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Abstract

The literature on renewable energy sources indicates that an increase of the intermittent wind
and solar generation affects significantly the distribution of electricity prices. In this article, the
influence of two types of renewable energy sources (wind and solar photo voltaic) on the level
and variability of German electricity spot prices is analyzed. The quantile regression models are
built to estimate the merit order effect for different quantiles of electricity prices. The results
indicate that both types of renewable generations have a similar, negative impact on the price
level, approximated by the price median. When the price volatility, measured by the inter-quantile
range (IQR), is considered, the outcomes show that wind and solar influence prices differently.
Conditional on the level of the total demand, the wind generation would either increase (when
the demand is low) or decrease (when the demand is high) the IQR. Meanwhile, the increase
of solar power stabilizes the price variance for moderate demand level. Thus, policy supporting
the development and integration of RES should search for a balance between the wind and solar
power.
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1. Introduction

Over the last decades, many countries have experienced a dynamic change of their electric-
ity markets. First, a model of centrally managed generation has been abandoned and replaced
by organized and competitive market structures. Electricity is soled on power exchanges such as
Nord Pool or EEX in Europe, IEE in India, PJM or NYISO in US, where dominate the day-ahead
contracts. The day-ahead prices, often called ’spot prices’, are set in the early afternoon on the
day preceding the delivery. The day-ahead markets are complemented by intra-day and balancing
markets, which aim at adjusting the variable generation to the market demand. Second, the tech-
nological development and new regulations have created a favorable environment for introduction
of renewable energy sources (RES), among which wind and solar photo voltaic play a central role.
According to the Climate Package, the EU countries are obligated to increase their RES share
in the energy consumption to 20% by the year 2020. A more recent Winter Package set a new,
UE-wide target of 27% by the year 2030. Increasing input of RES results in the reduction the CO2

emission and the fall of the energy costs. Unfortunately, adding more renewable energy capacity
creates new challenges. Electricity generated by wind and solar is intermittent and difficult to
forecast, as it depends strongly on weather conditions. In some countries, such as Germany, RES
are granted priority during the dispatch and generators receive a fixed feed-in tariff. As the result,
it becomes more and more difficult to balance the market and electricity prices suffer from spikes
or negative values.

The impact of RES is one of the most appealing topics in the literature on electricity markets.
It has been shown that an increase of RES generation leads to a fall of prices (see Ketterer, 2014;
Paraschiv et al., 2014; Galanert et al., 2011; Cló et al., 2015; Woo et al., 2016; Frauendorfer et al.,
2018). This phenomena is called a merit-order effect. It fallows from the fact that RES marginal
costs are closed to zero and hence an increase of RES generation shifts the supply curve to the
right. Since the demand for electricity is inelastic, it results in a fall of electricity prices. Although
the price-dampening effect has been confirmed by the data, it is still not clear how RES influences
the whole distribution of prices. Some recent articles Ketterer (2014), Rintamäki et al. (2017),
Woo et al. (2011), Cló et al. (2015) show that rise of RES generation could result in the increase
of the price variance. Ketterer (2014) uses the ARX-GARCH approach to model and test the
wind influence on price variability in Germany. The results imply that an increase of the wind to
load ratio leads to an rise of the expected variance. Woo et al. (2011) analyze the impact of wind
generation on the price variance in Texas using simulation techniques. They results indicate that
a 10% increase of the installed capacity of wind is followed by a 1-5% rise of the variance. A
sightly different approach is adopted by Rintamäki et al. (2017). They model a within-day price
volatility and relate its changes to two types of RES: wind and solar. They show that wind and
solar generation may have different impacts on the price variances. For example, in Denmark, an
increase of solar leads to the fall of the price variability, whereas the rise of wind results in its
increase.

In this article, a semi-parametric approach of modeling the distribution of electricity prices
is adopted. The distribution is approximated by quantiles of electricity prices, Pt(τ), where τ =

0.1, 0.2, ..., 0.9. Each quantile is described by a regression including exogenous variables together
with lagged observation of prices. This approach allows to evaluate the impact of RES not only
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on the price level but also on the shape of the distribution. Finally, it can be used to model the
price variability, approximated by the inter quantile range (IQRt = Pt(0.9) − Pt(0.1)). When the
distribution of electricity prices is normal or t-Student, then the IQR is a linear transformation of
the price variance. Moreover, IQR allows to model conditional heteroscedasticity, as the IQRt

may be govern by a set of explanatory variables.
The quantile regression (QR) is a well establish econometric approach, which has been suc-

cessfully used in macro and micro economics (see Koenker and Hallock, 2001). There are a few
papers which apply QR for modeling electricity markets in areas such as electricity load (Li et al.,
2017), CO2 emission allowance prices (Hammoudeh et al., 2014) and electricity prices (Hagfors
et al., 2016b; Bunn et al., 2016; Nowotarski and Weron, 2015; Maciejowska et al., 2016). In the
paper of Hagfors et al. (2016b), the UK electricity market is modeled and the dependence of elec-
tricity prices on fuel prices and reserve margin is examined. Hagfors et al. (2016c) apply the QR
to describe the influence of RES on electricity prices in Germany. They analyze hourly data and
present the estimates of the wind and solar impact on the electricity prices for a set o quantiles.
They do not conduct neither formal comparison of RES types nor asses the impact of RES on the
price variability. Finally Bunn et al. (2016) apply QR to forecast the Value-at-Risk and show its
superiority to benchmarks such as GARCH or CAViAR.

An alternative approach for modeling the distribution of electricity prices was adopted by
Gianfreda and Bunn (2018). In their comprehensive study, the effects of fundamental variables
on the first four moments of German spot prices are analyzed. The results indicate a significant
merit order effect of wind and solar generation. Moreover, they suggest a mixed impact on higher
moments, such as standard deviation, skewness and kurtosis.

This article extends the previous research in various directions. Fist, it formally compares
impact of wind and solar on the distribution of electricity prices. It is examined, which type of
generation has a stronger price-dampening effect both on the median and on tails of the distribu-
tion. Second, a non-linear respond of prices to changes in fundamental variables is allowed. In the
proposed model, the impact of RES is conditioned on the level of total demand. This assumption,
although recognized in the literature (see Chen and Bunn, 2010), has not been explored in previous
analysis. Finally, it is showed that the price variability could be successfully modeled via IQR.

The remainder of the paper is structured as follows. Section 2 presents the data describing
the German electricity market. In Section 3, the quantile regression model used in the analysis is
introduced. Section 4 shows the results and Section 5 concludes.

