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We show in this paper that the sample �time average� mean-squared displacement �MSD� of the fractional
Lévy �-stable motion behaves very differently from the corresponding ensemble average �second moment�.
While the ensemble average MSD diverges for ��2, the sample MSD may exhibit either subdiffusion, normal
diffusion, or superdiffusion. Thus, H-self-similar Lévy stable processes can model either a subdiffusive, dif-
fusive or superdiffusive dynamics in the sense of sample MSD. We show that the character of the process is
controlled by a sign of the memory parameter d=H−1 /�. We also introduce a sample p-variation dynamics
test which allows to distinguish between two models of subdiffusive dynamics. Finally, we illustrate a subdif-
fusive behavior of the fractional Lévy stable motion on biological data describing the motion of individual
fluorescently labeled mRNA molecules inside live E. coli cells, but it may concern many other fields of
contemporary experimental physics.
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I. INTRODUCTION

Recent advances in nanotechnology have allowed to study
biological processes on an unprecedented nanoscale mol-
ecule by molecule basis, opening the door to addressing
many important biological problems �1–7�. A phenomenon
observed in recent nanoscale single-molecule biophysics ex-
periments is subdiffusion, which largely departs from the
classical Brownian diffusion theory �8,9�.

The issue of distinguishing between normal and anoma-
lous diffusion, as such, concerns many fields of physics
�10,11�. It is usually based on the analysis of the mean-
squared displacement �MSD� of the diffusing particles. In the
case of classical diffusion, the second moment is linear in
time, whereas anomalous diffusion processes exhibit distinct
deviations from this fundamental property: �x2�t��� ta, where
for 0�a�1 is subdiffusive and for a�1 is superdiffusive
�10�. The origin of anomalous dynamics in a given system is
often unknown.

It is not always clear which model applies to a particular
system �8,9,12�, information which is essential when
diffusion-controlled processes are considered. Therefore, de-
termining the appropriate model is an important and timely
problem; see �8,9,13� for discussion on the origins of
anomaly in the case of intracellular diffusion.

The MSD can be obtained either by performing an aver-
age over an ensemble of particles, or by taking the temporal
average over a single trajectory �14,15�. Recent advances in
single-molecule spectroscopy enabled single particle track-
ing experiments following individual particle trajectories
�9,13�. These require temporal moving averages.

In the literature, two popular stochastic models have been
used to account for anomalous diffusion. The first one is the
fractional Brownian motion �FBM� introduced by A.N. Kol-
mogorov in 1940 �16�. The second model of subdiffusion is

the continuous-time random walk �CTRW� and the corre-
sponding fractional Fokker-Planck equation �10,17�. How-
ever, they do not exhaust all possible sources of anomalous
diffusion. Another source could be random walks on fractal
structures, percolation, etc. �10,18�.

FBM is a generalization of the classical Brownian motion
�BM�. Most of its statistical properties are characterized by
the Hurst exponent 0�H�1. In particular, the MSD of
FBM satisfies �x2�t��� t2H, thus for H�1 /2 we obtain the
subdiffusive dynamics, whereas for H�1 /2 the superdiffu-
sive one. For further properties of FBM and its applications
to physics see �19–23�.

For any 0�H�1, FBM of index H �Hurst exponent� is
the mean-zero Gaussian process BH�t� with the following
integral representation �16,20�:

BH�t� = �
−�

�

	�t − u�+
H−1/2 − �− u�+

H−1/2
dB�u� , �1�

where B�t� is a standard Brownian motion and �x�+
=max�x ,0�.

FBM is H-self-similar, namely for every c�0 we have
BH�ct�=cHBH�t� in distribution, and has stationary incre-
ments. It is the only Gaussian process satisfying these prop-
erties. For H�1 /2, the increments of the process are posi-
tively correlated and exhibit long-range dependence �long
memory, persistence�, whereas for H�1 /2, the increments
of the process are negatively correlated and exhibit short-
range dependence �short memory, antipersistence� �20�. For
the second moment of the FBM we have �BH

2 �t��=�2t2H,
where ��0, which for H�1 /2 gives the subdiffusive dy-
namics and for H�1 /2 the superdiffusive one.

