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Abstract

A recent electricity price forecasting (EPF) study has shown that the Seasonal Component Arti-
ficial Neural Network (SCANN) modeling framework, which consists of decomposing a series
of spot prices into a trend-seasonal and a stochastic component, modeling them independently
and then combining their forecasts, can yield more accurate point predictions than an approach in
which the same non-linear autoregressive NARX-type neural network is calibrated to the prices
themselves. Here, considering two novel extensions of the SCANN concept to probabilistic fore-
casting, we find that (i) efficiently calibrated NARX networks can outperform their autoregressive
counterparts, even without combining forecasts from many runs, and that (ii) in terms of accuracy
it is better to construct probabilistic forecasts directly from point predictions, however, if speed is a
critical issue, running quantile regression on combined point forecasts (i.e., committee machines)
may be an option worth considering. Moreover, we confirm an earlier observation that averaging
probabilities outperforms averaging quantiles when combining predictive distributions in EPF.

Keywords: Electricity spot price, Probabilistic forecast, Combining forecasts, Long-term
seasonal component, NARX neural network, Quantile regression

1. Introduction

Recent interest in deseasonalizing electricity prices with respect to the long-term seasonal
component (LTSC) prior to making short-term forecasts has been spurred by the paper of Nowo-
tarski and Weron (2016) and their Seasonal Component AutoRegressive (SCAR) modeling fra-
mework. However, the idea behind it is not entirely new. In the energy economics literature,
Janczura et al. (2013), Keles et al. (2016) and Lisi and Nan (2014), among others, have empha-
sized that a key point in electricity price modeling is the treatment of seasonality and appropriate
seasonal decomposition. Also in the machine learning community, Andrawis et al. (2011) and
Zhang and Qi (2005) have argued that neural networks are not able to capture seasonal or trend
variations effectively when calibrated to raw data and that detrending and/or deseasonalization can
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dramatically reduce forecasting errors. Somewhat surprisingly, though, these facts have not been
acknowledged by energy forecasters and in most studies only short-term periodicities have been
accounted for (see Weron, 2014, for a review).

In a follow-up study on the importance of trend-seasonal components in day-ahead EPF, Mar-
cjasz et al. (2018) have considered non-linear autoregressive (NARX-type, i.e., with an exogenous
variable) neural networks with the same inputs as the SCARX models of Nowotarski and Weron
(2016); again ‘X’ denotes that exogenous variables are utilized. They have shown that while indivi-
dual Seasonal Component Artificial Neural Network (SCANN) models implemented in Matlab are
generally worse than the corresponding SCAR-type structures, committee machines of SCANN
networks (i.e., combined point forecasts) can outperform the latter significantly. Moreover, that the
accuracy gains from using the seasonal component approach are even higher for NARX networks
than for their linear counterparts.

In a parallel study, Uniejewski et al. (2018) extended the SCAR concept to probabilistic fore-
casts, by considering SCARX models with different LTSCs and pooling the resulting prediction
errors (via historical simulation or bootstrapping) or the point forecasts themselves (via Quantile
Regression Averaging, QRA); note, that the latter is similar in spirit to combining so-called sister
forecasts in load forecasting (see Liu et al., 2017). While the same extension could be considered
for NARX-based models, neural networks offer a different, yet potentially even more attractive ap-
proach. Namely, due to the calibration algorithm, which is initialized using a random starting point
that is independent for each run, each time we estimate weights of a neural net we obtain different
values and hence different point forecasts.1 The latter can be combined in a point forecasting set-
ting and used to yield predictive distributions via quantile regression. Alternatively, the individual
point forecasts can be directly combined in a probabilistic setting using QRA (see Nowotarski and
Weron, 2015). But which approach is better? And is any of the two worth recommending at all?

With this paper we want address these questions in a comprehensive empirical study that in-
volves two hourly resolution datasets from two distinct power markets (GEFCom2014 and Nord
Pool), offering a test ground of nearly six/five years of hourly electricity prices for evaluating
point/probabilistic forecasts. We consider four classes of point forecasting models:

1. A naı̈ve similar-day type benchmark.
2. A set of 18 + 1 Seasonal Component AutoRegressive (SCAR) models used by Nowotarski

and Weron (2016) and Uniejewski et al. (2018); the ‘+1’ refers to a model without the LTSC.
All SCAR-type models are built on a popular autoregressive model structure, originally pro-
posed by Misiorek et al. (2006) and later used in a number of EPF studies, after Uniejewski
et al. (2016) and Ziel (2016) called an expert model.

3. A set of 18 + 1 Seasonal Component Artificial Neural Network (SCANN) models used by
Marcjasz et al. (2018); like above, the ‘+1’ refers to a model without the LTSC. All SCANN-
type models are built on an artificial neural network (ANN) with the same input variables as
the expert model, also known as a non-linear autoregressive (NAR) model.

4. Committee machines of 2 to 5 SCANN-type networks with identical structures but different
weights (also see the discussion in Section 3.1.3).

1In contrast, the ordinary least squares (OLS) technique always yields the same parameter estimates for an ARX-
type model.
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Figure 1: GEFCom2014 hourly locational marginal prices (LMP; top) and hourly day-ahead predictions of system
load (bottom) for the period 1.1.2011–16.12.2013. Probabilistic forecasts are obtained for the 77-week (i.e., 539-day)
test period from 26.06.2012 to 16.12.2013.

The obtained point forecasts are used to construct probabilistic predictions via: historical simu-
lation (as a benchmark), Quantile Regression Averaging (QRA) of Nowotarski and Weron (2015)
and a new approach we call Quantile Regression Machine (QRM), which applies quantile regres-
sion (see, e.g., Koenker, 2005) to outputs of a committee machine. Furthermore, given a set of
probabilistic forecasts we can combine them in one of two ways: by averaging either probabilities
or quantiles, see Lichtendahl et al. (2013) for a general discussion and Uniejewski et al. (2018) for
an EPF application. We consider both approaches.

The remainder of the paper is structured as follows. In Section 2 we briefly present the da-
tasets, then in Section 3 describe the techniques considered for point and probabilistic EPF. In
Section 4 we first summarize the empirical findings in terms of the robust weekly-weighted mean
absolute error (WMAE; see Weron, 2014) for point forecasts and the pinball loss function for pro-
babilistic forecasts (Gneiting, 2011; Hong et al., 2016; Nowotarski and Weron, 2018). Then we
report the results of the Diebold and Mariano (1995) test for significant differences in forecasting
performance. Finally, in Section 5 wrap up the results and conclude.