2. Data

The data used in this research spans from January 1, 2015 to 29 January 2018 and describes
the German electricity market. In this article, the relation between spot (day-ahead) prices and
market fundamentals is examined. The prices, denoted by Pht, where h is an hour and t is a day
index, are obtained from EPEX (epexspot.com). The fundamental variables are: the forecasted
total load (Lht), the forecasted wind generation (Wht) and the forecasted solar generation (S ht)
published by TSO’s https://transparency.entsoe.eu/. In this research, the weakly seasonality is
describes by a (5 × 1) vector Dt of deterministic variables. The vector consists of a constant and
dummy variables for Mondays, Saturdays, Sundays and Holidays. The Holidays dummy includes
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Table 1: Data source

Data Notation Units Source
Spot prices P EUR/MWh EPEX SPOT, http://www.epexspot.com
Forecasted load L GW https://transparency.entsoe.eu
Forecasted wind generation W GW https://transparency.entsoe.eu
Forecasted solar generation S GW https://transparency.entsoe.eu

the calendar holidays and associating them unofficial holidays (for example, when a holiday takes
place on Thursday, then Friday is typically characterized by a reduced electricity demand although
it is not an official day-off). Data sources and units are summarized in Table

The time series are next transformed form hourly observations into daily, peak and off-peak
indexes. The indexes are computed as an arithmetic mean of corresponding variables across all
hours, peak hours (9:00-20:00) and off-peak hours (0:00-8:00 and 21:00-23:00), respectively. Ad-
ditionally, the peak indexes, which represent periods of the highest electricity demand, are re-
stricted to working days.

Descriptive statistics of electricity prices together with predicted load and RES (wind and so-
lar) are presented in Table 1. The results indicate that all the variables are non-normal. Electricity
prices are characterized by fat tails (kurtosis is much above 3) and take both positive and negative
values. At the same time, RES variables are positively skewed. These observations are confirmed
by Jarque-Bera (J-B) normality tests presented in Table 3. Finally stationarity of the data is tested
with the Augmented Dickey-Fuller (ADF) test. Table 3 reports the test statistics and correspond-
ing p-values for the test with seven lags and a drift under the alternative. All of the p-values, apart
from solar off-peak index, are below 5%, which confirm stationarity of examined variables.

The time plots of daily, peak/off-peak indexes are presented in Figure 1 and Figure 2, respec-
tively. Analysis of daily data indicate that fundamental variables exhibit a strong yearly season-
ality. The load and the wind generation are the highest during winter time, whereas the solar
generation peaks in a summer. The behavior of fundamentals affects electricity prices, which also
follow a yearly pattern. Moreover prices are exposed to extreme fluctuations with both: positive
and negative spikes, see Hagfors et al. (2016b) for more discussion.

Peak and off-peak indexes are presented on Figure 2. The comparison of variables in dif-
ferent hours indicate that both load and electricity prices are the highest during the peak hours.
Moreover, the peak prices exhibit relatively more positive spikes, whereas the off-peak prices are
characterized by more frequent negative values. When the RES generation is considered, it could
be noticed that wind generation does not change within the day, whereas solar depends strongly
on analyzed hours. During the off-peak hours, the solar radiation is weak and therefore the off-
peak production accounts only for a small friction of the peak generation. This observation is also
revealed by statistics presented in Table 2, which show that the average off-peak solar generation
is only 13.7% of its mean peak value.

Finally, the relationship between daily prices and the total load is illustrated by Figure 3. The
scatter plots shows that the dependence is close to linear, when the load takes intermediate val-
ues. However, the sensitivity of prices to load changes becomes much stronger in tails of load
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Table 2: Descriptive statistics

Mean Median Min Max St.dev. Skewness Kurtosis
Daily index

Prices 31.6 31.61 -47.46 101.82 11.27 -0.026 9.345
Load 218.22 222.34 139.53 265.6 23.94 -0.54 2.668
Wind 39.68 31.74 3.87 136.69 29.01 1.142 3.656
Solar 16.2 15.76 0.95 39.65 10.39 0.225 1.794

Peak index
Prices 34.99 34.29 -36.76 126.5 13.73 0.83 10.02
Load 243.3 250.4 167.6 306.3 29.99 -0.51 2.3
Wind 38.98 29.92 1.92 152.5 31.2 1.16 3.74
Solar 28.1 28 1.66 67.41 17.25 0.2 1.84

Off-peak index
Prices 28.2 29 -58.17 77.11 9.76 -1.49 12.55
Load 198.4 202.2 142.5 245.6 21.86 -0.41 2.41
Wind 38.95 30.87 3.24 131.86 27.31 1.14 3.64
Solar 3.85 3.04 0.01 13.11 3.6 0.57 2.07

Table 3: Statistical properties: normality (J-B tests) and non-stationarity (ADF) tests

J-B test ADF test
Prices Load Wind Solar Prices Load Wind Solar

Daily index
test 1838.8 58.21 258.0 75.68 1838.8 58.21 258.0 75.68

p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Peak index

test 2379.3 68.78 272.1 68.79 -2.864 -4.581 -8.203 -3.331
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.014

Off-peak index
test 4577.7 47.35 256.5 98.89 -8.107 -4.961 -7.382 -2.336

p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.161

Note: the normality hypothesis is rejected, when the p-value is not larger than the assumed significance level; the
ADF test with seven lags and a drift under the alternative.
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distribution, where the extreme high or low values of prices occur.

Figure 1: Time paths of daily indexes
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3. Quantile regression model

First, a simple linear quantile regression model is considered, which links the quantile τ of the
electricity price, Pt(τ), with the level of fundamentals. In order to account for a time dependency
between spot prices, their lagged values are added to the regression. The model takes the following
form:

Pt(τ) = α0,τDt + βL
τLt + βW

τ Wt + βS
τ S t +

p∑
i=1

θi,τPt−i, (1)

where βL
τ , βS

τ and βW
τ describe the influence of corresponding fundamentals: Lt, S t and Wt on the τ

quantile and the parameters θi,τ are the autoregressive parameters, which link the current quantile
of Pt, with lagged values of spot prices Pt−i. It should be mentioned that the lag order, p, is chosen
to capture the weekly seasonality. Hence, for daily and off-peak prices, it is set p = 7, whereas for
peak indexes p = 5. The model specifications differ also in terms of the deterministic component.
In the peak price model, the vector Dt includes only a constant. At the same time, for daily and off-
peak prices, Dt consists of a constant and dummy variables defining Mondays, Saturdays, Sundays
and Holidays.

In order to account for nonlinearities in the relationship between electricity prices and the
generation structure, the influence of corresponding variables on quantiles of the spot price is
conditioned on the level of the forecasted load, Lt. The daily, peak and off-peak indexes are
analyzed separately. In this research, three levels of load are considered and described by the
indicator variables: I1,t = 1Lt<L(τL), I2,t = 1L(τL)≤Lt≤L(τH) and I3,t = 1Lt>L(τH), where L(τ) describes
the τ unconditional quantile of Lt and thresholds are set τL = 0.1 and τH = 0.9. Then I1,t = 1
implies that the load is below its 0.1 quantile, when I2,t = 1 then it takes an intermediate value
and stays between the 0.1 and the 0.9 quantile. Finally, I3,t = 1 when the load is higher than the
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Figure 2: Comparison of peak and off-peak indexes.
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0.9 quantile. The thresholds τL = 0.1 and τH = 0.9 are chosen because, on one hand, they ensure
the sufficient number of observation in each state and, on the other hand, allow to capture the
price behavior in periods of very high and low load level. Other choices of thresholds was also
examined: τL = 0.15, τH = 0.85 and τL = 0.2, τH = 0.8 confirming the robustness of the outcomes
(see Tables ..., Appendix ).

