On the support of the spectral measure of a harmonizable sequence

Andrzej Makagon and Agnieszka Wyłomańska

January 7, 2009

Abstract

In this note we discuss a relationship between the correlation function of a harmonizable sequence and support of its spectral measure.

1 Introduction

Let Z denote the group of integers. The dual \hat{Z} of Z is in this paper identified with the interval $[0, 2\pi)$ with addition modulo 2π.

A second order zero-mean stochastic sequence is often viewed as a sequence \{\(x(n), n \in Z\)\} of elements of a Hilbert space H over the field of complex numbers. The covariance function $R(n, m)$ of $x(n)$ is then defined as $R(n, m) = (x(n), x(m))$, where (\cdot, \cdot) is an inner product in H. A sequence $x(n), n \in Z$, is called strongly harmonizable if there is a measure F on $[0, 2\pi)^2$, called the spectral measure of the sequence \{\(x(n), n \in Z\)\}, such that

$$R(n, m) = \int_0^{2\pi} \int_0^{2\pi} e^{i(ns-mt)} F(ds, dt).$$

(1)

A sequence \{\(x(n), n \in Z\)\} is periodically correlated (PC) with period T, if for every $p \in Z$, the function

$$k \rightarrow B_p(k) = R(p+k, k)$$

\footnote{2000 Mathematics Subject Classification: 60G12, 42B10}

\footnote{Key words: harmonizable sequence, periodically correlated sequence, spectral measure.}
is periodic with the same period T. Every PC sequence is strongly harmonizable and its spectral measure F is supported on T lines (see [1]):

$$L_\lambda = \{(s,t) \in [0,2\pi]^2 : t = s + \lambda\}, \quad \text{where } \lambda \in \left\{ 0, \frac{2\pi}{T}, \frac{2 \times 2\pi}{T}, \ldots, \frac{(T-1) \times 2\pi}{T} \right\}.$$

Note that, since addition in $[0,2\pi)$ is modulo 2π, each line L_λ, $\lambda \neq 0$, if drawn on the square $[0,2\pi) \times [0,2\pi)$ comprises two segments; for example if $\lambda = \frac{2\pi}{T}$ then $L_\lambda = \{(s,t) : s \in [0,2\pi) \} \cup \{(s,s + 2\pi/T - 2\pi) : s \in [2\pi - 2\pi/T, 2\pi)\}$. If the functions $k \rightarrow B_p(k)$ are merely almost-periodic and $\{x(n), n \in \mathbb{Z}\}$ is strongly harmonizable, then its spectrum is supported on lines $L_\lambda = \{(s,t) \in [0,2\pi]^2 : t = s + \lambda\}$, $\lambda \in \Lambda$, where Λ is the set of non-zero frequencies of sequences $B_p(\cdot)$, $p \in \mathbb{Z}$ (see [3]).

In both cases the location of spectral lines (that is the set Λ) is a Borel support of measures whose Fourier transforms are sequences $k \rightarrow B_p(k)$, $p \in \mathbb{Z}$. The purpose of this note is to show that this phenomenon holds true for any harmonizable sequence $\{x(n), n \in \mathbb{Z}\}$, namely, that a Borel support of the spectrum F of $\{x(n), n \in \mathbb{Z}\}$ is on parallel to the diagonal stripes determined by the common support of measures which are the inverse Fourier transforms of sequences $k \rightarrow B_p(\cdot)$, $p \in \mathbb{Z}$.

2 Borel Support

In this paper by a measure on a topological space G we will understand a finite complex σ-additive function defined on Borel σ-algebra of G. If μ is a measure then any Borel set D with the property that $\mu(\Delta) = 0$ for every Borel Δ disjoint with D will be called a Borel support of μ. Note that this definition differs from the standard notion of support (c.f. [2], p.124), where D is assumed to be closed and the smallest in the sense that $|\mu|(D \cap U) > 0$ for every open U such that $D \cap U \neq \emptyset$.

It turns out that it is easier to work with some transformation of the spectral measure F, namely with the measure

$$H(\Delta) = F(\Psi(\Delta)), \quad \text{where } \Psi(u,w) = (u,u+w).$$

Since Ψ is a homeomorphism of $[0,2\pi)^2$ onto itself, H is a measure.
Theorem 1. Let \(\{x(n), n \in \mathbb{Z}\} \) be a strongly harmonizable sequence, \(F \) be its spectral measure, and \(\Psi \) be the function defined in (2). Let \(\mu_p \) denote the measure on \([0, 2\pi)\) such that

\[
R(p + k, k) = \int_0^{2\pi} e^{-iku} \mu_p(du), \quad k \in \mathbb{Z}
\]

(the existence of \(\mu_p \) is proved below in (6)). Then for every Borel subset \(D \) of \([0, 2\pi)\) the following conditions are equivalent:

1. for every \(p \) the set \(D \) is a Borel support of \(\mu_p \),
2. the set \(\Psi([0, 2\pi) \times D) \) is a Borel support of \(F \).