2. Datasets

We consider two datasets comprising day-ahead time series from two distinct power markets.
The first one comes from the Global Energy Forecasting Competition 2014 (GEFCom2014; for
details see Hong et al., 2016), and includes three preprocessed (to account for missing values and
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Figure 2: Nord Pool hourly system prices (top) and hourly consumption prognosis (bottom) for the period 1.1.2013–
28.12.2017. Probabilistic forecasts are obtained for the 183-week (i.e., 1281-day) test period from 27.06.2014 to
28.12.2017.

changes to/from the daylight saving time) time series from the period 1.1.2011–16.12.2013: hourly
locational marginal prices (LMP) and day-ahead predictions of hourly zonal and system loads.
Although the origin of the data has never been revealed by the organizers, the holiday structure
suggests that it comes from the US. Like Marcjasz et al. (2018) and Uniejewski et al. (2018),
we use LMPs and day-ahead predictions of system loads, see Fig. 1. Note, that Nowotarski and
Weron (2016) used zonal loads, but since system loads yield slightly better price predictions, we
use them instead.

The second dataset describes one of the major European power markets – Nord Pool (NP)
– and comprises hourly system prices and hourly consumption prognosis for four Nordic coun-
tries (Denmark, Finland, Norway and Sweden) for the period 1.01.2013–28.12.2017, see Fig. 2.
The time series was constructed using data published by the Nordic power exchange Nord Pool
(www.nordpoolspot.com) and preprocessed to account for missing values and changes to/from the
daylight saving time, i.e., the missing data values were substituted by the arithmetic average of the
neighboring values, while the ‘doubled’ values (corresponding to the changes from the daylight
saving/summer time) were substituted by the arithmetic average of the two values for the ‘doubled’
hour.
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3. Methodology

Like in many EPF studies, the modeling is implemented separately across the hours, leading
to 24 sets of parameters for each day the forecasting exercise is performed. This ‘multivariate’
framework explicitly uses a ‘day × hour’, matrix-like structure with Pd,h representing the price for
day d and hour h, and implicitly assumes that the error variance is different for each of the 24 load
periods (see Ziel and Weron, 2018, for a discussion of the ‘uni-’ and ‘multivariate’ frameworks).
The 24 individual models are estimated independently, while prices for all load periods of the next
day are predicted at once as one-day ahead forecasts.

The point forecasts of the hourly electricity price (see Section 3.1) are determined within a
rolling window scheme, using data from the most recent 360 days. Initially all considered models
(their short-term and long-term components) are calibrated to data from 1.01.2011 to 26.12.2011
(for GEFCom2014) or from 1.01.2013 to 26.12.2013 (for Nord Pool), and forecasts for all 24 hours
of 27th December are determined. Then the window is rolled forward by one day and forecasts
for all 24 hours of 28th December are computed. This procedure is repeated until the predictions
for the last day in the sample – 16.12.2013 (for GEFCom2014) or 28.12.2017 (for Nord Pool) –
are made.

Once the point predictions are made, they are used to provide probabilistic forecasts. All three
considered approaches (historical simulation, QRA and QRM; see Section 3.2) require a subs-
ample of one-day ahead prediction errors. Hereby, like in Uniejewski et al. (2018), a 182-day
(or 26-week) rolling calibration window is used for computing quantiles of the error distribution
(historical prediction intervals, PIs) or weights of the QRA/QRM approaches. As a result, pro-
babilistic forecasts are obtained for the periods: 26.06.2012–16.12.2013 (GEFCom2014; 77 full
weeks) and 27.06.2014–28.12.2017 (Nord Pool; 183 full weeks), see Figs. 1 and 2.

3.1. Point forecasts
Apart from the more sophisticated SCAR- and SCANN-type models discussed below, we use

an extremely simple point forecasting benchmark. The so-called naı̈ve model of Nogales et al.
(2002) belongs to the class of similar-day techniques and proceeds as follows: the price forecast
for hour h on Monday is equal to the price for hour h on Monday of the previous week, i.e.,
P̂d,h = Pd−7,h, and the same rule applies for Saturdays and Sundays. For the remaining days, the
price forecast for hour h on day d is equal to the price for hour h on day d − 1, i.e., P̂d,h = Pd−1,h.
Obviously, the benchmark does not require a long calibration window nor parameter estimation.
Later in text we denote it by Naı̈ve.

3.1.1. SCAR-type models
The basic building block of the SCAR-type models considered here is a parsimonious auto-

regressive structure originally proposed by Misiorek et al. (2006) and later used in a number of
EPF studies (Gaillard et al., 2016; Kristiansen, 2012; Maciejowska et al., 2016; Nowotarski and
Weron, 2016, 2018; Nowotarski et al., 2014; Serinaldi, 2011; Weron, 2006; Weron and Misiorek,
2008; Ziel and Weron, 2018). Following Uniejewski et al. (2016) and Ziel (2016) we refer to it
as an expert model, since it is built on some prior knowledge of experts. Within this model the
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natural logarithm of the electricity spot price is given by: pd,h ≡ log(Pd,h) = p + qd,h, i.e., the sum
of the mean log-price in the calibration window, p, and an autoregressive component:

qd,h = βh,1qd−1,h + βh,2qd−2,h + βh,3qd−7,h︸                                    ︷︷                                    ︸
autoregressive effects

+ βh,4qd−1,min︸      ︷︷      ︸
non-linear effect

+ βh,5zt︸︷︷︸
load

+
∑3

i=1
βh,i+5Di︸          ︷︷          ︸

weekday dummies

+εd,h, (1)

where qd−1,min = minh=1,...,24{qd−1,h} is the minimum of the previous day’s 24 hourly prices and
creates a link with all yesterday’s prices, not just the prices for the same hour. The variable zt is
the logarithm of the day-ahead forecasts of either the hourly system load of a US utility or of the
Nordic consumption. The three dummy variables – D1, D2 and D3 (for Monday, Saturday and
Sunday, respectively) – account for the weekly seasonality. Finally, the εd,h’s are assumed to be
independent and identically distributed (i.i.d.) normal variables. To reflect the fact that zt is an
eXogenous variable in Eqn. (1), we denote this basic model by ARX.

The Seasonal Component AutoRegressive (SCAR) modeling framework of Nowotarski and
Weron (2016) is motivated by the standard approach to seasonal decomposition, where a time
series is decomposed into the long- and short-term seasonal components, and the remaining va-
riability or stochastic component (Hyndman and Athanasopoulos, 2013; Weron, 2014). More
precisely, in the SCAR framework the electricity log-price is decomposed in an additive manner
into a LTSC and a stochastic component with short-term periodicities: pd,h = Td,h + qd,h. Note,
that compared to the original SCAR algorithm, following Uniejewski et al. (2018) we add here an
additional step, called 1(b), which significantly improves the forecasting performance. The full
SCAR algorithm consists of the following four steps:

1. (a) Decompose the series of log-prices pd,h in the calibration window of 360 × 24 = 8640
hours into a long-term seasonal component Td,h and a stochastic component with short-
term periodicities qd,h. Then compute persistent forecasts of the LTSC independently
for each of the 24 hours of the next day, i.e., T̂d∗+1,h ≡ Td∗,h for h = 1, ..., 24, where
d∗ is the last day in the calibration window, see Fig. 2 in Marcjasz et al. (2018) for an
illustration.

