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Abstract: Temperature plays a key role in driving electricity demand. We adopt "recency effect", a term 

originated from psychology, to denote the fact that electricity demand is affected by the temperatures of 

preceding hours. In the load forecasting literature, the temperature variables are often constructed in the 

form of lagged hourly temperatures and moving average temperatures. Over the past decades, computing 

power has been limiting the amount of temperature variables that can be used in a load forecasting model. 

In this paper, we present a comprehensive study on modeling recency effect through a big data approach. 

We take advantage of the modern computing power to answer a fundamental question: how many lagged 

hourly temperatures and/or moving average temperatures are needed in a regression model to fully 

capture recency effect without compromising the forecasting accuracy? Using the case study based on 

data from the load forecasting track of the Global Energy Forecasting Competition 2012, we first 

demonstrate that a model with recency effect outperforms its counterpart (a.k.a., Tao’s Vanilla 

Benchmark Model) in forecasting the load series at the top (aggregated) level by 18% to 21%. We then 

apply recency effect modeling to customize load forecasting models at low level of a geographic 

hierarchy, again showing the superiority over the benchmark model by 12% to 15% on average. Finally, 

we discuss four different implementations of the recency effect modeling by hour of a day.  

 

1. Introduction 

 

At the inception of electric power systems, lighting was the only end use of electricity. As a result, 

electricity demand was primarily driven by calendar variables. As more and more electricity-powered 

appliances were invented, the end use became diversified. Increasing penetration of electrical air 

conditioning systems made the role of weather more and more important in driving electricity demand. 

Back to 1940s, people realized that electric load was highly dependent on weather (Dryar, 1944).  

 

In the pre-PC (personal computer) era, utility planners and operators created lookup tables and charts, 

based on historical data and past experience, to capture the relationship between load and weather 

variables such as temperature and humidity. They then used these charts and tables together with rulers 

and intuitions to forecast load (Hong, 2014). 

                                                           
1 Forthcoming in International Journal of Forecasting (2016). 

http://www.sciencedirect.com/science/journal/01692070


 

When people started using computers for load forecasting in 1980s, the computing power was very 

limited. Quite often, the model building procedures had to be conducted offline to select variables and 

estimate parameters, so that the computer can perform online calculation of the load forecast based on the 

new data and previously calculated variables and parameters (Gross & Galiana, 1987). The offline model 

building scheme means that the model(s) wouldn't be updated in real time to reflect the most recent status 

of the power system. Consequently, the forecasting accuracy was more or less compromised. 

 

The technological advancement through late 1990s quickly eliminated the needs of doing offline 

computation for many load forecasting techniques. Also due to the benefits of the increasing computing 

capability, people started to apply some of the computation intensive techniques to load forecasting such 

as Artificial Neural Networks (Hippert, Pedreira, & Souza, 2001) and autoregressive integrated moving 

average models (Weron 2006). Meanwhile, people started using large amount of variables in load 

forecasting models (Hippert et al., 2001).  

 

Recency effect in psychology refers to the fact that human beings tend to remember the most recent items. 

The power grid has a similar character - its demand tends to be significantly affected by the recent 

temperatures. (Hong, 2010) first adopted this term to illustrate part of a systematic load forecasting 

methodology, which took lagged temperatures to enhance load forecasting accuracy of a benchmark 

model. Since then, this term “recency effect” has been widely accepted in the US utility industry, and is 

part of a commercial software package (SAS® Energy Forecasting) which is currently being used by 

many power companies worldwide. Note that many papers in the load forecasting literature reported the 

usage of lagged temperatures. (Papalexopoulos & Hesterberg, 1990) used lagged temperature to calculate 

lagged heating and cooling degree days for regression models. A Global Energy Forecasting Competition 

2012 (GEFCom2012) winning team (Ben Taieb & Hyndman, 2014) used lagged hourly temperature and 

average daily temperature variables in the competition. Another GEFCom2012 winning team (Nedellec, 

Cugliari, & Goude, 2014) used exponentially smoothed temperature variables in GEFCom2012. 

Nevertheless, there has never been an in-depth study stretching the model size to investigate whether 

large number of lagged and average temperature variables can help improving forecast accuracy.  

 

Despite the big relief on the computation side, model building can still take significant amount of time if 

one wants to test many variables. Sometimes people still have to juggle the tradeoff between the 

frequency of model updates and sufficiency of the variables. As discussed in (Hong, 2010), for example, 

lagged temperature variables were limited to the past three hours of temperatures due to the consideration 



of computational constraints. The limitation of computing power constrains were also an issue in the 

earlier decades as discussed in (Gross & Galiana, 1987).  

 

The methodology presented in this paper is a continuation and extension of (Hong, 2010). We are 

attempting to take advantage of the modern computing power to answer a fundamental question:  

How many lagged hourly temperatures and/or daily moving average temperatures are needed in a 

regression model to fully capture recency effect without compromising the forecasting accuracy?  

Note that we are not exploring the exponentially weighted temperature variables in this paper. The 

primary reason is to avoid discussing algorithms for fine-tuning the exponential weights. For instance, 

one heuristic method to select base for the exponential weights was discussed in (Hong, 2010). Other 

notable discussions about exponential smoothing for electric load forecasting can be found in (Weron, 

2006) and (Taylor & McSharry, 2007). The lagged temperatures and moving average temperatures 

covered in this paper can be regarded as a typical representation of “recency”, in the sense that we assign 

the weight of one to each observation in the moving window and zero weight to the observations outside 

the moving window. Nevertheless, the proposed framework does not exclude the usage of exponentially 

weighted temperatures.  