As the result, the model becomes

Pt(τ) = α0,τDt +

3∑
j=1

βL
j,τL j,t +

3∑
j=1

βW
j,τW j,t +

3∑
j=1

βS
j,τS j,t +

p∑
i=1

θi,τPt−i, (2)

where L j,t = I j,tLt, S j,t = I j,tS t and W j,t = I j,tWt. Notice that the effect of a particular variable,
for example the wind generation, Wt, on the τ−quantile of the spot prices is now described be
three parameters: βW

1,τ, β
W
2,τ and βW

3,τ and depends on the level of load. If the effects are equal
β∗1,τ = β∗2,τ = β∗3,τ, then model (2) could be reduced to (1). Finally, due to the price inelasticity of
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Figure 3: Scatterplot of prices and load, daily indexes
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demand and the need of permanent balance the market, the expected total load and demand are
closely related. Hence, different values of Ii,t corresponds also with low, intermediate and high
level of demand.

The estimation algorithm for quantile autoregression models is described by Koenker and
Xiao (2006) and is an autoregressive counterpart of the method presented by Koenker and Bassett
(1978). The parameters are estimated by minimizing the pinball loss function

minψτ∈Ψ
∑

t

ρτ(Pt − Xtψτ), (3)

where X(i)
t is a combined vector of all explanatory variables and ψτ is a vector of corresponding

parmeters. The function ρτ(Pt − Xtψτ) is defined as in Koenker and Bassett (1978) and takes a
value

ρτ(Pt − Xtψτ) =

{
τ(Pt − Xtψτ) when Pt > Xtψτ

(τ − 1)(Pt − Xtψτ) when Pt ≤ Xtψτ.

The confidence intervals and statistical tests are computed using the bootstrap method with 1000
replications. In order to account for the possible ARCH effect, a block bootstrap is used, as in
Fitzenberger (1998). The block length is set to equal 10 for peak and 14 for off-peak hours and
daily data, which corresponds to two weeks of observations.

4. Results

4.1. Merit-order effect
The merit-order effect is a shift of a supply curve due to an increase of a low cost renewable

generation, which results in a fall of electricity prices. The phenomena is well described and
widely discussed in the literature (see Ketterer, 2014; Cludius et al., 2014; Woo et al., 2016; Gürtler
and Paulsen, 2018). Here, it is illustrated by the sample data on the Figure 5, which shows the
electricity prices together with total load and the generation structures in the 46th week of the
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Figure 4: Estimates of model (2) coefficients, average daily prices, across different quantiles : τ = 0.1, 0.2, ..., 0.9
(solid, blue lines) with 90% confidence intervals (dashed lines).
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year 2017. It can be noticed that days with a high RES generation, such as 19th of November,
are characterized by low conventional generation. At the same time, on days with a small RES
generation, such as 15th of November, majority of generation comes from conventional power
plants. Hence, an increase of RES, with marginal cost close to zero, pushes more expensive
utilities out of the market. This results in a fall of the electricity prices, which can substantially
decrease or even fall below zero.

In the proposed models, the merit order effect is reflected by negative values of parameters
βS
τ and βW

τ . The parameter estimates for daily data, together with their 90% confidence intervals,
are presented on Figure 4. In the plot, columns represent different levels of demand and rows are
associated with fundamental variables: total load, wind and solar generation. The results confirm
a price-dampening merit order effect of RES and indicate that an increase of wind and solar leads
to a fall of all quantiles of electricity prices, whereas an increase of load rises the prices.
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Figure 5: Main generation sources (conventional, wind, solar) and wholesale electricity prices (day-ahead, intraday)
for the 46th week of 2017 in Germany.Source: https://www.energy-charts.de, Fraunhofer ISE.

A detailed description of the merit-order effect of RES is presented in Table 4, which shows
the estimates of the parameters of the linear (1) and the non-linear (2) models for three types
of indexes. First, it could be noticed that all of the coefficients representing the wind impact on
the price quantiles are significantly lower than zero. Moreover, their magnitude depends on the
time of the day and the level of load. It is the strongest for high demand/ peak prices and low
demand/off-peak prices. Second, the hypothesis of the merit-order effect of RES is also supported
by solar coefficients. Similar to wind, solar has the strongest influence on the peak prices, when
the load is high and the off-peak prices, when the load is low. Unfortunately, some of these results
are not statistically significant. The findings are mixed due to a strong yearly seasonality of solar
generation. As demonstrated on Figure 1 and Figure 2 in winters a high load is associated with a
weak solar radiation. This leads to very volatile estimates of βS

3,τ and their statistical insignificance.
Although both types of RES have qualitatively similar effect on the supply curve, it is not

clear, whether their influence on the price distribution is exactly the same. There are only a few
articles, which include both energy sources, see Cludius et al. (2014), Paraschiv et al. (2014) and
Hagfors et al. (2016b). They show a price dampening effect of both wind and solar but do not
directly compare them. Based on previous results, it is expected that both types of RES influences
the median, which approximates the level of prices, in the same way. The impact on tails of
distribution may however differ, because each RES is associated with different uncertainty and
risk (see Rintamäki et al. (2017)).

In this research, it is verified, whether wind and solar have the same merit-order effect on
different quantiles of electricity prices. Conditional on the quantile and the level of load, changes

10



Table 4: The estimates of parameters βW and βS for linear (1) and the non-linear (2) models.

τ
Wind Solar

βW
τ βW

1,τ βW
2,τ βW

3,τ βS
τ βS

1,τ βS
2,τ βS

3,τ
Daily index

0.1 -0.178∗∗∗ -0.400∗∗∗ -0.177∗∗∗ -0.161∗∗∗ -0.067∗∗∗ -0.473∗∗∗ -0.054∗∗ -0.028
0.2 -0.166∗∗∗ -0.311∗∗∗ -0.158∗∗∗ -0.215∗∗∗ -0.107∗∗∗ -0.416∗∗∗ -0.080∗∗∗ -0.419∗∗

0.3 -0.164∗∗∗ -0.259∗∗∗ -0.154∗∗∗ -0.198∗∗∗ -0.118∗∗∗ -0.359∗∗∗ -0.106∗∗∗ -0.423∗∗

0.4 -0.168∗∗∗ -0.253∗∗∗ -0.159∗∗∗ -0.219∗∗∗ -0.140∗∗∗ -0.281∗∗∗ -0.109∗∗∗ -0.450∗∗

0.5 -0.166∗∗∗ -0.230∗∗∗ -0.153∗∗∗ -0.231∗∗∗ -0.136∗∗∗ -0.278∗∗∗ -0.105∗∗∗ -0.486∗

0.6 -0.160∗∗∗ -0.191∗∗∗ -0.150∗∗∗ -0.244∗∗∗ -0.170∗∗∗ -0.275∗∗∗ -0.140∗∗∗ -0.525∗

0.7 -0.170∗∗∗ -0.195∗∗∗ -0.155∗∗∗ -0.255∗∗∗ -0.196∗∗∗ -0.265∗∗∗ -0.159∗∗∗ -0.597∗