(b) Decompose the exogenous series (the logarithm of the system load or consumption
forecast) in the calibration window of (360 + 1)×24 = 8664 hours using the same type
of a LTSC as prices in Step 1(a). Note, that we can start one day earlier since the load
or consumption forecasts are known one day in advance.

2. Calibrate the ARX model defined by Eqn. (1) to qd,h and compute forecasts for the 24 hours
of the next day, i.e., q̂d∗+1,h. Note, that unlike the seasonal decomposition in Step 1, which
is made for the whole calibration sample, here the data is split into 24 hourly series (like for
the ARX benchmark).

3. Add forecasts of the ARX model computed in Step 2 to the persistent forecasts of the LTSC
to yield log-price forecasts: p̂d∗+1,h.

4. Take the exponent of the log-price forecasts computed in Step 3 to convert them into price
forecasts of the SCARX model: P̂d,h = exp (p̂d,h).

Like Nowotarski and Weron (2016), Marcjasz et al. (2018) and Uniejewski et al. (2018), in
what follows we consider 18 + 1 SCARX models which differ in the choice of the LTSC; the
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Figure 3: Visualization of the NARX network with the same inputs as the ARX model defined by Eqn. (1), five hidden
neurons with tangent sigmoid transfer functions and one output neuron with a linear transfer function.

‘+1’ refers to a model without the LTSC, i.e., the ARX model itself. For the LTSC we either
use one of ten wavelet filters (S 5, S 6, ..., S 14 based on the Daubechies family of order 24; see
Afanasyev and Fedorova, 2016; Janczura et al., 2013; Nowotarski et al., 2013, for details) or one
of eight Hodrick-Prescott filters (HP with λ = 108, 5 · 108, ..., 5 · 1011; see Caldana et al., 2017;
Lisi and Nan, 2014; Weron and Zator, 2015, for details). This modeling choice is justified by
the fact that in most electricity markets the annual weather-driven seasonality is dominated by an
irregular cyclic behavior (i.e., not of a fixed period, as opposed to the popular sine/cosine-based
seasonal components) reflecting prevailing macroeconomic conditions, long-term weather trends
and changes in strategic bidding practices.

3.1.2. SCANN-type models
Like ARX is the basic building block of the SCAR-type models, a non-linear autoregressive

model with eXogenous variables (NARX) is the basic building block of the SCANN-type models
considered in this study. The NARX network is a recurrent neural network (RNN), with the
output being fed back to the input of the network. Since the true output is available during the
training of the network, it can be fed back instead of the estimated output, leading to a feed-
forward representation (Hagan et al., 2014). The rationale for using this computationally efficient
architecture (instead of, e.g., a long short-term memory model of Hochreiter and Schmidhuber,
1997) is that only short term dynamics is expected to remain after filtering out the LTSC.

To represent what they called the ANN model, Marcjasz et al. (2018) used Matlab’s narxnet
structure with exactly the same inputs as those of the ARX model in Eqn. (1), one hidden layer
consisting of five neurons (with tangent sigmoid transfer functions) and an output layer with one
neuron yielding qd∗+1,h (with a linear transfer function), see Fig. 3. Formally, ANN is a misnomer
since the load or consumption forecast is used as the eXogenous variable. However, to simplify
notation we also do not explicitly use X in the model name.

Marcjasz et al. (2018) trained the ANN model in Matlab using the Levenberg-Marquardt algo-
rithm (function trainlm.m). Here, to improve computational efficiency we utilize Python’s inter-
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face to the Fast Artificial Neural Networks (FANN) library.2 We use the same network structure
(see Fig. 3), but a different training algorithm – the so-called incremental scheme. The training
parameters have been selected based on a limited empirical study, and – in order to provide a fair
test ground – chosen to be identical for both datasets and across all LTSCs.3 As far as computatio-
nal efficiency is concerned, the FANN-trained models not only were much faster (up to 40 times!),
but also significantly outperformed Matlab’s forecasts in terms of accuracy.

The Seasonal Component Artificial Neural Network (SCANN) modeling framework is a gene-
ralization of the ANN model in the same way the SCAR framework is built on the ARX model,
i.e., it consists of four steps analogous to those discussed in Section 3.1.1, only with ARX replaced
by ANN (see Marcjasz et al., 2018, for details). Like for the SCAR-type models, in what follows
we consider 18 + 1 SCANN models which differ in the choice of the LTSC; the ‘+1’ refers to
a model without the LTSC, i.e., the ANN model itself. For the LTSC we either use one of ten
wavelet filters (S 5, S 6, ..., S 14) or one of eight HP-filters (with λ = 108, 5 · 108, ..., 5 · 1011).

3.1.3. Committee machines
The NARX calibration algorithm is initialized using a random starting point that is independent

for each run (and each day and hour), and hence yields different estimates for each run. Quite often
the resulting variance of the forecasts (across the runs) is not negligible. Therefore a reasonable
approach may be to repeat every training and forecasting exercise n times and average the point
forecasts on an hour-by-hour basis across the runs, like in Marcjasz et al. (2018) and Shrivastava
and Panigrahi (2014). We denote such models by SCANNn (or ANNn) and refer to them as
committee machines, ensemble averages or combined forecasts. On the other hand, by SCANN1

(or ANN1) we denote the expected value of a single (SC)ANN network, computed as the average
WMAE (see Section 4.1) across the runs. Although we have considered n as large as 25, we present
results for n = 5 only. Increasing the size of the ensemble further has a positive but decreasing
with n effect on forecast accuracy and is not justified by the substantially heavier computational
burden.

3.2. Probabilistic forecasts
The most common extension from point to probabilistic forecasts is to construct prediction

intervals (PIs). In this study, like in the GEFCom2014 competition, we consider all 99 percentiles
(1%, 2%, ..., 99%; not only two subjectively selected quantiles as in may other studies, see Nowo-
tarski and Weron, 2018, for a review). This allows us for a reasonably accurate approximation of
the whole predictive distribution, not just of one PI.