 

Following (Hong, Wang, & White, 2015), we develop the case study based on the load forecasting data of 

GEFCom2012 published in (Hong, Pinson, & Fan, 2014). There are two big data aspects in this paper: 1) 

we customize the model for each zone of a geographic hierarchy and each hour of the day; and 2) we 

leverage modern computing power to develop large load forecasting models with thousands of variables. 

More discussions about big data in load forecasting will be presented in Section 4.2.  

 

This paper has the following significant contributions: 1) this is the first comprehensive study on 

modeling recency effect without computational constraints; 2) this is the first time the recency effect is 

being applied to hierarchical load forecasting, in the contents of both geographical and temporal 

hierarchies, where recency effect is being modeled in a customized fashion for each zone and each hour 

of a day; and 3) publicly available data is used to conduct the case study, so that future researchers can 

reproduce our results.  

 

 

 



2. Background 

 

2.1 Data description 

 

One of the objectives of GEFCom2012 was to establish a benchmarking data pool for researchers in the 

energy forecasting community to compare models. In this paper, we use the data from the hierarchical 

load forecasting track of GEFCom2012, including 4.5 years of hourly load and temperature across 21 

zones (Zi, i = 1, 2, ...) of a U.S. Utility, of which Z21 was the sum of the first 20 zones (Hong, Pinson, & 

Fan, 2014).  

 

Same as the case study in (Hong, Wang, & White, 2015), we are conducting out-of-sample tests instead 

of using the methods based on in-sample fit to select models. Here we slice the data to three pieces, the 

first two years (2004-2005) for training (or in-sample fit, for parameter estimation), the next year (2006) 

for validation (or post-sample fit, for model selection), and the last full calendar year (2007) for testing 

(or out-of-sample test, for summary of error statistics). The four years of Z21 load data is shown in Figure 

1.  

 

We also use the weather station selection and load forecasting results of (Hong, Wang, & White, 2015) as 

the benchmark for the methodology proposed in this paper. In other words, actual temperature 

observations are used through the forecast horizon, which is widely used in the industry to develop load 

forecasting models as discussed in (Nedellec et al., 2014). A more in-depth discussion about weather 

variables in ex ante vs. ex post load forecasting was presented in (Hong, Wang, & White, 2015).  

 

 

 

Figure 1.  Data from GEFCom2012 load forecasting track. 

 



 

2.2 Tao's Vanilla Benchmark model 

 

Tao's Vanilla Benchmark model was first proposed in (Hong, 2010) and then used to produce the 

benchmark score for GEFCom2012 (Hong, Pinson, et al., 2014). In GEFCom2012, this model was ranked 

at top 25% among over 100 teams. It has also been implemented as a base model in a commercial 

software package SAS Energy Forecasting. The same model was used in the weather station selection 

framework proposed in (Hong, Wang, & White, 2015). The model is a multiple linear regression model: 
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where yt is the load forecast for time (hour) t; βi are the coefficients estimated using the ordinary least 

square method; Mt, Wt and Ht are the month-of-the-year, day-of-the-week, and hour-of-the-day 

classification variables corresponding to time t, respectivey; Tt is the temperature at time t; and 
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We use temperature and calendar variables only, but not past loads, in this model and the models to be 

discussed in later sections, mainly because in many jurisdictions, past loads are not allowed in long term 

load forecasting to avoid reducing the interpretability of the model. Due to the simplicity and wide 

adoption of regression analysis in load forecasting, we used multiple linear regression models to convey 

the ideas of recency effect modeling. Nevertheless, recency effect can also be modeled through other 

techniques, such as neural networks and support vector regression models.  

 

2.3 Missing salient features  

 

Using two years of data (2005 – 2006) to estimate the parameters of the benchmark model, we can 

perform one-year ahead ex post forecasting for the 8760 hours in year 2007. Figure 2 shows the actual 

load and forecasted load from Tao’s Vanilla Benchmark model, overlaid with temperature, for a summer 

week and a winter week. We can observe the following discrepancies between the forecast and actual 

load: 

1) The benchmark model over-forecasts the summer peaks for consecutive days (6/22-24) and 

under-forecasts the winter peaks for consecutive days (11/15-20); 

2) The benchmark model under-forecasts the troughs for consecutive days (11/16-20); 

3) The forecast from the benchmark model is leading or lagging the actual load for consecutive 

hours in several days (6/20, 6/23, 6/24, 11/16-19).  



In addition, we can also observe the lag between temperature and load profiles in the summer, which 

indicates that the lack of temperatures of preceding hours in the load forecasting model may be a reason 

causing some of the discrepancies mentioned above. This further motivates the study of recency effect. 

The same two weeks will be plotted later in Figure 4 to show improvement via modeling recency effect.  



 

 

Figure 2. Actual load, forecasted load and temperature plots for a summer week (upper) and a winter 

week (lower).  



3. Recency effect  

 

3.1 At aggregated level 

 

To capture the missing salient features discussed above, we are going to include the temperatures of 

preceding hours in the model. In this paper, we choose the two most commonly used forms of 

temperature variables, lagged hourly temperatures (Tt-h, h = 1, 2, … 72) and 24-hour (or daily) moving 

average temperatures, where the daily moving average temperature of the dth day can be written as:  

24
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Then Tao’s Vanilla Benchmark model can be extended to: 
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(4)   

 

We take a trial-and-error method to model the recency effect. We vary the number of days from 0 to 7, 

and the number of lags from 0 to 72. In total, there are 584 (73 by 8) possible “average-lag” (or d-h) pairs.  