0.8 -0.172∗∗∗ -0.197∗∗∗ -0.150∗∗∗ -0.285∗∗∗ -0.231∗∗∗ -0.292∗∗∗ -0.194∗∗∗ -0.061
0.9 -0.184∗∗∗ -0.221∗∗∗ -0.166∗∗∗ -0.345∗∗∗ -0.267∗∗∗ -0.369∗∗∗ -0.235∗∗∗ -0.141

Peak index
0.1 -0.158 ∗∗∗ -0.182 ∗∗ -0.160 ∗∗∗ -0.189 ∗∗∗ -0.030 ∗ -0.114 -0.035 ∗ -0.073
0.2 -0.175 ∗∗∗ -0.175 ∗∗∗ -0.175 ∗∗∗ -0.251 ∗∗∗ -0.066 ∗∗∗ -0.076 -0.065 ∗∗ -0.078
0.3 -0.172 ∗∗∗ -0.122 ∗∗∗ -0.170 ∗∗∗ -0.266 ∗∗∗ -0.087 ∗∗∗ -0.101 ∗ -0.073 ∗∗∗ -0.319 ∗

0.4 -0.177 ∗∗∗ -0.129 ∗∗∗ -0.172 ∗∗∗ -0.301 ∗∗∗ -0.096 ∗∗∗ -0.144 ∗∗ -0.077 ∗∗∗ -0.376 ∗

0.5 -0.181 ∗∗∗ -0.130 ∗∗∗ -0.172 ∗∗∗ -0.303 ∗∗∗ -0.102 ∗∗∗ -0.132 ∗∗∗ -0.092 ∗∗∗ -0.513 ∗

0.6 -0.186 ∗∗∗ -0.147 ∗∗∗ -0.182 ∗∗∗ -0.303 ∗∗∗ -0.115 ∗∗∗ -0.121 ∗∗∗ -0.106 ∗∗∗ -0.500 ∗

0.7 -0.189 ∗∗∗ -0.148 ∗∗∗ -0.186 ∗∗∗ -0.290 ∗∗∗ -0.147 ∗∗∗ -0.122 ∗∗∗ -0.145 ∗∗∗ -0.379
0.8 -0.202 ∗∗∗ -0.137 ∗∗∗ -0.197 ∗∗∗ -0.333 ∗∗∗ -0.156 ∗∗∗ -0.134 ∗∗ -0.158 ∗∗∗ -0.131
0.9 -0.213 ∗∗∗ -0.186 ∗∗ -0.189 ∗∗∗ -0.484 ∗∗∗ -0.211 ∗∗∗ -0.104 ∗∗ -0.211 ∗∗∗ -0.188

Off-peak index
0.1 -0.169 ∗∗∗ -0.211 ∗∗∗ -0.172 ∗∗∗ -0.149 ∗∗∗ -0.013 -0.769 ∗∗∗ 0.012 0.816
0.2 -0.166 ∗∗∗ -0.197 ∗∗∗ -0.163 ∗∗∗ -0.178 ∗∗∗ -0.094 ∗ -0.630 ∗∗∗ -0.054 -0.160
0.3 -0.161 ∗∗∗ -0.209 ∗∗∗ -0.150 ∗∗∗ -0.163 ∗∗∗ -0.155 ∗∗ -0.528 ∗∗∗ -0.075 -0.454
0.4 -0.157 ∗∗∗ -0.194 ∗∗∗ -0.157 ∗∗∗ -0.165 ∗∗∗ -0.146 ∗∗∗ -0.407 ∗∗∗ -0.095 -1.022
0.5 -0.156 ∗∗∗ -0.192 ∗∗∗ -0.154 ∗∗∗ -0.162 ∗∗∗ -0.139 ∗∗ -0.508 ∗∗∗ -0.089 -1.047
0.6 -0.152 ∗∗∗ -0.213 ∗∗∗ -0.147 ∗∗∗ -0.164 ∗∗∗ -0.136 ∗∗ -0.471 ∗∗∗ -0.070 -2.039 ∗

0.7 -0.155 ∗∗∗ -0.199 ∗∗∗ -0.152 ∗∗∗ -0.175 ∗∗∗ -0.137 ∗∗∗ -0.543 ∗∗∗ -0.093 ∗∗ -2.520 ∗

0.8 -0.161 ∗∗∗ -0.198 ∗∗∗ -0.148 ∗∗∗ -0.182 ∗∗∗ -0.201 ∗∗∗ -0.533 ∗∗∗ -0.138 ∗∗∗ -3.321 ∗

0.9 -0.178 ∗∗∗ -0.230 ∗∗∗ -0.159 ∗∗∗ -0.214 ∗∗∗ -0.313 ∗∗∗ -0.431 ∗∗ -0.259 ∗∗∗ -4.806

Note: the asterisks ∗, ∗∗ and ∗∗∗ the significance at the significance level 10%, 5% and 1%, respec-
tively.
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Table 5: The estimates of the differences between the merit-order effects of wind and solar generation for daily, peak
and off-peak indexes.

τ βW
τ − β

S
τ βW

1,τ − β
S
1,τ βW

2,τ − β
S
2,τ βW

3,τ − β
S
3,τ

Daily index
0.1 -0.111∗∗∗ 0.073 -0.122∗∗∗ -0.132
0.2 -0.059∗∗∗ 0.104 -0.078∗∗∗ 0.204
0.3 -0.045∗∗ 0.100 -0.047∗∗∗ 0.225
0.4 -0.027 0.027 -0.050∗∗ 0.231
0.5 -0.029 0.048 -0.048 0.255
0.6 0.010 0.085 -0.010 0.281
0.7 0.027 0.070∗∗ 0.004 0.342
0.8 0.058∗∗ 0.095∗∗ 0.043 -0.224
0.9 0.083∗ 0.149∗∗ 0.068 -0.204

Peak index
0.1 -0.127∗∗∗ -0.069 -0.125∗∗∗ -0.116
0.2 -0.109∗∗∗ -0.098 -0.111∗∗∗ -0.173
0.3 -0.085∗∗∗ -0.022 -0.096∗∗∗ 0.053
0.4 -0.081∗∗∗ 0.015 -0.095∗∗∗ 0.075
0.5 -0.078∗∗∗ 0.002 -0.080∗∗∗ 0.210
0.6 -0.070∗∗∗ -0.027 -0.075∗∗∗ 0.197
0.7 -0.042∗∗∗ -0.025 -0.041∗∗∗ 0.090
0.8 -0.046∗∗ -0.003 -0.038 -0.201
0.9 -0.002 -0.082 0.022 -0.297

Off-peak index
0.1 -0.156∗∗ 0.338∗∗ -0.245∗∗∗ -0.254
0.2 -0.073∗ 0.332∗∗ -0.195∗∗∗ 0.620
0.3 -0.007 0.386∗∗ -0.117∗ 0.685
0.4 -0.012 0.337∗∗ -0.063∗ 2.161
0.5 -0.017 0.360∗∗∗ -0.057 2.660
0.6 -0.016 0.352∗∗∗ -0.031 2.796
0.7 -0.019 0.491∗∗ -0.035 2.364∗

0.8 0.040 0.341∗∗∗ 0.070 3.185∗

0.9 0.135 0.386∗∗ 0.159∗∗∗ 5.166∗

Note: the asterisks ∗, ∗∗ and ∗∗∗ indicate rejection of null H0 : βW
τ − β

S
τ = 0 at the significance levels

10%, 5% and 1%, respectively.
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in price distribution could be associated more with one of the RES variables. The differences
between coefficients βW

τ and βS
τ are presented in Table 5, in which columns represent estimates

of the linear (1) and the non-linear (2) model, respectively. Since both βW
τ < 0 and βS

τ < 0 then
βW
τ − β

S
τ ≤ 0 implies that the wind has a stronger price lowering effect than the solar. When

βW
τ − β

S
τ > 0 then an increase of solar leads to a stronger reduction of prices than a rise of wind.