It can be generalized to a fractional Lévy stable motion
�FLSM� �19,20,24–26�:

ZH
��t� = �

−�

�

	�t − u�+
d − �− u�+

d
dL��u� , �2�

where L��t� is a Lévy �-stable motion �LSM�, 0���2, 0
�H�1, and d=H−1 /�. The process is �-stable �for �=2 it
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becomes a FBM�, H-self-similar and has stationary incre-
ments. Analogously to the FBM case, we say the increments
of the process exhibit positive �long-range� dependence if d
�0 �H�1 /��, and negative dependence when d�0, �H
�1 /�� �25,26�. This is due to the behavior of the integrand
in Eq. �2�. Therefore, as in the Gaussian case, the parameter
d controls sign of dependence.

We show in this paper that the time average MSD of
FLSM behaves very differently from the corresponding en-
semble average �second moment�. This nonergodicity of
FLSM is a timely subject since single-molecule experiments
exhibit both anomalous kinetics and a large scatter of the
time average MSD. While the ensemble average MSD di-
verges, the time average MSD may exhibit either subdiffu-
sion, normal diffusion or superdiffusion �see Sec. II�. Thus in
experiment what seems subdiffusive from a single trajectory
analysis could be in fact superdiffusive in the ensemble
sense. The Gaussian case �=2 was treated already in �22�.

We summarize here our main results which are threefold:
�i� we propose in Sec. II to replace the MSD with a sample
MSD and we show that a generalization of FBM to the Lévy
stable law, namely, FLSM �19,20,24�, provides a model for
subdiffusive dynamics; �ii� following �7� we introduce in
Section III a new p-variation dynamics test which allows to
distinguish between FLSM and FBM and confirm that FLSM
dynamics underlies the experimental observations indepen-
dently of the size of the physical system; �iii� on the empiri-
cal side we illustrate in Sec. IV the subdiffusive phenomenon
on Golding and Cox data �9�, i.e., we check self-similarity of
the data, estimate the Hurst exponent H and analyze the dis-
tribution of increments applying various statistical tests to
find that the underlying distribution is Lévy stable with �
=1.85.

II. SAMPLE MSD

Let 	Xi , i=0, . . . ,N
 be a sample of length N+1. We de-
note by 	Yi=Xi−Xi−1 , i=1, . . . ,N
 its increment process. We
introduce the sample MSD,

MN��� =
1

N − � + 1 �
k=0

N−�

�Xk+� − Xk�2. �3�

The sample MSD is a time average MSD on a finite sample
regarded as a function of difference � between observations.
It is a random variable in contrast to the ensemble average
which is deterministic.

If the sample comes from an H-self-similar Lévy �-stable
process with stationary increments, we show that for large N

MN����
d

�2d+1, �4�

where d=H−1 /� and �
d

means similarity in distribution.
If �=2, then by the law of large numbers �27�, for large N

and small �

MN����
d

�2H�Y1
2� = �2�H−1/2�+1�Y1

2� = �2d+1�Y1
2� , �5�

where d=H−1 /2.

For ��2 we rewrite the sample MSD as

1

N − � + 1� �
k=0

N/�−1

�X�k+1�� − Xk��2 + �
k=0

N/�−2

�X�k+1��+1 − Xk�+1�2

+ . . . + �
k=0

N/�−2

�X�k+1��+�−1 − Xk�+�−1�2 . �6�

By �28�, for large N /�,

MN����
d 1

N − � + 1
	�2H�N/��2/�S�/2

+ �� − 1��2H�N/� − 1�2/�S�/2
�
d

�2H��N/��2/�S�/2

= C�N��2�H−1/��+1S�/2 = C�N��2d+1S�/2, �7�

where C�N�=N2/�, d=H−1 /� and S�/2 is a Lévy � /2-stable
random variable with the skewness parameter 	=1. There-
fore, S�/2 is only one-sided.