 

In this paper, we again use Mean Absolution Percentage Error (MAPE) of hourly loads as the error 

measure to evaluate load forecasts:   
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where At is the actual value and Ft is the forecasted value at time t. 

 

Enumerating all 584 models based on different d-h pairs for Z21, we can obtain the heat map 

corresponding to the MAPE values on the validation data (the year of 2006) as shown in Figure 3, which 

shows the first 48 lags to avoid verbose presentation. The lowest MAPE is 3.54%, or more precisely, 

3.542%, which occurs on the model with 2 daily moving average temperatures and 12 lagged hourly 

temperatures.  



 

h \ d 0 1 2 3 4 5 6 7 

0 4.89 4.10 4.09 4.16 4.23 4.13 4.12 4.25 

1 4.55 3.92 3.91 3.97 4.05 3.95 3.96 4.08 

2 4.34 3.81 3.80 3.87 3.94 3.85 3.85 3.97 

3 4.20 3.76 3.74 3.81 3.88 3.79 3.79 3.91 

4 4.09 3.71 3.70 3.76 3.84 3.75 3.74 3.86 

5 4.00 3.68 3.67 3.73 3.81 3.72 3.71 3.83 

6 3.93 3.65 3.64 3.71 3.78 3.70 3.69 3.81 

7 3.86 3.63 3.62 3.69 3.76 3.68 3.67 3.80 

8 3.81 3.60 3.60 3.67 3.75 3.67 3.66 3.78 

9 3.77 3.59 3.58 3.65 3.73 3.66 3.65 3.78 

10 3.74 3.58 3.57 3.64 3.72 3.65 3.64 3.77 

11 3.73 3.57 3.55 3.63 3.71 3.64 3.63 3.76 

12 3.71 3.56 3.54 3.62 3.69 3.63 3.62 3.75 

13 3.69 3.56 3.54 3.62 3.68 3.62 3.62 3.74 

14 3.67 3.57 3.55 3.63 3.69 3.63 3.63 3.76 

15 3.66 3.58 3.57 3.64 3.70 3.64 3.64 3.77 

16 3.67 3.60 3.58 3.66 3.71 3.66 3.66 3.79 

17 3.67 3.62 3.61 3.68 3.73 3.68 3.68 3.81 

18 3.67 3.64 3.63 3.71 3.75 3.70 3.70 3.83 

19 3.68 3.67 3.65 3.73 3.77 3.72 3.71 3.86 

20 3.68 3.69 3.68 3.75 3.79 3.74 3.73 3.88 

21 3.69 3.71 3.70 3.77 3.80 3.76 3.76 3.90 

22 3.70 3.73 3.72 3.78 3.81 3.78 3.77 3.92 

23 3.72 3.74 3.73 3.78 3.82 3.79 3.79 3.94 

24 3.73 3.76 3.75 3.79 3.83 3.80 3.80 3.95 

25 3.74 3.76 3.77 3.80 3.84 3.81 3.81 3.96 

26 3.75 3.78 3.79 3.81 3.85 3.83 3.82 3.98 

27 3.76 3.80 3.81 3.83 3.86 3.84 3.84 4.00 

28 3.78 3.82 3.83 3.85 3.88 3.86 3.86 4.03 

29 3.79 3.84 3.86 3.88 3.90 3.88 3.89 4.06 

30 3.81 3.86 3.89 3.90 3.93 3.91 3.91 4.09 

31 3.83 3.87 3.90 3.92 3.94 3.93 3.93 4.12 

32 3.85 3.89 3.93 3.94 3.97 3.96 3.96 4.14 

33 3.87 3.91 3.95 3.97 3.99 3.99 3.99 4.18 

34 3.90 3.94 3.98 3.99 4.02 4.02 4.02 4.21 

35 3.93 3.97 4.00 4.01 4.03 4.04 4.04 4.24 

36 3.94 3.98 4.02 4.03 4.05 4.06 4.06 4.27 

37 3.96 3.99 4.05 4.05 4.08 4.08 4.09 4.29 

38 3.97 4.00 4.07 4.08 4.11 4.12 4.13 4.33 

39 3.99 4.02 4.10 4.10 4.13 4.15 4.16 4.36 

40 4.01 4.03 4.12 4.12 4.16 4.17 4.18 4.39 

41 4.04 4.05 4.14 4.14 4.18 4.19 4.20 4.42 

42 4.07 4.07 4.16 4.15 4.20 4.22 4.23 4.45 

43 4.09 4.09 4.17 4.17 4.23 4.24 4.26 4.48 

44 4.11 4.11 4.18 4.18 4.25 4.26 4.28 4.51 

45 4.13 4.12 4.19 4.20 4.26 4.27 4.30 4.53 

46 4.14 4.13 4.21 4.21 4.28 4.29 4.33 4.55 

47 4.15 4.14 4.22 4.22 4.30 4.31 4.35 4.58 

48 4.16 4.16 4.24 4.24 4.33 4.33 4.38 4.60 

Figure 3. Heat map of MAPE values (in %) for recency effect modeling based on validation data (year of 

2006) of Z21. 



Using this model (d = 2; h = 4)  to perform one-year ahead ex post forecasting on the test data (2007) with 

the previous two years (2005-2006) for parameter estimation, we get the MAPE value of 4.27%. 

Comparing to the MAPE of Tao’s Vanilla Benchmark model on the test data presented in (Hong, Wang, 

& White, 2015), which is 5.22%, the recency effect model reduces the MAPE value by 18%.  