4.1.1. Daily average prices
Lets first analyze the behavior of the average daily prices. The results of the linear model

(1) show that the wind reduces more low quantiles of prices, wheres solar decreases more high
quantiles. This indicate that solar is more successful in reducing the occurrence of positive price
spikes and does not decrease the low quantiles of price distribution as strong as wind.

When the results of a non-linear model are analyzed, it could be noticed that the relationship
between βw

τ and βS
τ depends on the level of demand. When the load is low, which is typical for

summer time, the solar has a stronger price dampening effect than the wind, with the difference
being statistically significant for quantiles τ ≥ 0.7. On the other hand, for the intermediate level
of load, wind reduces more low quantiles , whereas solar decreases more high quantiles of prices.
The dominance is significant only for τ ≤ 0.4. For the high level of load, the differences βw

τ − β
S
τ ,

although big in the magnitude, are not statistically significant due to large variances of estimators.
Finally, both models (1) and (2) indicate that wind and solar have very similar effects on

the median of prices. The differences between coefficients related to different energy sources
are statistically insignificant. Therefore for the analysis of the average level of prices, the most
important is the sum of wind and solar generation. The division between different types of energy
sources is relevant when the tails or higher moments of price distribution are modeled.

4.1.2. Peak prices
The results of a linear model (1) suggest that wind generation has a stronger price reducing

effect on the peak prices than solar, with the difference βW
τ − β

S
τ being significantly lower that zero

for almost all quantiles. When different levels of load are considered, it seems that the dominant
impact of wind is confirmed only for intermediate levels of load. For low and high load, the
differences between wind and solar effects are not significantly different from zero.

When the median of peak prices is considered, the outcomes indicate that wind has a signifi-
cantly stronger impact on the average peak price than the wind for intermediate level of load. In
other cases, solar dominates but the effect is not statistically significant.

4.1.3. Off-peak prices
The results for the off-peak hours are similar to those of daily indexes. They show that wind has

a stronger price reducing impact than solar for intermediate level of load and low price quantiles.
When the level of load is either low or high, the solar seems to dominate the wind, particularly for
high quantiles of electricity prices.

Finally, the linear model (1) does not find any significant differences between impacts of wind
and solar on the median of electricity prices. The results of the non-linear model indicate that the
solar has a statistically stronger effect on the median for low level of total load.
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4.2. Variability effect
In this research, the variability of spot prices is described by the inter-quantile range. It pro-

vides information about the shape of the distribution of prices and is closely related to the price
variance. The IQRt could be directly derived from models (1) or (2) by subtracting IQRt =

Pt(0.9) − Pt(0.1). If the assumed data generating process is linear (1) then the IQRt becomes

IQRt = α0Dt + βLLt + βWWt + βS S t +

p∑
i=1

θiPt−i, (4)

where α0 = α0,0.9 − α0,0.1, β∗ = β∗0.9 − β
∗
0.1 and θp = θp,0.9 − θp,0.1. The coefficients β∗ measure the

effect of given variables on the price variability. When β∗ > 0, which means that β∗0.9 > β∗0.1, then
an increase of the variable results in the rise of variability. On the contrary, when β∗ < 0, which
means that β∗0.9 < β

∗
0.1, then the variable reduce the price uncertainty.

Under the assumption of nonlinear responses to fundamental variables, as in (2), the inter-
quantile range could be computed as follows

IQRt = α0Dt +

3∑
j=1

βL
j L j,t +

3∑
j=1

βW
j W j,t +

3∑
j=1

βS
j S j,t +

p∑
i=1

θiPt−i, (5)

where α0 = α0,0.9 − α0,0.1, β∗i = β∗i,0.9 − β
∗
i,0.1 and θp = θp,0.9 − θp,0.1. Similar to the linear case, when

β∗i > 0 then a given variable increases the IQRt, whereas when β∗i < 0 it decreases the variability.
The estimates of the parameters of (4) and (5) are provided in Table 6. When a daily data is

considered, then the estimates of the linear model (4) coefficients are: β̂L = 0.081, β̂W = −0.006
and β̂L = −0.200. This implies that a rise of forecasted load results in an increase of the IQRt,
whereas an increase of RES stabilizes the price variability. The statistical significance of the
parameters is tested using the percentile bootstrap approach. The results indicate that only solar
affect is statistically significant and βS is negative at significance level 1%. The lack of statistical
significance of wind and load coefficients could be an effect of assumed linearity. The results
presented in Figure 4 suggest that the impact of fundamental variables on price quantiles depends
strongly on the level of load.

The results of model (5) show that the impact on the daily price variability depends on the
level of demand. As expected, the load increases the price variability in high demand periods
and decreases the variability for low demand periods. At the same time, wind and solar have an
opposite effect. First, they increase the IQRt in case of a low demand. The results are intuitive and
is in line with previous results of Paraschiv et al. (2014), which show that for low level of load,
an increase of RES generation have a price-dampening effect and may lead to negative prices.
The statistical tests indicate that only the wind effect is significantly different from zero. When an
intermediate load level is considered, it is observed that wind has a weak, positive impact on IQRt,
whereas solar decreases significantly the IQRt. Finally, for high demand, both RES variables
reduce strongly the IQRt, with wind having a statistically significant effect. Hence, as shown by
Hagfors et al. (2016b) the rise of RES stabilize prices when load is high and reduces the probability
of positive price spikes.
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Table 6: The influence of fundamental variables on the inter-quantile range, IQR, non-linear models.

Variable Coefficient
Index

Daily Peak Off-peak
Linear model (4)

Load βL 0.081 0.102∗∗ 0.117∗∗∗

Wind βW -0.006 -0.055∗∗ -0.009
Solar βS -0.200∗∗∗ -0.181∗∗∗ -0.299∗∗∗

Non-linear model (5)

Load
βL

1 -0.002 0.030 -0.012
βL

2 0.048 0.066∗ 0.020
βL

3 0.105∗ 0.162∗ 0.049∗

Wind
βW

1 0.179∗∗ -0.004 0.104
βW

2 0.010 -0.029∗ 0.019∗

βW
3 -0.184∗∗∗ -0.295∗ -0.058∗∗

Solar
βS

1 0.104 0.009 0.057
βS

2 -0.181∗∗∗ -0.176∗∗∗ -0.386∗∗∗

βS
3 -0.113 -0.115 -5.478

Note: the asterisks ∗, ∗∗ and ∗∗∗ indicate rejection of null H0 : β = 0 at the significance levels 10%,
5% and 1%, respectively.