We use two well known and one new method of obtaining probabilistic forecasts, see Fig. 4.
Note, that each of the probabilistic models is characterized by parameter N indicating the number
of independent point forecasts used (i.e., ‘runs’ of the neural net). We have set the upper limit of
N to be 5, since higher values are no longer beneficial for the forecasting potential of committee
machines (i.e., the inputs of the QRM(N) model; see Section 3.2.3) and lead to substantially longer

2See http://leenissen.dk/fann/wp/ and Nissen (2007).
3Hidden layer steepness = 0.6, Output layer steepness = 0.3, Learning rate = 0.2, Randomized weights range

= [−1, 1]; for the remaining parameters we have used the default values.

8



Q-Ave10QRA(2)

F-Ave10QRA(2)

QRA(2)
#1

QRA(2)
#2

QRA(2)
#3

QRA(2)
#4

QRA(2)
#5

QRA(2)
#6

QRA(2)
#7

QRA(2)
#8

QRA(2)
#9

QRA(2)
#10

SCANN
run #1

SCANN
run #2

SCANN
run #3

SCANN
run #4

SCANN
run #5

SCANN4
#1

SCANN4
#2

SCANN4
#3

SCANN4
#4

SCANN4
#5

QRM(4)
#1

QRM(4)
#2

QRM(4)
#3

QRM(4)
#4

QRM(4)
#5

Q-Ave5QRM(4)

F-Ave5QRM(4)

A2: Quantile
or probability

averaging
A1: QRA
procedure

M1: Point
forecast

averaging
M2: QRM
procedure

M3: Quantile
or probability

averaging

SCANN
run #1

SCANN
run #2

SCANN
run #3

SCANN
run #4

SCANN4
#1

QRA(2)
#1

QRM(4)
#1

Figure 4: Visualization of the QRA- (steps A1-A2) and QRM-based (steps M1-M3) concepts of computing probabi-
listic forecasts. Initial point forecasts (SCANN #1-#5) are depicted by rectangles. Small white/gray circles represent
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illustrate the remaining links. Colored arrows refer to quantile (red) or probability (green) averages constructed from
QRA (solid) or QRM (dashed); the color/style scheme is the same as in Figs. 5 and 6.
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computational times for the quantile regression averaging scheme (i.e., the QRA(N) models; see
Section 3.2.2). Therefore all of the probabilistic results originate from 5 independent SCANN
runs.

3.2.1. Historical simulation
The first approach is a simple, model-independent technique that consists of computing sam-

ple quantiles of the empirical distribution F̂εd,h of day-ahead prediction errors εd,h (= P̂d,h − Pd,h)
centered around the point forecast P̂d∗+1,h.4 Recall, that every run of the SCANN network yields
errors for the whole length of the test period, i.e., {ε1,1, ..., εD,24} with D = 539 for GEFCom2014
and 1281 for Nord Pool. However, to improve accuracy we can pool εd,h’s from N runs, i.e.,
{ε1

1,1, ..., ε
1
D,24, ..., ε

N
1,1, ..., ε

N
D,24}, and compute F̂εd,h implied by this joint vector; the resulting appro-

ach is denoted by Hist(N). We also consider historical simulation for single runs, i.e., Hist(1),
and denote its expected value by Hist(1); the latter is computed as the average pinball score (see
Section 4.2) across the runs. This concept is more general and can be extended to pairs of runs,
i.e., Hist(2) with expected value Hist(2), triples and quadruples.

Although historical simulation is not visualized explicitly in Fig. 4, the idea behind it can be
explained using this diagram. For instance, Hist(4) can be constructed by taking the #1 SCANN4

committee machine (top center/right) as the point forecast and the empirical distribution F̂εd,h

implied by day-ahead prediction errors for runs #1-#4 of the SCANN network (center column),
while Hist(1) is computed by taking the point forecast and F̂εd,h implied by errors of a single run
of the SCANN network. Hist(1) can then be approximated by the average across runs #1-#5.

3.2.2. Quantile Regression Averaging
This technique, originally proposed by Nowotarski and Weron (2015), has been found to per-

form very well in a number of test cases (see, e.g., Gaillard et al., 2016; Maciejowska and No-
wotarski, 2016; Maciejowska et al., 2016), not only in the area of EPF (Liu et al., 2017; Zhang
et al., 2016). However, its most spectacular success came during the GEFCom2014 competition –
the top two winning teams in the price track used variants of QRA (Gaillard et al., 2016; Macie-
jowska and Nowotarski, 2016). Quantile Regression Averaging (QRA) involves applying quantile
regression (see, e.g., Koenker, 2005) to a pool of point forecasts of individual (i.e., not combined)
forecasting models. As such, it directly works with the distribution of the electricity spot price,
F̂Pd,h , without the need to split the probabilistic forecast into a point forecast P̂d∗+1,h and the distri-
bution of the error term F̂εd,h . Later in the text we denote this method by QRA(N), where N refers
to the number of individual point forecasts from which the probabilistic forecast is computed.

The QRA approach is visualized in the left part of Fig. 4 as step A1. In particular, probabilistic
forecasts of the #1 QRA(2) model (top left) are obtained by applying quantile regression to the
point forecasts of runs #1 and #2 of the SCANN network in the 182-day ‘probabilistic’ calibration
window, see Figs. 1-2. There are 10 different QRA(2) models in the diagram, because there
are

(
5
2

)
= 10 ways of selecting two runs out of five. Similarly, there would be five different

QRA(1) and QRA(4) models, 10 different QRA(3) models and only one QRA(5) model. As
discussed in Section 3.2.4, the QRA(N) probabilistic forecasts can be further combined using

4As in Section 3.1.1, d∗ denotes here the last day in the calibration window.
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quantile or probability averaging, as are #1-#10 QRA(2) distributional predictions in step A2
of Fig. 4. Moreover, analogously to historical simulation, we can consider the expected value
QRA(N) of QRA(N) forecasts, computed as the average pinball score (see Section 4.2) of the
latter.

3.2.3. Quantile Regression Machine
The last approach can be treated as a variant of QRA or as a new averaging method. Namely,

Quantile Regression Machine, denoted by QRM(N), applies quantile regression to the point fore-
casts of a single committee machine, which in turn is based on N runs of a SCANN network. Like
QRA it directly works with the distribution of the electricity spot price and uses the same pool of
individual point forecasts, but unlike QRA it uses only one (averaged) electricity spot price pre-
diction for each point in time (d, h). Moreover, analogously to QRA, we can consider the expected
value QRM(N) of QRM(N) forecasts, computed as the average pinball score (see Section 4.2) of
the latter.

