reflects more the generalftiedénce to the topic than the attitude toward a
new idea.

This high variability is illustrated in Figure 8, where weegent snapshots showing the con-
figurations of systems aftdr = 720 MCS, evolving from the initial concentratia(0) = O for
the same intensity of the external field<£ 0.11) but two diferent values of indierence. For low
indifference p = 0.01; left panel), there is a cluster of convinced, which wiéetually spread
throughout the whole system. Moreover, if we would follove time evolution of the system it
would behave similarly to the one presented in Fig. 6. Thevibmwed spinsons very rarely flip
to the unconvinced state (light gray) or back again and thexeonly small fluctuations can be
observed in the system. A completelyfdrent behavior is observed for high ifférence p = 1;
right panel). Of course, initially the whole system is grall §pinsons arg¢) because(0) = O.
Yet nearly instantly the spinsons start switching back amthf due to their autonomous behavior.
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p=0.01, h=0.11

Figure 8: Snapshots showing the configurations of systerh®@#% 100 spinsons evolving from the initial concentra-
tion ¢(0) = 0 after timeT = 720 for external field leveh = 0.11 and two values of infierence:p = 0.01 andp = 1.
Although in both cases the ratio of convinced (dark green®is05, the configurations are completelyffdrent.

p=0.01, h=0.05 p=0.01, h=0.40 p=0.80, h=0.05 p=0.80, h=0.40

Figure 9: Snapshots showing the configurations of syste®@% 100 spinsons evolving from the initial concen-
trationc(0) = O after timeT = 720 for four sets of parametepsandh. Left panels For low indifference p = 0.01)
the external field plays a crucial role. If the external fieddhieak b = 0.05) almost all individuals are unconvinced
(light gray) and if it is strongl{ = 0.4) almost all individuals are convinced (dark greeRight panels For high
indifference p = 0.8) there is almost no influence of the external field; the sydtmks qualitatively the same for a
very weak b = 0.05) and a relatively strong fieldh (= 0.4).

As a result the system looks qualitatively the same for teeakthe time evolution.

Let us now summarize the general Monte Carlo simulation tes#irst of all, our expecta-
tions put forward in Section 4.1 are fulfilled only partiallipdeed, an autonomous behavior (i.e.,
p > 0) is needed for the ffusion of innovation, which agrees with classical theorigeders,
2003). However, the dependencies between the catibconvinced and parameteps(indifter-
ence) anch (external field) are highly complex. We have expected thatr#ttio of convinced
would gradually grow with the increase in the intensity o gixternal field. However, this is true
only for intermediate levels of infference. For low values gd, there is a critical value of the
external field below which there is noffiision of innovation and above which all consumers are
convinced independently df. For example, ifp = 0.1 then forh < 0.09 there is no diusion
and forh > 0.09 the ratioc is almost 1, see Fig. 7 and the two left panels in Fig. 9. On the
other hand, for large values pfthe number of convinced grows gradually withbut the growth
is surprisingly weak, see Fig. 7 and the two right panels g Bi. Moreover, it was not easy to
predictex-antethe dependence between the ratio of convinced andf@meince, and indeed this
dependence is not obvious. As already mentionedpferO the ratio of convinced = 0. Then it
increases and reaches a maximum, whidrdependent, to finally drop to.®, independently of
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4.3. Difusion of electricity tarfs

Let us now focus on the flusion of dynamic electricity taffis. As discussed before, the retail
electricity market is characterized by:

¢ high values of indierence, i.e.p > 0.5, which expresses the fact that electricity ftarare
not a very popular discussion topic in the society and ard ttacompare (i.e., are a source
of confusion),

e a weak external field, i.eh close to 0, which reflects the rather small potential savings
the significant discomfort of adopting a new dynamicftaaind the generally low level of
advertising and lack of educational campaigns relatedesetiproducts.

On the other hand, the results discussed in Section 4.2 dhawthe external field, which
describes important features of the fiarplays a significant role only for relatively small values
of indifference. As long as the irftkrence level is high, the ratio of convinced depends very
weakly on the strength of the field. In the right panel of Fegi, the curve representing the
ratio ¢ of convinced spinsons is very flat for= 0.8 and becomes only slightly steeper for lower
indifference levels, likg = 0.6. This indicates that even large changes in the strengttedidld
will have very small &ects on the diusion process. For instance, th&elience between the ratios
of convinced spinsons fdr = 0.05 andh = 0.4 is 37% for p = 0.8 and 17% for p = 0.9. Hence,
we may conclude that in the context of electricity fi&;i which are nowadays characterized by
high values ofp, the features of the tdfs have a limited impact on their popularity.

The results of Section 4.2 also indicate that the ratio ofvitared can increase even if the
external field is fixed. The left panel in Figure 7 shows that tbduction of indterence level
from a very high (more than 0.5) to moderate (around 0.2)cccesult in a significant growth of
the ratio of convinced customers. If we analyze a market witleak external field, sdy= 0.05,
then the ratios fop = 0.8,0.5 and 02 arec = 0.506 0.531 and 0790, respectively. The change
is not only quantitative but also qualitative. For the sarakdfintensity and a smaller in@érence
level, the opinions will become more stable and will not flate so often. It is an important
feature, if we want to consider not only theffdsion of opinions but also analyze the resulting
decision process, which is known to be a very complex phenoméMyers, 2006). It is very
likely that customers need some sense of certainty befeget#tike an action, like signing up for a
new dynamic electricity taffi.