 

Figure 4 shows the comparison between the forecasts from benchmark model and recency effect model 

on the same weeks as shown in Figure 2. We can observe that 1) the recency effect model captures peaks 

and troughs much closer than the benchmark model; and 2) The leading/lagging issue of the benchmark 

model has been resolved by including the recency effect. Overall, the model with recency effect helps 

capture more salient features than Tao’s Vanilla Benchmark model.  



 

 

 

Figure 4. Actual load, forecasted load from benchmark model, and forecasted load from recency effect 

model for a summer week (upper) and a winter week (lower).  



3.2 In a geographic hierarchy 

 

The geographic hierarchy in hierarchical load forecasting refers to the households, small areas, sub-

regions, regions, rolling up to the top aggregated level. The GEFCom2012 data itself has 20 zones at low 

level, with Z21 as the sum of those 20 zones. In this section, we apply the recency effect modeling to all 21 

load zones of GEFCom2012 data.  

 

GEFCom2012 data did not include the locational information. To have a rough estimate on the locations, 

we first take the annual average temperature of each virtual weather station. We then sort the average 

temperatures in ascending order to represent zones from north to south. Figure 5 shows the d-h pairs for 

the 19 zones (18 regular zones plus Z21) sorted by average annual temperature. Overall, for most of the 19 

zones, the recency effect appears to be different. This is due to the fact that different zones may have 

different compositions of residential, commercial and industrial customers, which together may have 

different responses to the weather patterns.  

 

avg Zone ID Temperature (F) lag

0 8 56.46 13

1 6 56.84 13

1 2, 3 & 7 56.94 13

2 13 56.96 8

1 4 56.96 3

1 20 57.27 9

1 1 57.58 7

2 21 57.82 12

4 11 57.96 8

2 12 57.96 6

2 16 58.06 7

6 5 58.24 6

1 9 58.45 0

1 10 58.49 2

1 15 58.89 8

1 19 58.92 4

1 18 58.98 8

1 17 59.35 5

1 14 59.43 8
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Figure 5.  Recency effects (in d-h pairs) for the regular zones sorted by annual average temperature.  

 

Table 1 lists the MAPE values for one-year ahead ex post forecast of year 2007 using the previous two 

years (2005 – 2006) for parameter estimation. As discussed in (Hong et al., 2015), Z4 experienced a major 

outage; Z9 is an industrial customer. Therefore, these two special zones are listed separately from the 

others. At the aggregated level, modeling recency effect helps reduce the MAPE value of benchmark 



model by 18%. At the low level, when modeling the recency effect in a customized fashion, the 

forecasting error can be improved for the 17 of the 18 regular zones. On average, the recency effect 

models reduce the MAPE values of the benchmark model by 12%. The improvement of forecast accuracy 

through customization on each low-level zone is also consistent with the conclusion of (Hong, Wang, & 

White, 2015), which indicates that different zones may need different sets of weather stations to enhance 

the forecast accuracy. 

 

Table 1 MAPE values (in %) of the Recency effect vs. benchmark models on 21 zones of the 

GEFCom2012 load forecasting data (one-year ahead ex post forecasting for 2007). Z4 experienced a 

major outage; Z9 is an industrial customer. 

 Zone Recency Benchmark 

Aggregated Zone 21 4.27 5.22 

Regular Zones 

1 5.80 7.01 

2 4.90 5.62 

3 4.90 5.62 

5 10.71 9.88 

6 4.90 5.55 

7 4.90 5.62 

8 6.66 7.50 

10 5.62 6.70 

11 6.53 7.70 

12 5.54 6.78 

13 6.81 7.39 

14 8.13 9.38 

15 6.63 7.44 

16 6.80 8.12 

17 4.32 5.26 

18 5.50 6.72 

19 6.68 7.90 

20 5.02 5.74 

 Average (regular zones) 6.13 7.00 

Special Zones 
4 16.13 16.08 

9 140.9 139.16 

 

3.3. By hour of a day 

 

Hourly electricity demand series naturally has multiple seasonal patterns, such as hours of a day, days of a 

week, months of a year, and so forth. These calendar variables automatically form the temporal hierarchy. 

In the load forecasting literature, some researchers forecasted the load based on the methodology of using 

all the historical data to derive one model (Hong, 2010)(Hong, Wilson, & Xie, 2014)(Hong & Wang, 

2014). Many other researchers sliced the data to 24 pieces, so that the parameter estimation of the load 

forecasting model is conducted individually for each of the 24 groups (Ramanathan, Engle, Granger, 



Vahid-Araghi, & Brace, 1997)(Fan & Hyndman, 2012)(Black & Henson, 2014)(Ben Taieb & Hyndman, 

2014). There has not been any formal comparison between the two. In addition, there has not been any 

formal study to explore the possibilities of modeling each hour with different variable combinations, 

though (Ramanathan et al., 1997) briefly mentioned that different variable combinations were used to 

model different hours. In this section, we are testing four options of cross validation and model settings as 

shown in Table 2: 

 

Table 2 Different implementations of recency effect modeling 

 Training Validation d-h Pair 

A 1 1 1 

B 24 24 1 

C 1 24 24 

D 24 24 24 

 

A. This is our base case and has been conducted in Section 3, where we have identified the d-h pair 

through one training dataset and one validation dataset. This implementation results in the same 

variables (a.k.a. one d-h pair) and parameters for all 24 hours.  

B. We first slice the data to 24 pieces by hour of the day. Each piece includes a training set and a 

validation set. We estimate a model for each hour of the day using the training set of the 

corresponding hour, and then calculate the MAPE on the validation set. We select the d-h pair 

that results in the lowest average MAPE on the 24 validation sets as the pair for the 24 models. 