Proof: From (2) it follows that for any bounded complex measurable function \(\phi \)

\[
\int_0^{2\pi} \int_0^{2\pi} \phi(s, t) F(ds, dt) = \int_0^{2\pi} \int_0^{2\pi} \phi(s, s + t) H(ds, dt).
\]

(4)

In particular (1) and (4) imply that

\[
R(p + k, k) = \int_0^{2\pi} \int_0^{2\pi} e^{ipu} e^{-ikw} H(du, dw).
\]

(5)

From Fubini’s theorem we therefore conclude that the measures \(\mu_p, p \in \mathbb{Z} \), satisfying (3) exist and are given by

\[
\mu_p(\Delta) = \int_0^{2\pi} e^{ipu} H(du, \Delta).
\]

(6)

Since the Fourier transform determines a measure we conclude that

\[
\mu_p(\Delta) = 0 \text{ iff } H(E \times \Delta) = 0 \text{ for every Borel } E \subset [0, 2\pi).
\]

(7)

Suppose first that \(D \) is a Borel support of each \(\mu_p, p \in \mathbb{Z} \). Then from (7) it follows that for every \(\Delta \) disjoint with \(D, H(E \times \Delta) = 0 \) for every \(E \). Since rectangles determine the measure \(H \), it implies that \([0, 2\pi) \times D\) is a Borel support of \(H \), that is \(\Psi([0, 2\pi) \times D) \) is a Borel support of \(F \). Conversely suppose that \(\Psi([0, 2\pi) \times D) \) is a Borel support of \(F \). Then \([0, 2\pi) \times D\) is a Borel support of \(H \), that is \(H(E \times \Delta) = 0 \) for every Borel \(E \subset [0, 2\pi) \) and \(\Delta \) disjoint with \(D \). From (7) we conclude that for every \(p, \mu_p(\Delta) = 0 \) provided \(\Delta \) is disjoint with \(D \).
Note that two different iterations of (5) give two representations of $R(p + k, k)$:

1. $R(p + k, k) = \int_0^{2\pi} e^{-ikw} \mu_p(dw)$, where $\mu_p(\Delta) = \int_0^{2\pi} e^{ipu} H(du, \Delta)$,

2. $R(p + k, k) = \int_0^{2\pi} e^{ipu} \nu_k(du)$, where $\nu_k(\Delta) = \int_0^{2\pi} e^{-ikw} H(\Delta, dw)$.

The argument above shows, roughly speaking, that the sequences $k \rightarrow R(p + k, k)$ determine the 'vertical' support of H, while the sequences $p \rightarrow R(p + k, k)$ its 'horizontal' support. The latter means that if all measures ν_k vanish on a set Δ, then the spectral measure F of $\{x(n), n \in Z\}$ vanishes on the stripe $\Delta \times [0, 2\pi)$.

3 Comment on Harmonizability

The strong assumption in Section 2 was the the strong harmonizability of $\{x(n), n \in Z\}$, which yields existence of measures μ_p in (3). However, in some instances the existence of these measures can be deduced from the form of the sequences $B_p(k)$.

For example if $\{x(n), n \in Z\}$ is PC, then just periodicity of $B_p(k)$ implies that

$$B_p(k) = \sum_{j=0}^{T-1} e^{-ik(2\pi j/T)} r_p(j),$$

where

$$r_p(j) = \frac{1}{T} \sum_{k=0}^{T-1} e^{ik(2\pi j/T)} B_p(k),$$

and so (3) holds true with

$$\mu_p = \sum_{j=1}^{T} r_p(j) \delta(2\pi j/T)$$

(δ_a denotes the unit measure concentrated at $\{a\}$).

The immediate question is whether or not (3) itself implies harmonizability of $\{x(n), n \in Z\}$. Following Hurd [3] one can show that the answer is affirmative if the common support of all μ_p is a finite set.

Theorem 2 (cf. [3], Proposition 3) Suppose that $\{x(n), n \in Z\}$ is a stochastic sequence such that for every $p \in Z$ there is a measure μ_p satisfying

$$R(p + k, k) = \int_0^{2\pi} e^{-iku} \mu_p(du), \quad k \in Z.$$

(8)
Suppose additionally that all measures μ_p are Borel supported on the same finite set $\Lambda \subset [0, 2\pi)$ containing 0. Then the sequence $\{x(n), n \in \mathbb{Z}\}$ is strongly harmonizable.

We sketch the proof, referring for details to Hurd’s paper [3].

First note that since $R(p+k, k) = \int_0^{2\pi} e^{-ikw} \mu_p(dw)$, from Lebesgue’s Theorem it follows that for every $s \in [0, 2\pi)$, the limit

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} e^{ij\lambda} R(p+j, j) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} R(p+k, q+k)$$

exists and equals $\mu_p(\{\lambda\})$, if $\lambda \in \Lambda$, and 0 otherwise.