When the peak and off-peak data is analyzed, the results indicate some differences in price
behavior within the day. It could be noticed that in peak hours both RES significantly reduce the
price variability, with an exception of a low load, when the impact of solar is insignificantly pos-
itive. On the contrary, the effect of fundamental variables on off-peak prices is more diversified.
The wind has a mixed impact, increasing the variability for intermediate level of load and decreas-
ing it for high load. At the same time, solar stabilizes the price variation for both intermediate and
high level of load. Finally, an increase of both types of RES rises IQRt of off-peak prices for low
level of demand. Although the corresponding coefficients are quite large in magnitude, they are
statistically insignificant.

4.3. Robustness analysis
The robustness of the results is verified in two directions: the choice of the level of thresholds

τL and τH and the choice of explanatory variables. First, the parameters and the IQR of the non-
linear models (2) and (5) are estimated for daily indexes. Since the specification of the models
depends on the assumed threshold levels, two pairs of values (τL, τH) are examined: (0.15, 0.85)
and (0.20, 0.80). The results are presented in the Appendix, Tables 7-6.

Second, the set of fundamental variables is expanded and the time series of daily gas prices,
Gt (Henry Hub natural gas spot price, https://fred.stlouisfed.org/series/DHHNGSP, converted to
EURO) are added to the models. The literature shows that fuel prices may impact the level and
variability of electricity prices (see Gianfreda and Bunn, 2018), therefore it is examined if they
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alter the effect of RES. It should be mentioned that gas power plans operate mainly during peak
hours, when the demand for electricity is the highest. Therefore in the non-linear model (2), their
impact is conditioned on the level of total load, similar to load and RES. As the result, the models
(1) and (2) become:

Pt(τ) = α0,τDt + βG
τ Gt−1 + βL

τLt + βW
τ Wt + βS

τ S t +

p∑
i=1

θi,τPt−i, (6)

Pt(τ) = α0,τDt +

3∑
j=1

βG
j,τG j,t−1 +

3∑
j=1

βL
j,τL j,t +

3∑
j=1

βW
j,τW j,t +

3∑
j=1

βS
j,τS j,t +

p∑
i=1

θi,τPt−i, (7)

where parameters βG
τ and βG

j,τ describe the impact of lagged gas prices on the τ quantile of elec-
tricity prices Pt. The variables G j,t−1 are defined as G j,t−1 = I j,tGt−1. The parameter estimates for
daily, peak and off-peak indexed together with corresponding IQR are presented in the Appendix,
Tables 9-10. Since the main concern is the impact of RES on the price distribution, only the results
for wind and solar are presented.

The analysis indicates a robustness of results obtained in previous sections. Although one
could notice some minor quantitative differences, the outcomes do not change the qualitative in-
terpretation of the results and final conclusions.

5. Conclusions

In this research, a quantile regression is applied to analyze the effects of RES on the distribution
of electricity prices. The analysis focuses on the merit-order effect, and the impact of RES on the
price variability. In the proposed models, the nonlinear relationship between fundamental variables
and the electricity prices is allowed. The impact of RES and load on spot prices is conditioned
on the demand level. Three states of the demand are analyzed: low, intermediate and high, which
correspond to chosen quantiles of the load level.

The results confirm the price-dampening impact of both wind and solar generation. It is shown
that when the level of prices is considered, which is approximated by the median, there are no gains
from distinguishing between different types of RES. However, when the relationship between the
range of quantiles and RES is analyzed, it is found out that wind has a stronger reducing impact
on lower tails, whereas solar on higher tails of the price distribution. This results complements
the previous findings of Paraschiv et al. (2014), Hagfors et al. (2016a) and Gianfreda and Bunn
(2018).

Finally, the impact of RES on price variability is evaluated and tested using the IQR. It could be
noticed, that IQR is closely related to the price variance, particularly when the price distribution
is Normal or t-Student. The outcomes indicate that solar and wind impact the price variability
differently. Wind increases the variability in a case of a low level of demand and reduces it, when
the demand is high. At the same time, solar stabilized the variation of prices for an intermediate
level of demand. Hence, different types of RES are associated with various risk levels. These
outcome is in line with results of Gianfreda and Bunn (2018), which show that the impacts of
solar and wind are distinct and varies conditional of the hour of the day.
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The outcomes of this research are relevant for practitioners and policy makers, because they
demonstrate how the structure and level of RES affects both: the level and the variability of elec-
tricity prices. The results could be used in various ways. First, generators could utilize the infor-
mation on price uncertainty during their decision process (for example, when choosing an optimal
market, as in Maciejowska et al. (2019)) or construction of offer curves. Second, understanding
the mechanisms governing the movements of the price distribution could help to develop policies,
which will aim at finding a desired generation mix - leading to markets with both low level of
prices and limited risk. Finally, as the share of RES is continuously growing, the results encourage
further investigation of the field, which is believed to be relevant not only for the energy sector but
also for the global economy.
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Gürtler, M., Paulsen, T., 2018. The effect of wind and solar power forecast on day-ahead and intraday electricity
prices in Germany. Energy Economics 75, 150–162.

Hagfors, L.I., Bunn, D., Kristoffersen, E., Staver, T.T., Westgaard, S., 2016a. Modeling the UK electricity price
distribution using quantile regression. Energy 102, 231–243.

Hagfors, L.I., Kapmerund, H.H., Paraschiv, F., Prokopczuk, M., Sator, A., Westgaard, S., 2016b. Prediction of extreme
price accurrences in the German day-ahead electricity prices. Quantitative Finance 16, 1929–1948.

Hagfors, L.I., Paraschiv, F., Molnar, P., Westgaard, S., 2016c. Using quantile regression to analyze the effect of
renewables on EEX price formation. Renewable Energy and Environmental Sustainability 1.

Hammoudeh, S., Nguyen, D.K., Sousa, R.M., 2014. Energy prices and CO2 emission allowance prices: A quantile
regression approach. Energy Policy 70, 201–206.

Ketterer, J., 2014. The impact of wind power generation on the electricity price in germany. Energy Economics 44,
270–280.

Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46, 33–50.
Koenker, R., Hallock, K.F., 2001. Quantile regression. Journal of Economic Perspectives 15, 143–156.

17



Koenker, R., Xiao, Z., 2006. Quantile autoregression. Journal of the American Statistical Association 101, 980–990.
Li, Z., Hurn, A.S., Clements, A.E., 2017. Forecasting quantiles of day-ahead electricity load. Energy Economics 67,

60–71.
Maciejowska, K., Nitka, W., Weron, T., 2019. Day-ahead vs. intraday—forecasting the price spread to maximize

economic benefits. Energies 12, 631.
Maciejowska, K., Nowotarski, J., Weron, R., 2016. Probabilistic forecasting of electricity spot prices using factor

quantile regression averaging. International Journal of Forecasting 37, 957–965.
Nowotarski, J., Weron, R., 2015. Computing electricity spot price prediction intervals using quantile regression and

forecast averaging. Computational Statistics 30, 791–803.
Paraschiv, F., Erni, D., Pietsch, R., 2014. The impact of renewable energies on EEX day-ahead electricity prices.