Finally, note that the independence between the produditgjaad the ratio of convinced can-
not be achieved under a classical modeling approach. Igehts behave rationally and maximize
their utilities, they should respond to the product feadutéence, one could expect that attractive
products would gain popularity. In the proposed setup, theduction of indiference enables
modeling of consumer irrationality. This feature of our rebid especially important in the con-
text of the retail electricity market because it has beerentesl (see the discussion in Section 2)
that new tarfits remain unpopular regardless of their attractiveness.
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5. Conclusions, policy implications and further research

In this paper, we have presented the results of an extensingagion study on the diusion
of dynamic tarits in the retail electricity market. We would like to emphasthat the agent-
based model (ABM) we have used is based on established kngevfeam social sciences. As
in other dtfusion of innovations studies (Kiesling et al., 2011; Rog2@£3), in our model the
new product adoption is driven by the internal influence t@hes from interactions between
agents (e.g., word of mouth) and the external field, whiclcidless not only marketingfiorts
(advertising, promotions, educational campaigns, etaf)also product features (potential sav-
ings, comfortdiscomfort of usage of dynamic electricity tés, etc.). The assumptions of our
model, related to the social influence of neighbors, colleagr friends, are based on numerous
social experiments and observations (Asch, 1955; BocchiadaZamperini, 2012; Myers, 2006).
What distinguishes our model among others, is the way, inlwvie define the immunity of some
agents to the social influence. As noted by Boudon and Boudi(2003), the so-called infiier-
ence — connected with an autonomy of individuals — can afriseoi options (e.g., traditional and
dynamic electricity taffs) ofer both advantages and disadvantages and these advantdgbs-a
advantages are not clearly comparable. In such a case détegstfinally adopted by an individual
is broadly unpredictable. Because such an uncertainty ysstging in the case of electricity téis
(ATKearney, 2012; Darby and McKenna, 2012; OFGEM, 2011r 8tal., 2010), we have intro-
duced indfference as a kind of randomness into the model. Moreoverlsexperiments show
that people are inconsistent in their behavior and simplegonal factors are more powerful than
individual traits in shaping human behavior (see Bocchiard Zamperini, 2012, for a review).
This fact is reflected in our model by the probability of ifidrence — in each time step an agent
can be indiferent or susceptible with some probability and its behasi@anges in time.

For a model to be trusted, it has to reproduce empirical faate of the best-established styl-
ized facts in the field of diusion of innovation is th&-shaped curve representing the time change
of the number of consumers having adopted to a new produclréady shown by Przybyta et al.
(2013), the model used in this paper reproduces this faéqdyr. In this paper we have addition-
ally shown that the model is able to describe two other phemanthat are crucial for theflision
of innovation — existence of the so-calledtical mass(Granovetter, 1978; Oliver and Marwell,
1985; Rogers, 2003) and thvalley-of-death(Weyant, 2011). These results are particularly im-
portant, because neither the critical mass nor the valleleath éfect can be obtained within
classical theories of theftlusion of innovation (like the Bass, 1969, model). Moreovssytshow
that, in spite of its simplicity, our model reproduces pndp¢he most important features of the
diffusion phenomenon.

The most important conclusion from this study is the follogui The adoption of dynamic
electricity tarifs is virtually impossible due to the high level of ifiéience in today’s societies
For a high level of indierence, the fluctuation of an agent’s opinion leads tghhisinability to
make a decision and switch to a new dynamicfiianio matter how strong is the influence of the
external field. And high levels of infference and disengagement of the consumers, who neither
have knowledge about electricity téis nor are willing to change them, have been confirmed by
many independent studies (ATKearney, 2012; OFGEM, 2011).

Therefore, in light of the results of our model and of the fpgoograms conducted in Europe
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and the U.S., we can derive an important policy recommeonalf the indiference level of the
retail consumers is not reduced, thgosts to smooth the electricity demand via dynamic/fari
will not bring the expected resultdn order to overcome this problem, utility companies sdoul
cooperate with the policymakers, governments and ecabgrganizations. A public debate is
needed. When customers engage more in the topic, the adoptignamic electricity taffs will

be much more likely. Finally, if in the future the irftBrence level is reduced, the external field
(i.e., tarff pricing schemes, advertisements, etc.) will become tha! foaint, see Fig. 7.

The research can be extended in various ways. Firstly, tegepted approach can be used
to explain and model the free rider problem (Diaz-Rainey amav@ra, 2012). If we allow for a
heterogeneous field, we will be able to distinguish regulsta@mers from free riders. Free riders
are people, who anticipate the externalities, such as agehahfuture electricity prices or the
state of the environment due to other agent actions. Hehneyg take into account possible profits,
which arise when other customers change their attitudeniatice economical or ecological, while
evaluating the advantages and disadvantages of a ndfv Tdrerefore, the product features, such
as possible savings offects on the environment, will have a much weakiBge on their opinions.
We predict that the presence of the free riders in the moatedioav down or even stop theftlision
process.

Finally, we can expand our agent-based model, in order ttagxand analyze the flerences
between the opinions and decisions. It is well known thatettere big discrepancies between
customers’ opinions stated in market surveys and theiaap@rticipation in pilot programs and
acceptance of new tdf$ (Darby and McKenna, 2012; Star et al., 2010). Our analyseady
sheds some light on the problem. We have shown that due taghertdifference level in today’s
retail electricity markets, the agent opinions are verytainle and change frequently. This may
hamper the decision process, because consumers typiesty some sense of certainty before
they take any actions. It seems that reducing thefiadince level can result in narrowing the gap.
Potentially it can even lead to the reverse situation, wkisenumber of customers, who switch
to the new taff, will be larger than the number of people, who currently aréavor of dynamic
tariffs.
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