The QRM approach is visualized in the right part of Fig. 4. In particular, probabilistic forecasts
of the #1 QRM(4) model (top right) are obtained in step M2 by applying quantile regression to the
point forecasts of the #1 SCANN4 committee machine; the latter is computed earlier in step M1
as an average of the price predictions from runs #1 to #4 of the SCANN network. There are five
different QRM(4) models in the diagram (corresponding to five SCANN4 committee machines),
because there are

(
5
4

)
= 5 ways of selecting four runs out of five. Like QRA predictions, the

QRM(4) probabilistic forecasts can be further combined using quantile or probability averaging
(center right, i.e., step M3).

3.2.4. Combining probabilistic forecasts
As Lichtendahl et al. (2013) argue, given a set of n probabilistic forecasts we can combine them

in one of two ways: by averaging either probabilities or quantiles. The average probability forecast
F-Aven ≡

1
n

∑n
i=1 F̂i(x), where F̂i(x) is the i-th distributional forecast, can be regarded as a vertical

average of the corresponding predictive distributions. On the other hand, the average quantile
forecast Q-Aven ≡ Q̂−1(x) with Q̂(x) = 1

n

∑n
i=1 Q̂i(x), where Q̂i(x) = F̂−1

i (x) is the i-th quantile
forecast, as a horizontal average. Note that the average quantile forecast is always sharper, i.e.,
Q-Aven has lower variance than F-Aven. While this feature is an advantage in many forecasting
problems (Lichtendahl et al., 2013), in EPF it may not necessarily be so (Uniejewski et al., 2018).

We use suffix -Hist(N) to denote combined probabilistic forecasts obtained via historical si-
mulation, -QRA(N) to refer to QRA-implied forecasts and -QRM(N) for quantile regression fore-
casts obtained using committee machine predictors. The two combination schemes are visualized
in Fig. 4 (center left and center right). For instance, F-Ave10-QRA(2) is obtained in step A2 as
a vertical average of 10 predictive distributions, i.e., #1-#10 QRA(2), while Q-Ave5-QRM(4) is
obtained in step M3 as a horizontal average of five predictive distributions, i.e., #1-#5 QRM(4).

3.2.5. Notes on implementation and computational efficiency
We should note here, that we utilize a slightly different implementation of quantile regression

than in Uniejewski et al. (2018). Due to convergence issues observed for some of our test cases
when running Matlab’s Nedler-Mead simplex algorithm, we have decided to use Python’s SciPy
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package instead (Jones et al., 2001). Similarly as for the FANN package, there were numerous
options to choose from, and once again, the final method (the TNC algorithm) was selected based
on a limited simulation study. To ensure a reasonable balance between computational time and
accuracy, we make the number of iterations dependent on the size of the problem (i.e., the num-
ber of point predictions used as inputs to the QRA algorithm): the larger the problem, the more
iterations are allowed. Such a setting is the default one in both Matlab and Python.

It is also important to comment on the computational time needed to obtain the probabilistic
forecasts. For the sake of comparison, we have collected total times needed to obtain one week
of hourly predictions on a machine equipped with an i5-3570 processor and utilizing all four
cores/threads:

• ca. 0.23 of a second for a single run of the SCANN network,

• ca. 25 seconds for generating QRM(N) forecasts; note, that the computational time does
not depend on N, because the input to the QRM method always consists of a single point
forecast (of a committee machine),

• ca. 68, 111.5, 171.5, 248 seconds respectively for N = 2, 3, 4, 5; the growth is steeper than a
linear function of N, because – apart from the greater complexity of the problem itself – the
algorithm needed more iterations to converge for larger N,

• for combining probabilistic forecasts the computational time is negligible, i.e., less than 0.01
of a second.

The main message from this comparison is that QRM may be better suited for time constrained
(e.g., real-time) probabilistic forecasting tasks than QRA, despite a slightly worse performance for
the same number of SCANN point forecasts; see Sections 4.2-4.3 for details.

4. Empirical results

In this Section we present the day-ahead forecasting results. For point forecasts we use a two-
(GEFCom2014) / four-year (Nord Pool) out-of-sample test period, for probabilistic – a 182-day
shorter test period (for the reasons discussed in Section 3). Recall that models are re-estimated on a
daily basis. Price forecasts P̂d∗+1,1, ..., P̂d∗+1,24 for all 24 hours of the next day are determined at the
same point in time and the 360-day calibration window is rolled forward by one day: d∗ → d∗ + 1.

4.1. WMAE and the evaluation of point forecasts
Following Conejo et al. (2005), Weron and Misiorek (2008) and Nowotarski et al. (2014),

we compare the models in terms of the Weekly-weighted Mean Absolute Error (WMAE) loss
function. WMAE is a robust measure similar to MAPE but with the absolute error normalized
by the mean weekly price to avoid the adverse effect of negative and close to zero electricity spot
prices. We evaluate the forecast performance using weekly time intervals, each with 24 × 7 = 168
hourly observations. Note that we also analyzed the forecasts using squared error losses, however,
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Table 1: Average WMAE in percent for all 103 (GEFCom2014; upper half ) or all 209 weeks (Nord Pool; lower half )
of the out-of-sample test period. Results for the best performing model in each row are emphasized in bold. Note,
that for the GEFCom2014 dataset, the results for the SCARX models are the same as in Marcjasz et al. (2018), but
different for the (SC)ANN models due to a change of the training algorithm. In particular, now SCANN1 models
outperform SCARX models.

GEFCom2014

Benchmarks
Naı̈ve ARX ANN1 ANN5

14.716 11.232 10.359 10.228

SCARX / SCANN with wavelet approximation of price and load
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

SCARX 12.917 12.226 11.106 10.849 10.732 10.776 10.843 10.824 11.100 11.072
SCANN1 12.791 12.222 10.768 10.312 10.071 10.067 10.193 10.197 10.347 10.370
SCANN5 12.769 12.197 10.728 10.259 10.002 9.972 10.074 10.081 10.220 10.237

SCARX / SCANN with HP filter on price and load (λ)
108 5 · 108 109 5 · 109 1010 5 · 1010 1011 5 · 1011

SCARX 10.519 10.447 10.437 10.495 10.559 10.798 10.897 11.060
SCANN1 10.275 10.169 10.173 10.265 10.327 10.418 10.406 10.382
SCANN5 10.214 10.095 10.094 10.168 10.232 10.295 10.275 10.244

Nord Pool

Benchmarks
Naı̈ve ARX ANN1 ANN5
9.294 8.051 8.013 7.839

SCARX / SCANN with wavelet approximation of price and load
S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14

SCARX 9.267 8.990 7.954 7.747 7.707 7.668 7.862 7.942 8.032 7.972
SCANN1 9.202 8.846 7.758 7.433 7.468 7.515 7.725 8.044 7.913 8.014
SCANN5 9.168 8.801 7.697 7.353 7.389 7.422 7.623 7.907 7.776 7.874