This implementation also results in the same variables for all 24 hours, but the parameters are 

estimated separately for each hour of a day. In total, we have 24 sets of parameters, one for each 

hour.   

C. We slice the validation data to 24 pieces by hour of the day. We then estimate a model using the 

full (i.e., all hours) training set. The d-h pair that results in the lowest MAPE on one validation set 

is selected as the pair for the corresponding hour of the day. In total, we select 24 d-h pairs. In 

other words, this implementation results in the 24 sets of variables and parameters, one for each 

hour of a day.  

D. The data processing is similar to that of Option B. We first slice the data to 24 pieces by hour of 

the day. Each piece includes a training set and a validation set. Instead of selecting one common 

d-h pair for all 24 models, we are designating one d-h pair for each model. In total, we select 24 

d-h pairs. This implementation results in the 24 sets of variables and parameters, one for each 

hour of a day.  

 



Based on the above four implementation options, we can develop four models, of which the parameters 

(values of d and h) are shown as the radar charts in Figure 6. Since options A and B are to use one d-h 

pair across all 24 hours of a day, their territories are shown as circles in the radar charts. When releasing 

this constrain of having the same d-h pair for all hours, different hours of a day may present different 

recency effects. This observation is similar to an observation made in Table 1, where different zones may 

present different recency effects. It is again due to the fact that the relationship between electricity 

consumption and the temperatures varies throughout a day. Nevertheless, we can observe similar or same 

d-h pairs in some of the adjacent hours. Figure 6 also shows that the territories of options B and D are 

significantly less than those of options A and C. In other words, Options B and D have much less number 

of variables than options A and C. This is because the observations used to estimate each model in 

options B and D is only 1/24 of the observations for estimating a model from options A and C. The 

number of observations in the training data limits the amount of variables a model can hold.  

 

 

 



 

 

 

Figure 6. The average-lag parameters for the four options A through D.  



We then apply these four models for one-year ahead ex post forecasting of the loads of 2007. The error 

statistics of these four options are listed in Table 3. On average, option A leads to the lowest MAPE 

values. In other words, identifying recency effect modeling using one training data and one validation 

data outperforms the other three alternative implementations in this case study.  

 

Note that the common thoughts in 1990s and 2000s are to use one set of variables for all hours of a day, 

which makes the computation easy. (Ramanathan et al., 1997) is one of the earliest papers that reported 

customized models for different hours of a day. Here in this paper we further advance the state-of-the-art 

by leveraging the modern computing power to release the limit of the number of variables being included 

in a regression model and showing superior accuracy.  

 

Furthermore, this part of the case study also offers an empirical evidence showing that slicing the data to 

24 pieces to develop one model for each hour, as what many papers in the load forecasting in the 

literature have done, is not necessarily better than the other three alternatives as listed in Table 2. On the 

other hand, although option A has the lowest MAPE value in this case study, it may or may not be the 

best one in other case studies with different datasets. When slicing the data to multiple pieces or modeling 

each hour individually, we are reducing the noise for each group. Meanwhile, we are also reducing the 

signal that could have been leveraged from other groups. In other words, we have to find out the balance 

between signal and noise, which is unknown prior to trial-and-error. And the answer can be different on 

different data sets.  

 



Table 3 MAPE values (in %) of recency effect models by hour of a day (one-year ahead ex post 

forecasting for 2007) 

Hour A B C D Benchmark 

1 4.37 4.50 4.77 4.68 5.82 

2 4.56 4.59 4.97 4.32 5.84 

3 4.59 4.28 5.24 4.27 5.82 

4 4.69 4.47 5.22 4.23 5.71 

5 4.61 4.41 5.07 4.41 5.75 

6 4.66 4.50 4.66 4.52 5.70 

7 4.86 4.93 4.78 4.81 5.56 

8 4.28 4.21 4.70 4.19 4.85 

9 3.71 3.64 4.00 3.70 4.32 

10 3.39 3.61 3.46 3.75 4.16 

11 3.53 3.98 3.48 3.81 4.25 

12 3.75 4.18 3.79 4.07 4.51 

13 4.00 4.45 4.02 4.32 4.52 

14 4.20 4.54 4.22 4.57 4.68 

15 4.50 4.62 4.54 4.80 4.82 

16 4.61 4.73 4.67 4.82 5.02 

17 4.65 4.70 4.64 4.81 5.12 

18 4.70 4.72 4.68 4.72 5.39 

19 4.33 4.27 4.31 4.27 5.52 

20 4.22 4.34 4.22 4.23 5.75 

21 4.14 4.19 4.07 4.20 5.36 

22 3.90 4.27 3.81 4.02 5.56 

23 4.00 4.48 3.82 4.46 5.53 

24 4.30 4.49 4.06 4.95 5.73 

Average 4.27 4.38 4.38 4.37 5.22 

 

 



4. Discussions 

 

4.1 More comparisons 

 

So far in this paper, all recency effect models have been compared with Tao’s Vanilla Benchmark model 

using the weather stations selected in (Hong, Wang, & White, 2015). The forecast horizon has been set to 

be one year. In this section, we will expand the comparative study to other models in the setting of 24-

hour ahead ex post forecasting for year 2007. The forecasts of hours 1 through 24 are issued on rolling 

basis at each midnight using a 730 days moving window for parameter estimation.  

 

Here we introduce the four models for further comparisons: 

1) An advanced model (Adv_1) modified from the recency effect models proposed in (Hong, 2010), 

where we let d = 1 and h = 3 for all hours. This is to see whether stretching the number of average 

temperatures and lagged temperatures can help enhance the accuracy comparing with the models 

developed with computational constrains.  