Energy Policy 73, 196–210.
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6. Appendix

Table 7: The estimates of parameters βW and βS of the non-linear (2) models under different threshold values: τL and
τH .

τ
Wind Solar

βW
1,τ βW

2,τ βW
3,τ βS

1,τ βS
2,τ βS

3,τ
τL = 0.15, τH = 0.85

0.1 -0.353 ∗∗∗ -0.1602 ∗∗∗ -0.1453 ∗∗∗ -0.4477 ∗∗∗ -0.0572 ∗∗ -0.0507
0.2 -0.3167 ∗∗∗ -0.1484 ∗∗∗ -0.1836 ∗∗∗ -0.3419 ∗∗∗ -0.0844 ∗∗∗ -0.2106 ∗∗

0.3 -0.3093 ∗∗∗ -0.1503 ∗∗∗ -0.1831 ∗∗∗ -0.2864 ∗∗∗ -0.0999 ∗∗∗ -0.2727 ∗∗∗

0.4 -0.2608 ∗∗∗ -0.1546 ∗∗∗ -0.1888 ∗∗∗ -0.2316 ∗∗∗ -0.1068 ∗∗∗ -0.283 ∗∗∗

0.5 -0.2429 ∗∗∗ -0.1473 ∗∗∗ -0.1933 ∗∗∗ -0.2419 ∗∗∗ -0.1012 ∗∗∗ -0.3111 ∗∗∗

0.6 -0.2073 ∗∗∗ -0.1415 ∗∗∗ -0.1894 ∗∗∗ -0.2581 ∗∗∗ -0.1297 ∗∗∗ -0.4179 ∗∗

0.7 -0.2017 ∗∗∗ -0.145 ∗∗∗ -0.2041 ∗∗∗ -0.2434 ∗∗∗ -0.1403 ∗∗∗ -0.5628 ∗∗

0.8 -0.1871 ∗∗∗ -0.1435 ∗∗∗ -0.2309 ∗∗∗ -0.2606 ∗∗∗ -0.1761 ∗∗∗ -0.5669 ∗∗

0.9 -0.2097 ∗∗∗ -0.158 ∗∗∗ -0.2679 ∗∗∗ -0.3537 ∗∗∗ -0.2347 ∗∗∗ -0.368 ∗∗∗

τL = 0.2, τH = 0.8
0.1 -0.3329 ∗∗∗ -0.1514 ∗∗∗ -0.1194 ∗∗∗ -0.3708 ∗∗∗ -0.0585 ∗∗ -0.0816 ∗

0.2 -0.3041 ∗∗∗ -0.1479 ∗∗∗ -0.1577 ∗∗∗ -0.2961 ∗∗∗ -0.0894 ∗∗∗ -0.3264 ∗∗∗

0.3 -0.2512 ∗∗∗ -0.1507 ∗∗∗ -0.1636 ∗∗∗ -0.2523 ∗∗∗ -0.0901 ∗∗∗ -0.3548 ∗∗∗

0.4 -0.2429 ∗∗∗ -0.1505 ∗∗∗ -0.1762 ∗∗∗ -0.2252 ∗∗∗ -0.1102 ∗∗∗ -0.4234 ∗∗∗

0.5 -0.2366 ∗∗∗ -0.148 ∗∗∗ -0.18 ∗∗∗ -0.1921 ∗∗∗ -0.1178 ∗∗∗ -0.4078 ∗∗∗

0.6 -0.2178 ∗∗∗ -0.1415 ∗∗∗ -0.1731 ∗∗∗ -0.2265 ∗∗∗ -0.129 ∗∗∗ -0.3923 ∗∗∗

0.7 -0.1994 ∗∗∗ -0.1457 ∗∗∗ -0.1985 ∗∗∗ -0.2371 ∗∗∗ -0.145 ∗∗∗ -0.57 ∗∗∗

0.8 -0.1912 ∗∗∗ -0.1466 ∗∗∗ -0.2175 ∗∗∗ -0.2264 ∗∗∗ -0.1747 ∗∗∗ -0.5636 ∗∗∗

0.9 -0.2008 ∗∗∗ -0.1584 ∗∗∗ -0.2414 ∗∗∗ -0.3099 ∗∗∗ -0.2244 ∗∗∗ -0.5776 ∗∗∗

Note: the asterisks ∗, ∗∗ and ∗∗∗ the significance at the significance level 10%, 5% and 1%, respec-
tively.
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Table 8: The influence of fundamental variables on the inter-quantile range, IQR, under different threshold values: τL

and τH .

Variable Coefficient IQR

Thresholsd
τL 0.15 0.20
τH 0.85 0.80

Load
βL

1 0.016 0.034
βL

2 0.058 0.067
βL

3 0.099 ∗∗ 0.109 ∗

Wind
βW

1 0.143 ∗∗∗ 0.132 ∗∗∗

βW
2 0.002 -0.007
βW

3 -0.123 ∗∗ -0.122 ∗∗∗

Solar
βS

1 0.094 0.061
βS

2 -0.177 ∗∗∗ -0.166 ∗∗∗

βS
3 -0.317 ∗ -0.496 ∗∗

Note: the asterisks ∗, ∗∗ and ∗∗∗ indicate rejection of null H0 : β = 0 at the significance levels 10%,
5% and 1%, respectively.
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Table 9: The estimates of parameters βW and βS for linear (1) and the non-linear (2) models - the set of fundamental
variables includes lagged gas prices.

τ
Wind Solar

βW
τ βW

1,τ βW
2,τ βW

3,τ βS
τ βS

1,τ βS
2,τ βS

3,τ
Daily index

0.1 -0.187 ∗∗∗ -0.407 ∗∗∗ -0.186 ∗∗∗ -0.188 ∗∗∗ -0.137 ∗∗∗ -0.531 ∗∗∗ -0.101 ∗∗∗ -0.171
0.2 -0.171 ∗∗∗ -0.317 ∗∗∗ -0.164 ∗∗∗ -0.207 ∗∗∗ -0.152 ∗∗∗ -0.456 ∗∗∗ -0.130 ∗∗∗ -0.428 ∗∗

0.3 -0.171 ∗∗∗ -0.262 ∗∗∗ -0.160 ∗∗∗ -0.215 ∗∗∗ -0.152 ∗∗∗ -0.305 ∗∗∗ -0.136 ∗∗∗ -0.552 ∗∗

0.4 -0.166 ∗∗∗ -0.224 ∗∗∗ -0.158 ∗∗∗ -0.217 ∗∗∗ -0.176 ∗∗∗ -0.310 ∗∗∗ -0.145 ∗∗∗ -0.382 ∗∗