SCARX / SCANN with HP filter on price and load (λ)
108 5 · 108 109 5 · 109 1010 5 · 1010 1011 5 · 1011

SCARX 8.007 8.032 8.051 8.081 8.075 8.078 8.111 8.269
SCANN1 7.758 7.767 7.784 7.846 7.851 7.916 7.963 8.144
SCANN5 7.687 7.688 7.701 7.751 7.750 7.807 7.849 8.010

results were qualitatively similar and are omitted here due to space limitations. For each week we
calculate the WMAE for model i as:

WMAEi =
1

P̄168
MAEi =

1
168 · P̄168

∑7

d=1

∑24

h=1

∣∣∣Pd,h − P̂i
d,h

∣∣∣, (2)

where Pd,h is the actual price for day d and hour h (not the log-price pd,h), P̂i
d,h is the predicted price

for that day and hour obtained from model i and P̄168 is the mean price for a given week. Note, that
WMAE requires the test period to be a multiple of a week (or 168 hours). Hence, when computing
WMAE we consider 103 weeks (27.12.2011–16.12.2013) for the GEFCom2014 dataset and 209
weeks (27.12.2013–28.12.2017) for the Nord Pool dataset, see Figs. 1 and 2.

In Table 1 we report the average WMAE in percent for all considered models: four ‘simple’
benchmarks – Naı̈ve, ARX, ANN1 and ANN5, and three seasonal component (SC) model classes
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– SCARX, SCANN1 and SCANN5 – computed for ten wavelet-based and eight HP filter-based
LTSCs. Several interesting conclusions can be drawn:

• Neural network forecasts outperform (SC)ARX counterparts for every LTSC. This is true
not only for (SC)ANN5 models but also for (SC)ANN1. Apparently, the FANN-trained
models are much better than the Matlab-trained nets considered in Marcjasz et al. (2018), at
least for these datasets.

• The gains from using committee machines (SCANN1 → SCANN5) are rather small, defini-
tely much less pronounced than for the Matlab-trained nets in Marcjasz et al. (2018).

• As opposed to the results in Marcjasz et al. (2018), here wavelet-based LTSCs are uniformly
better than HP-based. This difference cannot be attributed to the longer Nord Pool dataset,
since it is also visible for the GEFCom2014 test sample (the same in both studies).

• Gains from using the SC framework with NARX networks are highly dependent on the
dataset. For GEFCom2014, relative gains from choosing the best performing LTSC are
much lower for SCANN5 than for SCARX models, i.e., 2.5% vs. 7%. On the other hand,
for the Nord Pool dataset the gains are 6.2% and 4.7%, respectively.

Up to this point, we have been discussing results obtained for all 18 considered LTSCs. In
the Sections to follow, to simplify the notation and focus on the differences between methods and
averaging schemes, we will present results only for models with the S9 wavelet-based seasonal
component. Our choice is motivated by the very good performance of this LTSC for both datasets,
though not the best for each of them. In fact, we found the best LTSC to be one of the three:
S8, S9 and S 10, with a slightly better performance of S10 for GEFCom2014 and S8 for Nord Pool.
Therefore, S9 can be considered as a safe choice that performs well for both datasets. This also
means, that there is still some potential for fine-tuning, similarly to the choice of the neural network
training parameters (see the discussion in Section 3.1.2).

4.2. Pinball loss and the evaluation of probabilistic forecasts
We now turn to probabilistic forecasts and – like in the paper of Uniejewski et al. (2018) on

SCAR-type models and the GEFCom2014 competition – measure the sharpness or concentration
of predictive distributions. Sharpness can be evaluated using so-called proper scoring rules, for
instance, the pinball loss (Gneiting, 2011; Nowotarski and Weron, 2018):

Pinball
(
Q̂Pd,h(q), Pd,h, q

)
=

(1 − q)
(
Q̂Pd,h(q) − Pd,h

)
, for Pd,h < Q̂Pd,h(q),

q
(
Pd,h − Q̂Pd,h(q)

)
, for Pd,h ≥ Q̂Pd,h(q),

(3)

where Q̂Pd,h(q) is the price forecast at the q-th quantile and Pd,h is the actually observed price for day
d and hour h. To provide an aggregate score we average Pinball(·, ·, q) across all hours in the test
period and across all 99 percentiles (q = 0.01, 0.02, ..., 0.99; as in the GEFCom2014 competition,
see Hong et al., 2016). Naturally, a lower score indicates a better probabilistic forecast, i.e., a more
concentrated predictive distribution.
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Figure 5: The pinball loss defined by Eqn. (3) averaged across all 99 percentiles and all hours in the ‘probabilistic’
test period: 77 weeks for GEFCom2014 (left panel) and 183 weeks for Nord Pool (right panel). Each probabilistic
forecast is based on the same five point forecasts of the SCANN network. Black lines can be interpreted as expected
values of Hist(N), QRM(N) or QRA(N), red lines refer to average quantile forecasts (Q-Aven∗), while green lines
represent average probability forecasts (F-Aven∗).

In Figure 5 we compare the three methods for computing probabilistic forecasts discussed in
Sections 3.2.1-3.2.3, with or without F-Ave and Q-Ave averaging schemes, as a function of the
number N of point forecasts being used. We can observe that:

• For both datasets, historical simulation (dash-dotted lines) is significantly outperformed by
QRM (dashed lines), which in turn is nearly in all cases outperformed by QRA (solid lines).
The latter is clearly visible for GEFCom2014, but for Nord Pool data the QRA and QRM
curves almost overlap. Nevertheless, to answer the question posed in the title, we can say
that it is better to combine probabilistic than point forecasts.

• The QRA curves are convex functions with a minimum at N = 2 (or 3) for GEFCom2014
and at N = 2 for Nord Pool. Since they lie lower than the corresponding QRM curves, we
can conclude that QRA(2) is the best performer overall.

• The results obtained for QRA with N > 3 are clearly worse, and that is, to the best of our
knowledge, a result of increasing the numerical complexity of the problem.

• Regarding the averaging scheme – combining predictive distributions is always beneficial,
and averaging probabilities (F-Ave) outperforms averaging quantiles (Q-Ave) in every case.