2) An advanced model (Adv_2) simplified from the models in (Ben Taieb & Hyndman, 2014). Here 

we plug the same temperature variables identified from (Ben Taieb & Hyndman, 2014) to eq(2) 

with each hour modeled as a separate group. Note that this is not a direct reproduction of the 

models in (Ben Taieb & Hyndman, 2014), because we are not including the lagged loads in this 

paper as mentioned earlier in Section 2.2. Moreover, the model structure we are using in this 

paper is different from the models in (Ben Taieb & Hyndman, 2014). Following the analogy of 

integration discussed in (Hong & Fan, 2016), a subset of the variables selected by (Ben Taieb & 

Hyndman, 2014) for each hour may not be the optimal selection in the model structure here. The 

purpose of this comparison is to have a sanity check whether the performance of the recency 

effect models proposed in this paper is worse than a simplified version of the models from a top 5 

team of GEFCom2012.  

3) A daily seasonal naïve benchmark (SNM-D). It uses the load of hour t-24 as the forecast for load 

of hour t.  

4) A weekly seasonal naïve benchmark (SNM-W). It uses the load of hour t-168 as the forecast for 

load of hour t.  

 

Table 4 lists the 24-hour ahead ex post forecasting MAPE values for all 21 zones from the recency effect 

model (option A), two advanced models (Adv_1 and Adv_2), the benchmark model, and two seasonal 

naïve models. At the aggregated level (Z21), modeling recency effect helps reduce the MAPE value of 



benchmark model by 21% for 24-hour ahead rolling forecasting. At the low level, the recency effect 

models (option A) win 12 of the 18 regular zones, reducing the MAPE values of the benchmark model by 

15% on average.  

 

Both seasonal naïve models present very poor performance comparing with the other four models. 

Seasonal naïve models are commonly used for benchmarking purposes in other industries, such as retail 

and manufacturing industries. In load forecasting, the two applications where seasonal naïve models are 

most useful are: 1) benchmarking forecast accuracy on very unpredictable loads, such as household level 

loads; and 2) comparisons with univariate models. In most other applications, however, the seasonal naïve 

models and other similar naïve models are not quite meaningful due to the lack of accuracy.  

 

Table 4 MAPE values (in %) of the Recency effect vs. benchmark models on 21 zones of the 

GEFCom2012 load forecasting data (24-hour ahead ex post forecasting for 2007). Z4 experienced a major 

outage; Z9 is an industrial customer. 

 Zone Recency (A) Adv_1 Adv_2 Benchmark SNM-D SNM-W 

Aggregated Zone 21 3.86 3.97 4.45 4.88 8.40 14.30 

Regular Zones 

1 5.62 5.82 6.83 7.00 11.28 19.01 

2 4.59 4.65 5.36 5.25 8.55 12.57 

3 4.59 4.65 5.36 5.25 8.55 12.57 

5 7.69 7.28 8.62 8.32 12.59 20.47 

6 4.57 4.65 5.29 5.27 8.55 12.79 

7 4.59 4.65 5.36 5.25 8.55 12.57 

8 6.02 6.26 7.24 6.85 9.40 15.96 

10 4.97 4.97 6.17 5.85 12.23 15.80 

11 5.71 5.81 6.38 6.88 10.77 18.13 

12 5.11 5.09 5.83 6.41 11.94 20.31 

13 6.31 6.36 7.60 7.13 9.01 15.23 

14 7.60 7.56 9.12 9.10 15.66 25.14 

15 6.29 6.26 7.34 7.19 10.56 17.69 

16 6.37 6.31 7.83 7.69 14.12 23.75 

17 4.13 4.14 4.94 5.09 10.58 15.65 

18 5.25 5.29 6.26 6.50 11.58 19.51 

19 6.14 6.16 7.50 7.60 13.12 21.77 

20 4.54 4.62 5.38 5.20 8.15 12.72 

 Average 5.56 5.59 6.58 6.55 10.84 17.31 

Special Zones 
4 14.51 14.51 15.97 14.74 15.52 20.73 

9 109.84 107.21 115.18 113.79 47.53 120.06 

 

 

Table 5 lists the MAPE values of the recency effect model (option A), two advanced models mentioned 

above, and the benchmark model. This time we zoom into the error statistics by hour. We only show the 

results from Z21 to avoid verbose presentation, because results from the other zones do not add additional 



information. Overall, the recency effect model wins 18 of the 24 hours of a day, while the Adv_1 model 

wins the other 6. On average, the recency effect model is the most accurate one among the four, followed 

by the Adv_1 model, and then Adv_2 model.  

 

Table 5 MAPE value (in %) comparison of recency model (option A) and two advanced models and the 

benchmark by hour of a day (24-hour ahead ex post forecasting for 2007) 

Hour Recency (A) Adv-1 Adv-2 Benchmark 

1 3.73 4.26 4.57 5.41 

2 3.83 4.22 4.67 5.33 

3 3.88 4.24 4.42 5.33 

4 3.98 4.18 4.81 5.28 

5 3.95 4.11 4.24 5.33 

6 4.13 4.14 4.25 5.24 

7 4.53 4.33 5.04 5.18 

8 4.08 3.86 4.51 4.58 

9 3.51 3.36 3.61 3.97 

10 3.16 3.11 3.20 3.74 

11 3.30 3.33 3.55 3.87 

12 3.51 3.56 4.07 4.20 

13 3.59 3.69 4.49 4.33 

14 3.76 4.00 4.68 4.52 

15 4.00 4.22 4.99 4.62 

16 4.12 4.30 5.63 4.73 

17 4.23 4.26 5.09 4.72 

18 4.39 4.51 4.95 5.05 

19 4.06 4.10 4.31 5.37 

20 3.93 3.87 4.50 5.37 

21 3.66 3.63 4.22 4.91 

22 3.57 3.68 3.86 5.15 

23 3.73 4.11 4.42 5.32 

24 3.97 4.28 4.64 5.47 

Average 3.86 3.97 4.45 4.88 

 