We first examine the sequence $\mu_p(\{0\})$, $p \in \mathbb{Z}$. Since

$$\mu_{p-q}(\{0\}) = \lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} R(p-q+j, j) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} R(p+k, q+k)$$

and $R(n, m) = (x(n), x(m))$,

$$\sum_i \sum_j c_i c_j \mu_{p_i-p_j}(\{0\}) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \left\| \sum_i c_i x(p_i+k) \right\|^2 \geq 0,$$

that is $\mu_p(\{0\})$, $p \in \mathbb{Z}$, is nonnegative definite. From Bochner’s Theorem ([4], Section 1.4.3) it follows that there is a nonnegative measure γ_0 on $[0, 2\pi)$ such that

$$\mu_p(\{0\}) = \int_0^{2\pi} e^{ipu} \gamma_0(du).$$

Now, repeating arguments presented in [3], p. 32, one can show that for every $\lambda \in \Lambda$ there is a constant M such that for any selection of complex numbers c_1, \ldots, c_n and integers p_1, \ldots, p_n

$$\left| \sum_{j=1}^n c_j \mu_p(\{\lambda\}) \right| \leq M \sup_{l} \left| \sum_{j=1}^n c_j e^{ilp_j} \right|.$$

Using [4], Section 1.9.1, we conclude that for every $\lambda \in \Lambda$ there is a measure γ_λ of $[0, 2\pi)$ such that

$$\mu_p(\{\lambda\}) = \int_0^{2\pi} e^{ipu} \gamma_\lambda(du), \quad p \in \mathbb{Z}.$$
For each \(\lambda \in \Lambda \) let \(H_\lambda \) be the image of \(\gamma_\lambda \) through the mapping \([0, 2\pi) \ni s \rightarrow (s, \lambda) \in [0, 2\pi)^2 \), and let \(H = \sum_{\lambda \in \Lambda} H_\lambda \). Since \(\Lambda \) is finite, \(H \) is a measure on \([0, 2\pi)^2 \). Using (9) and (8) it is easy to verify that
\[
\int_0^{2\pi} \int_0^{2\pi} e^{ipu} e^{-i\lambda k} H(du, dw) = \sum_{\lambda} e^{-i\lambda k} \int_0^{2\pi} e^{ipu} \gamma_\lambda(du) = R(p + k, k).
\]
Hence \(F = H \circ \Psi^{-1} \) is the spectral measure of \(\{x(n), n \in \mathbb{Z}\} \), and so \(x(n) \) is strongly harmonizable.

4 Examples

Let us consider the sequence \(\{x(n), n \in \mathbb{Z}\} \), such that for every \(n \)
\[
x(n) = A^2 \int_0^{2\pi} e^{int} g(t) dt,
\]
where \(g(t) \in L^1([0, 2\pi)) \) and \(A \) is a second order random variable of mean zero. The sequence \(\{x(n), n \in \mathbb{Z}\} \) is strongly harmonizable on the Hilbert space with the inner product \((y, z) = Eyz \). Indeed,
\[
R(n, m) = E \overline{x(n)x(m)} = E \left(\int_0^{2\pi} \int_0^{2\pi} e^{(ns-nt)g(s)\overline{g(t)}} ds dt \right),
\]
where \(\sigma_A = E(A^2) \). Then there exists the measure \(F \) on \([0, 2\pi)^2 \) such that
\[
R(n, m) = \int_0^{2\pi} \int_0^{2\pi} e^{i(ns-nt)} F(ds, dt),
\]
where \(F(s, t) = \sigma_A g(s)\overline{g(t)} ds dt \). According to (2) the \(H \) measure takes the form
\[
H(s, t) = \sigma_A g(s)\overline{g(s+t)} ds dt.
\]
According to (6) there exist the family of measures \(\{\mu_p, p \in \mathbb{Z}\} \) such that for every \(p \in \mathbb{Z} \) formula (8) holds. Moreover the measures are given by
\[
\mu_p(dt) = \sigma_A \int_0^{2\pi} e^{ipu} g(u)\overline{g(u+t)} du.
\]
As a second example let us consider the strongly harmonizable sequence \(\{x(n), n \in \mathbb{Z}\} \) such that there exists the Borel subset \(D \), which is a Borel support of \(\mu_p \) for every \(p \in \mathbb{Z} \). Moreover let us assume the diagonal line \(L_0 = \{(s, t) \in [0, 2\pi)^2 : t = s\} \) is disjoint with \(\Psi([0, 2\pi) \times D) \). Then, according to Theorem 1, \(F(L_0) = 0 \).
References

Andrzej Makagon
Wroclaw College of Management and Finance, Wroclaw, Poland
and
Department of Mathematics, Hampton University, Hampton, VA 23668,

Agnieszka Wyłomańska
Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wroclaw, Poland