0.5 -0.163 ∗∗∗ -0.223 ∗∗∗ -0.155 ∗∗∗ -0.234 ∗∗∗ -0.192 ∗∗∗ -0.377 ∗∗∗ -0.157 ∗∗∗ -0.514 ∗∗

0.6 -0.159 ∗∗∗ -0.204 ∗∗∗ -0.149 ∗∗∗ -0.256 ∗∗∗ -0.199 ∗∗∗ -0.359 ∗∗∗ -0.173 ∗∗∗ -0.532 ∗∗

0.7 -0.162 ∗∗∗ -0.202 ∗∗∗ -0.146 ∗∗∗ -0.250 ∗∗∗ -0.213 ∗∗∗ -0.385 ∗∗∗ -0.188 ∗∗∗ -0.636 ∗

0.8 -0.178 ∗∗∗ -0.214 ∗∗∗ -0.153 ∗∗∗ -0.300 ∗∗∗ -0.263 ∗∗∗ -0.393 ∗∗∗ -0.235 ∗∗∗ -0.071
0.9 -0.186 ∗∗∗ -0.193 ∗∗∗ -0.173 ∗∗∗ -0.338 ∗∗∗ -0.321 ∗∗∗ -0.395 ∗∗∗ -0.301 ∗∗∗ -0.321

Peak index
0.1 -0.175 ∗∗∗ -0.162 ∗∗∗ -0.177 ∗∗∗ -0.227 ∗∗∗ -0.125 ∗∗∗ -0.115 ∗ -0.126 ∗∗∗ -0.483
0.2 -0.171 ∗∗∗ -0.146 ∗∗∗ -0.169 ∗∗∗ -0.253 ∗∗∗ -0.132 ∗∗∗ -0.111 ∗∗ -0.133 ∗∗∗ -0.182 ∗

0.3 -0.179 ∗∗∗ -0.126 ∗∗∗ -0.179 ∗∗∗ -0.286 ∗∗∗ -0.136 ∗∗∗ -0.084 ∗∗ -0.140 ∗∗∗ -0.532 ∗∗

0.4 -0.177 ∗∗∗ -0.118 ∗∗∗ -0.175 ∗∗∗ -0.299 ∗∗∗ -0.135 ∗∗∗ -0.112 ∗∗∗ -0.136 ∗∗∗ -0.399 ∗

0.5 -0.183 ∗∗∗ -0.141 ∗∗∗ -0.172 ∗∗∗ -0.330 ∗∗∗ -0.138 ∗∗∗ -0.132 ∗∗∗ -0.133 ∗∗∗ -0.533 ∗

0.6 -0.196 ∗∗∗ -0.150 ∗∗∗ -0.179 ∗∗∗ -0.291 ∗∗∗ -0.150 ∗∗∗ -0.109 ∗∗∗ -0.149 ∗∗∗ -0.455
0.7 -0.194 ∗∗∗ -0.143 ∗∗∗ -0.185 ∗∗∗ -0.324 ∗∗∗ -0.170 ∗∗∗ -0.104 ∗∗ -0.165 ∗∗∗ -0.139
0.8 -0.210 ∗∗∗ -0.162 ∗∗∗ -0.190 ∗∗∗ -0.331 ∗∗∗ -0.186 ∗∗∗ -0.166 ∗∗ -0.198 ∗∗∗ -0.186
0.9 -0.207 ∗∗∗ -0.150 ∗∗∗ -0.216 ∗∗∗ -0.436 ∗∗∗ -0.205 ∗∗∗ -0.113 ∗ -0.245 ∗∗∗ -0.095

Off-peak index
0.1 -0.175 ∗∗∗ -0.218 ∗∗∗ -0.179 ∗∗∗ -0.158 ∗∗∗ -0.114 ∗∗∗ -0.684 -0.072 ∗∗∗ 0.101
0.2 -0.169 ∗∗∗ -0.204 ∗∗∗ -0.170 ∗∗∗ -0.181 ∗∗∗ -0.161 ∗∗∗ -0.681 ∗∗ -0.093 ∗∗∗ -0.493
0.3 -0.161 ∗∗∗ -0.198 ∗∗∗ -0.165 ∗∗∗ -0.164 ∗∗∗ -0.202 ∗∗∗ -0.565 ∗∗∗ -0.141 ∗∗∗ -0.354
0.4 -0.161 ∗∗∗ -0.203 ∗∗∗ -0.163 ∗∗∗ -0.183 ∗∗∗ -0.208 ∗∗∗ -0.611 ∗∗∗ -0.152 ∗∗∗ -1.651
0.5 -0.157 ∗∗∗ -0.188 ∗∗∗ -0.154 ∗∗∗ -0.171 ∗∗∗ -0.226 ∗∗∗ -0.621 ∗∗∗ -0.173 ∗∗∗ -2.733
0.6 -0.151 ∗∗∗ -0.195 ∗∗∗ -0.148 ∗∗∗ -0.175 ∗∗∗ -0.238 ∗∗∗ -0.550 ∗∗∗ -0.183 ∗∗∗ -1.832 ∗

0.7 -0.151 ∗∗∗ -0.206 ∗∗∗ -0.143 ∗∗∗ -0.178 ∗∗∗ -0.246 ∗∗∗ -0.547 ∗∗∗ -0.233 ∗∗∗ -2.867 ∗

0.8 -0.161 ∗∗∗ -0.208 ∗∗∗ -0.141 ∗∗∗ -0.188 ∗∗∗ -0.297 ∗∗∗ -0.497 ∗∗∗ -0.286 ∗∗∗ -2.994 ∗

0.9 -0.172 ∗∗∗ -0.218 ∗∗∗ -0.167 ∗∗∗ -0.219 ∗∗∗ -0.396 ∗∗∗ -0.440 ∗∗∗ -0.379 ∗∗∗ -1.697

Note: the asterisks ∗, ∗∗ and ∗∗∗ the significance at the significance level 10%, 5% and 1%, respec-
tively.
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Table 10: The influence of fundamental variables on the inter-quantile range, IQR, non-linear models - the set of
fundamental variables includes lagged gas prices.

Variable Coefficient
Index

Daily Peak Off-peak
Linear model

Load βL -0.030 0.116 ∗∗ 0.077 ∗∗

Wind βW 0.001 -0.032 ∗∗ 0.003
Solar βS -0.184 ∗∗∗ -0.080 ∗∗ -0.282 ∗∗∗

Non-linear model

Load
βL

1 -0.175 ∗ 0.038 0.079
βL

2 -0.041 0.095 0.070
βL

3 -0.034 0.032 0.079 ∗

Wind
βL

1 0.214 ∗∗ 0.012 0.001
βL

2 0.013 -0.039 ∗ 0.012
βL

3 -0.150 ∗∗∗ -0.209 ∗∗ -0.061 ∗∗

Solar
βL

1 0.136 0.002 0.244
βL

2 -0.200 ∗∗∗ -0.119 ∗∗∗ -0.308 ∗∗∗

βL
3 -0.150 0.388 -1.798

Note: the asterisks ∗, ∗∗ and ∗∗∗ indicate rejection of null H0 : β = 0 at the significance levels 10%,
5% and 1%, respectively.
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