 

4.2 Big data in electric load forecasting 

 

The utilities have been working with big data since it was called just "data". We have witnessed the 

growth of data to big data in this smart grid era. Nowadays, the term “big data” is no longer new to the 



utility industry. In fact, big data is gradually becoming a buzzword in the industry and academia. With the 

term “big data” in the title of this paper, we would like to expand the discussion a bit to the concept of big 

data in load forecasting, or energy data analysis in general. 

 

Fundamentally, the “big” in big data should be relative to what happened in the past. Therefore, we define 

the big data criteria in relative terms: 

1) The data size is larger than what typical data analysis tools (including the IT infrastructure around 

the tools) can handle. For instance, if MS Excel 2003 is the tool to conduct data analysis, then a 

data file with 5 million rows is big. If the data should come in at 1GB/sec, but the internet 

downloading speed is 10MB/sec, then the data stream is big.  

2) The computing time is longer than the analysis time or lead time for the business applications. If 

it takes a few hours to think of the design of an algorithm, but testing the algorithm takes a few 

weeks, then it is big data problem. If it takes a few hours to calibrate an hour-ahead forecasting 

model, which should be re-calibrated every hour, then it is a big data problem.    

3) The problem requires analysis at a higher level of granularity than usual. If the typical load 

forecasting process relies on monthly data, moving to daily or hourly data may bring you the big 

data challenge.  

Although these three criteria do not have to be met at the same time to qualify a big data problem, they 

are indeed connected with each other. Analyzing high resolution data with the customized models pushed 

down to low levels often requires advanced data analysis tools and significant computing time.  

 

This paper has big data in its title, because it covers the latter two criteria. The regression models we 

developed in this paper contain up to thousands of variables. This requires significant amount of time for 

parameter estimation, much longer than our thought process. Moreover, we have customized the models 

based on each zone of a geographic hierarchy and each node (hour) of the temporal hierarchy. The 

forecasting error reduction through our proposed approach also suggests that adopting high performance 

computing facilities in load forecasting may make sense in some circumstance. 

 

The fact that the recency effect model beats Adv_1 model confirms the effectiveness of taking a big data 

approach to forecast accuracy improvement. Nevertheless, we can also observe the diminishing 

improvement as the customized modeling effort is being pushed down to the geographic hierarchy, which 

indicates that there may be a limit for such approach. In other words, we may not want to apply these 

large models down to the very low level of the power systems. This also makes sense, because at very 

low level, i.e., household level, the load is much more volatile and unpredictable than the load at 



aggregated levels. Additional research is needed to identify the appropriate level to conduct customized 

modeling efforts.  

 

In terms of forecasting techniques, we have applied multiple linear regression with ordinary least square 

estimator in this paper mainly for its simplicity and practicality. Nevertheless, other techniques, such as 

ridge regression and Bayesian regression or dynamic factor models can also be plugged into our solution 

framework. The key takeaway from this paper is how to model the recency effect in customized fashion. 

Regression analysis is just one of the many techniques that can be used to convey the same message.  

 

4.3 Future research directions 

 

This paper not only answers the fundamental question of how many average and lagged temperatures are 

needed in the model, but also opens a wide variety of research topics for future work: 

1) Cross validation methods towards optimal recency effect. We enumerate the same 584 d-h pairs 

in Figure 2 to draw another heat map for the test data (the year of 2007) of Z21 using data of 2005 

and 2006 to estimate the parameters. As shown in Figure 7, the lowest MAPE value in hindsight 

is 4.17%, which occurs with d = 0 and h = 16. Since the future is stochastic by nature, the d-h pair 

selected previously from the validation data (the year of 2006), in this case d = 2 and h = 12, may 

not be the optimal d-h pair in hindsight. The similar phenomenon was observed and discussed in 

(Hong et al., 2015) as optimal weather station selection. In this paper, we used a simple out-of-

sample test to select models. A future research direction can be examining various cross 

validation methods such as the ones discussed in (Arlot & Celisse, 2010) for model selection.  

2) Enhancement of computational efficiency. In this paper, we did not apply any advanced search 

algorithms to identify the d-lag pair that results in the lowest validation error. Based on Figure 3, 

it is clear that searching the whole space, i.e., 8 by 73, may not be necessary. We can try or design 

some heuristic search algorithms to reduce the search space without compromising the 

forecasting accuracy.  

3) Dimension reduction. A model with thousands of parameters to estimate may be larger than 

necessary. We can investigate whether dimension reduction techniques can help make less 

verbose model while reducing the forecast error. For instance, we can try to combine some hours 

of a day to reduce the number of parameters to be estimated. A similar analogy was taken in 

(Hong, 2010) to combine some weekdays together.  The similar ideas have also been applied to 

electricity price forecasting, as discussed in Weron (2014). 



4) Forecast combination. We have generated many models with similar structure and accuracy in 

this paper. Rather than selecting one model via cross validation, we can also combine the various 

forecasts. In (Liu, Nowotarski, Hong, & Weron, 2015), these similar models are named as “sister 

models”, with their forecasts named as “sister forecasts”. The forecast combination output can be 

a probabilistic forecast as done in (Liu et al., 2015) or another point forecast.  