As was mentioned in Section 3.2.5, the time required to compute an additional point forecast
is negligible compared to computing a well performing probabilistic forecast. Hence, it may be
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Figure 6: Comparison of QRA(2)- and QRA(2)∗-type combined models in terms of the pinball loss in the ‘proba-
bilistic’ test period: for GEFCom2014 (left panel) and Nord Pool (right panel). To construct these plots we use 10
different probabilistic forecasts based on five (QRA(2)) and 20 (QRA(2)∗) point forecasts of a SCANN network. The
color scheme is the same as in Fig. 5.

reasonable to consider a larger pool of point forecasts (i.e., more information), but not to increase
the number of probabilistic forecasts. To address this issue we consider a variant of the QRA(N)
model in which each point forecast is used only once; we denote it by QRA(N)∗. Namely, if we
want to obtain n probabilistic QRA-based forecasts we have to compute n × N point predictions.
For instance, to obtain an F-Ave10QRA(2)∗ forecast we require 20 point forecasts, whereas only
5 for F-Ave10QRA(2), see Fig. 4. Note also, that a single run of QRA(N)∗ will be identical to
QRA(N), i.e., this new concept makes a difference only in the context of combining predictive
distributions.

In Figure 6 we compare QRA(2)- and QRA(2)∗-type combined models. Clearly, the QRA(2)∗
concept outperforms QRA(2) for both datasets. Note, that the computational cost for a one week
forecast increases only by 0.23 × 15 ≈ 3.5 seconds (15 additional point forecasts need to be
generated). Like before, averaging probabilities (F-Ave) outperforms averaging quantiles (Q-Ave)
for all considered values of n.

4.3. Diebold-Mariano (DM) tests
The WMAE values analyzed in Section 4.1 or the pinball scores studied in Section 4.2 can

be used to provide a ranking of models, but not statistically significant conclusions on differences
in forecasting performance. In this Section we compute the Diebold and Mariano (1995) test
(abbreviated ‘DM test’), which takes into account the correlation structure of prediction errors and
performs a pairwise comparison.

In the EPF literature, the DM test is usually conducted separately for each of the load periods of
the day (see Nowotarski and Weron, 2018, for a review). However, here we follow Ziel and Weron
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Figure 7: Results of the multivariate DM test defined by the multivariate loss differential series in Eqn. (4) for 16
selected models and the GEFCom2014 (left panel) and Nord Pool (right panel) datasets. We use a heat map to
indicate the range of the p-values – the closer they are to zero (→ dark green) the more significant is the difference
between the forecasts of a model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

(2018) and conduct the multivariate (or vectorized) variant of the DM test, where only one statistic
for each pair of models is computed based on the 24-dimensional vector of errors (or scores) for
each day. Namely, if we denote by πX,d = (πX,d,1, . . . , πX,d,24)′ and πY,d = (πY,d,1, . . . , πY,d,24)′ the
vectors of pinball scores for day d of models X and Y , respectively, then the multivariate loss
differential series in the ‖ · ‖1-norm is given by:

∆X,Y,d = ‖πX,d‖1 − ‖πY,d‖1, (4)

where ‖πX,d‖1 =
∑24

h=1 |πX,d,h|. For each model pair and each dataset we compute the p-value of two
one-sided DM tests: (i) a test with the null hypothesis H0 : E(∆X,Y,d) ≤ 0, i.e., the outperformance
of the probabilistic forecasts of Y by those of X, and (ii) the complementary test with the reverse
null HR

0 : E(∆X,Y,d) ≥ 0, i.e., the outperformance of the probabilistic forecasts of X by those of Y .
As in the standard DM test, we assume that the loss differential series is covariance stationary.

In Figure 7 we plot the results for the multivariate DM-test for 16 selected models and both da-
tasets. The models include both Naı̈ve and SCARX benchmarks, the best (ex-post) models based
on Hist(N), QRM(N), QRA(N) and QRA(N)∗, and their quantile (Q-Ave) and probability(F-Ave)
averages. In both panels we see the corresponding p-values of the conducted pairwise compari-
sons: green and yellow squares indicate statistical significance at the 5% level (with the darkest
green corresponding to close to zero p-values), red squares indicate weak significance with a p-
value between 5% and 10%, while black denote no significance (i.e., a p-value of 10% or more).
For instance, we see in the right panel that the first row is dark green, so that the forecasts of every
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model significantly outperform those of the Naı̈ve-Hist benchmark. In both panels we see that the
columns which correspond to F-Ave10QRA(2)∗ are green or yellow, meaning that this combina-
tion leads to significantly better forecasts than all other models. As can be seen in both panels, the
model classes are ordered from the worst to the best performing (on average). Within each class,
models with F-Ave∗ averaging typically significantly outperform Q-Ave∗ and the expected values,
i.e., *** models. Overall, the best model is F-Ave10QRA(2)∗. On the other hand, all benchmarks
are always significantly outperformed by models based on SCANN forecasts. The latter clearly
demonstrates the usefulness of the SCANN concept, and forecast averaging in particular.

5. Conclusions

Conducting an extensive empirical study involving autoregressive and NARX-type neural net-
work models and a test ground of nearly six/five years of hourly electricity prices for evaluating
point/probabilistic forecasts, we have addressed three important questions:

• Does the Seasonal Component Artificial Neural Network (SCANN) approach bring benefits
also in the probabilistic forecasting context?

• If so, can it be implemented efficiently to yield accurate predictions within a reasonable
computational time?

• Given that averaging of neural network forecasts can be conducted at two levels, is it better
to combine their point or probabilistic forecasts?

The answer is affirmative to the first two questions. Indeed, SCANN models estimated using the
Fast Artificial Neural Networks (FANN) library have turned out to be extremely powerful forecas-
ting tools, not only much more accurate but also much faster to calibrate than the Matlab-trained
nets considered in Marcjasz et al. (2018). In their case, the gains from using committee machines
are rather small, definitely much less pronounced than for the Matlab-trained nets. Moreover, the
SCANN-implied probabilistic forecasts significantly outperform SCARX-implied predictions –
consistently across two very distinct datasets and maintaining the computational time vs. forecast
accuracy balance.

Regarding the third question, we find that in terms of accuracy it is better to construct proba-
bilistic forecasts directly from point predictions, i.e., to answer the question posed in the title – we
can say that it is better to combine probabilistic than point forecasts. However, if speed is a critical
issue, running quantile regression on combined point forecasts (i.e., committee machines) may be
an option worth considering. Finally, we confirm an observation made by Uniejewski et al. (2018)
for SCARX models that averaging probabilities outperforms averaging quantiles when combining
predictive distributions in EPF. This is in contrast to typical financial applications (Lichtendahl
et al., 2013).
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Hagan, M., Demuth, H., Beale, M., De Jesús, O., 2014. Neural Network Design, 2nd ed. Martin Hagan.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9 (8), 1735–1780.
Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R. J., 2016. Probabilistic energy forecasting:

Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32 (3), 896–913.
Hyndman, R., Athanasopoulos, G., 2013. Forecasting: Principles and practice. Online at http://otexts.org/fpp/.
Janczura, J., Trück, S., Weron, R., Wolff, R., 2013. Identifying spikes and seasonal components in electricity spot

price data: A guide to robust modeling. Energy Economics 38, 96–110.
Jones, E., Oliphant, T., Peterson, P., et al., 2001. SciPy: Open source scientific tools for Python. Http://www.scipy.org.
Keles, D., Scelle, J., Paraschiv, F., Fichtner, W., 2016. Extended forecast methods for day-ahead electricity spot prices

applying artificial neural networks. Applied Energy 162, 218–230.
Koenker, R. W., 2005. Quantile Regression. Cambridge University Press.
Kristiansen, T., 2012. Forecasting Nord Pool day-ahead prices with an autoregressive model. Energy Policy 49, 328–

332.
Lichtendahl, K. C., Grushka-Cockayne, Y., Winkler, R. L., 2013. Is it better to average probabilities or quantiles?

Management Science 59 (7), 1594–1611.
Lisi, F., Nan, F., 2014. Component estimation for electricity prices: Procedures and comparisons. Energy Economics

44, 143–159.
Liu, B., Nowotarski, J., Hong, T., Weron, R., 2017. Probabilistic load forecasting via Quantile Regression Averaging

on sister forecasts. IEEE Transactions on Smart Grid 8, 730–737.
Maciejowska, K., Nowotarski, J., 2016. A hybrid model for GEFCom2014 probabilistic electricity price forecasting.

International Journal of Forecasting 32 (3), 1051–1056.
Maciejowska, K., Nowotarski, J., Weron, R., 2016. Probabilistic forecasting of electricity spot prices using Factor

Quantile Regression Averaging. International Journal of Forecasting 32 (3), 957–965.
Marcjasz, G., Uniejewski, B., Weron, R., 2018. On the importance of the long-term seasonal component in

day-ahead electricity price forecasting with NARX neural networks. International Journal of Forecasting (doi:
10.1016/j.ijforecast.2017.11.009).

Misiorek, A., Trück, S., Weron, R., 2006. Point and interval forecasting of spot electricity prices: Linear vs. non-linear
time series models. Studies in Nonlinear Dynamics & Econometrics 10 (3), Article 2.

Nissen, S., 2007. Large Scale Reinforcement Learning using Q-SARSA(λ) and Cascading Neural Networks. MSc
Thesis, Department of Computer Science, University of Copenhagen Denmark.

Nogales, F. J., Contreras, J., Conejo, A. J., Espinola, R., 2002. Forecasting next-day electricity prices by time series
models. IEEE Transactions on Power Systems 17, 342–348.

19



Nowotarski, J., Raviv, E., Trück, S., Weron, R., 2014. An empirical comparison of alternate schemes for combining
electricity spot price forecasts. Energy Economics 46, 395–412.

Nowotarski, J., Tomczyk, J., Weron, R., 2013. Robust estimation and forecasting of the long-term seasonal component
of electricity spot prices. Energy Economics 39, 13–27.

Nowotarski, J., Weron, R., 2015. Computing electricity spot price prediction intervals using quantile regression and
forecast averaging. Computational Statistics 30 (3), 791–803.

Nowotarski, J., Weron, R., 2016. On the importance of the long-term seasonal component in day-ahead electricity
price forecasting. Energy Economics 57, 228–235.

Nowotarski, J., Weron, R., 2018. Recent advances in electricity price forecasting: A review of probabilistic forecas-
ting. Renewable and Sustainable Energy Reviews 81, 1548–1568.

Serinaldi, F., 2011. Distributional modeling and short-term forecasting of electricity prices by Generalized Additive
Models for location, scale and shape. Energy Economics 33, 1216–1226.

Shrivastava, N., Panigrahi, B., 2014. A hybrid wavelet-ELM based short term price forecasting for electricity markets.
International Journal of Electrical Power and Energy Systems 55, 41–50.

Uniejewski, B., Marcjasz, G., Weron, R., 2018. On the importance of the long-term seasonal compo-
nent in day-ahead electricity price forecasting. Part II – Probabilistic forecasting. Energy Economics (doi:
10.1016/j.eneco.2018.02.007).

Uniejewski, B., Nowotarski, J., Weron, R., 2016. Automated variable selection and shrinkage for day-ahead electricity
price forecasting. Energies 9, 621.

Weron, R., 2006. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. John Wiley & Sons,
Chichester.

Weron, R., 2014. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International
Journal of Forecasting 30 (4), 1030–1081.

Weron, R., Misiorek, A., 2008. Forecasting spot electricity prices: A comparison of parametric and semiparametric
time series models. International Journal of Forecasting 24, 744–763.

Weron, R., Zator, M., 2015. A note on using the Hodrick-Prescott filter in electricity markets. Energy Economics 48,
1–6.

Zhang, G., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. European Journal of Operati-
onal Research 160 (2), 501–514.

Zhang, Y., Liu, K., Qin, L., An, X., 2016. Deterministic and probabilistic interval prediction for short-term wind
power generation based on variational mode decomposition and machine learning methods. Energy Conversion
and Management 112, 208–219.

Ziel, F., 2016. Forecasting electricity spot prices using LASSO: On capturing the autoregressive intraday structure.
IEEE Transactions on Power Systems 31 (6), 4977–4987.

Ziel, F., Weron, R., 2018. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs.
multivariate modeling frameworks. Energy Economics 70, 396–420.

20



 

HSC Research Report Series 2018 
 

For a complete list please visit http://ideas.repec.org/s/wuu/wpaper.html 

 

01 An empirical analysis of green energy adoption among residential 

consumers in Poland by Anna Kowalska-Pyzalska 
02 Efficient forecasting of electricity spot prices with expert and LASSO 

models by Bartosz Uniejewski and Rafał Weron 
03 A note on averaging day-ahead electricity price forecasts across calibration 

windows by Katarzyna Hubicka, Grzegorz Marcjasz and Rafał Weron 
04 Household willingness to pay for green electricity in Poland by Anna 

Kowalska-Pyzalska and David Ramsey 
05 Probabilistic electricity price forecasting with NARX networks: Combine 

point or probabilistic forecasts? by Grzegorz Marcjasz, Bartosz Uniejewski 

and Rafał Weron 
  

  
  

  
  

  
  

  
  

  
  

  

 


	MarcjaszUniejewskiWeron18_SCANN-QRA.pdf
	Introduction
	Datasets
	Methodology
	Point forecasts
	SCAR-type models
	SCANN-type models
	Committee machines

	Probabilistic forecasts
	Historical simulation
	Quantile Regression Averaging
	Quantile Regression Machine
	Combining probabilistic forecasts
	Notes on implementation and computational efficiency


	Empirical results
	WMAE and the evaluation of point forecasts
	Pinball loss and the evaluation of probabilistic forecasts
	Diebold-Mariano (DM) tests

	Conclusions