 

Lag/d 0 1 2 3 4 5 6 7 

0 5.22 4.51 4.57 4.60 4.64 4.80 4.88 4.98 

1 4.94 4.40 4.48 4.52 4.57 4.75 4.86 4.93 

2 4.75 4.33 4.41 4.45 4.50 4.68 4.79 4.86 

3 4.60 4.29 4.37 4.40 4.46 4.64 4.75 4.82 

4 4.49 4.25 4.34 4.36 4.43 4.60 4.71 4.78 

5 4.40 4.24 4.32 4.34 4.40 4.57 4.68 4.74 

6 4.34 4.23 4.31 4.32 4.39 4.55 4.66 4.72 

7 4.28 4.24 4.30 4.32 4.39 4.54 4.65 4.71 

8 4.25 4.25 4.30 4.32 4.39 4.54 4.64 4.71 

9 4.23 4.25 4.30 4.31 4.38 4.53 4.63 4.69 

10 4.21 4.25 4.29 4.31 4.38 4.51 4.61 4.68 

11 4.20 4.26 4.28 4.31 4.38 4.51 4.59 4.67 

12 4.20 4.26 4.27 4.31 4.38 4.50 4.58 4.66 

13 4.19 4.27 4.27 4.31 4.38 4.50 4.57 4.66 

14 4.18 4.26 4.27 4.31 4.38 4.49 4.57 4.66 

15 4.18 4.26 4.26 4.31 4.38 4.50 4.57 4.66 

16 4.17 4.25 4.26 4.31 4.39 4.50 4.58 4.67 

17 4.18 4.26 4.26 4.32 4.40 4.51 4.59 4.67 

18 4.18 4.26 4.27 4.33 4.40 4.51 4.60 4.68 

19 4.19 4.28 4.29 4.34 4.41 4.53 4.61 4.69 

20 4.20 4.28 4.30 4.35 4.42 4.54 4.63 4.70 

21 4.21 4.29 4.31 4.36 4.42 4.55 4.64 4.71 

22 4.22 4.29 4.32 4.37 4.43 4.56 4.65 4.72 

23 4.23 4.30 4.34 4.38 4.43 4.57 4.66 4.73 

24 4.24 4.31 4.35 4.39 4.44 4.57 4.67 4.73 

25 4.25 4.31 4.36 4.41 4.46 4.59 4.68 4.74 

26 4.26 4.32 4.38 4.43 4.48 4.60 4.69 4.75 

27 4.28 4.34 4.41 4.45 4.50 4.62 4.71 4.78 

28 4.29 4.36 4.43 4.47 4.52 4.65 4.74 4.81 

29 4.30 4.37 4.45 4.48 4.54 4.67 4.75 4.83 

30 4.31 4.39 4.46 4.50 4.57 4.69 4.77 4.86 

31 4.33 4.41 4.48 4.52 4.59 4.71 4.80 4.89 

32 4.35 4.43 4.50 4.53 4.60 4.73 4.82 4.92 

33 4.36 4.44 4.50 4.54 4.60 4.73 4.82 4.93 

34 4.37 4.46 4.50 4.54 4.61 4.74 4.84 4.96 

35 4.39 4.47 4.51 4.56 4.62 4.77 4.86 4.99 

36 4.40 4.48 4.52 4.57 4.63 4.78 4.88 5.02 

37 4.41 4.49 4.55 4.59 4.66 4.81 4.92 5.06 

38 4.43 4.49 4.56 4.61 4.68 4.83 4.94 5.09 

39 4.44 4.50 4.56 4.62 4.69 4.85 4.96 5.11 

40 4.45 4.51 4.57 4.64 4.70 4.86 4.97 5.13 

41 4.47 4.51 4.57 4.65 4.71 4.87 4.99 5.15 

42 4.49 4.53 4.58 4.67 4.73 4.88 5.00 5.18 

43 4.51 4.54 4.59 4.68 4.74 4.89 5.02 5.20 

44 4.53 4.55 4.61 4.69 4.76 4.91 5.03 5.21 

45 4.54 4.56 4.62 4.71 4.78 4.93 5.06 5.24 

46 4.55 4.58 4.63 4.72 4.79 4.95 5.07 5.26 

47 4.57 4.59 4.65 4.74 4.82 4.97 5.09 5.28 

48 4.58 4.60 4.66 4.74 4.82 4.98 5.10 5.28 

Figure 7. Heat map of MAPE values (in %) for recency effect modeling based on test data (2007) of Z21. 



5. Conclusion 

 

In conclusion, this paper investigates the recency effect for electric load forecasting, the fundamental 

relationship between load and temperatures of preceding hours. The idea is to explore how many lagged 

hourly temperatures and daily moving average temperatures are needed to enhance the load forecasting 

accuracy without the constraint of computing power. The case study is based on the data published in 

GEFCom2012. We demonstrate the recency effect from three aspects: 1) aggregated level (Z21) of the 

geographic hierarchy; 2) the 20 zones at low level of the geographic hierarchy; 3) the 24 hours of a day. 

Overall, the recency effect model significantly outperforms the benchmark model based on MAPE of the 

holdout sample (test data, year of 2007 in this paper). For each zone of the geographic hierarchy and each 

hour of the day, the recency effect appears to be different. The case study has shown that customizing the 

model for each zone or hour of the day using the proposed approach can help enhance the accuracy of the 

hierarchical load forecasts. 
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