Applying Eq. �4�, we estimated memory parameter d for
generated FLSM’s in both cases of sub- and superdiffusion.
The results are presented in Fig. 1 in the form of the so-
called box plots �29,30�. The simulated samples are of length
210 which corresponds to longer trajectories of the experi-
mental data �9�. The box plot produces a box and whisker
plot for each value of d. The box has lines at the lower
quartile, median, and upper quartile values. The whiskers are
lines extending from each end of the box to show the extent
of the rest of the data. Outliers are data with values beyond
the ends of the whiskers. We can see that the medians of
estimated d coincide well with the theoretical values.

In particular, for a FBM we obtain the well-known result
that MN�����2H, and for both BM and LSM we arrive at the
diffusion case, namely MN����� since d=0, see also �31�.

As a consequence, we see that the memory parameter d
controls the type of anomalous diffusion. If d�0
�H�1 /��, so in the negative dependence case, the process
follows the subdiffusive dynamics, if d�0 �H�1 /��, the
character of the process changes to superdiffusive. What is
even more amazing, it appears that Lévy �-stable processes
for ��2 can serve both as examples of subdiffusion and
superdiffiusion. This is illustrated in Fig. 2. The subdiffusion
pattern arises when the dependence is negative, so possible
large positive jumps are quickly compensated by large nega-
tive jumps, and on average the process travels shorter dis-
tances than the light-tailed Brownian motion.

Most physical systems are of finite size and the observa-
tion time is possibly limited. In all such cases, boundary
effects might become important for MSD, see e.g., �32,33�.
However, it has been recently demonstrated in �34� that a
finite size effect has no impact on p-variation methodology.
This makes the use of p-variation test in finite size systems
important.

III. SAMPLE p-VARIATION DYNAMICS TEST

Let us now discuss the idea of p-variation, p�0. The
concept of p-variation generalizes the well-known notions of
total or quadratic variations, which have found applications
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in various areas of physics �7,18�, mathematics and engineer-
ing �35�. Let X�t� be a stochastic process analyzed on the
time interval �0,T�. Then, the p-variation of X�t� is defined
as the limit of sum of increments of X�t� taken to the p-th
power over all partitions P of the interval �0,T�, when the
mesh of the partitions goes to zero. When p=1 it reduces to
the total variation, whereas p=2 leads to the notion of qua-
dratic variation.

In practice, having a sample of length N+1: 	Xi , i
=0, . . . ,N
, one calculates sample p-variation taking differ-
ences between every mth element of the data,

Vm
�p� = �

k=0

N/m−1

�X�k+1�m − Xkm�p, �8�

see Figs. 3–6. Note also the essential difference between
increments of X�t� in Eqs. �3� and �8�.

One can show that for data from an H-self-similar process
with stationary increments and finite moments Vm

�p��mHp−1.
In particular, this implies that in the case of FBM for
p�1 /H sample p-variation is an increasing function of m �it
tends to zero as m gets smaller�, whereas for p�1 /H it is a
decreasing function of m �it diverges to infinity when m gets
smaller�. For a FLSM the situation differs and depends on
whether d is positive or negative. It appears that the sample
p-variation is always a decreasing function with respect to m
when d�0. If d�0, the situation is the same as in the finite
moments case: if p�1 /H, then sample p-variation is an in-

creasing function of m, if p�1 /H it is a decreasing function
of m.

This suggests a new p-variation dynamics test for check-
ing both weather a given sample follows the self-similar dy-
namics and, in the subdiffusion case, distinguishing between
a FBM �a light-tailed model� and a FLSM �a heavy-tailed
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FIG. 2. �Color online� Sample MSD for a simulated trajectory
from the FLSM with H=0.4 and �=1.85 �black triangles�—
subdiffusion case, a simulated trajectory from the FLSM with H
=0.7 and �=1.85 �blue circles�—superdiffusion case, and a simu-
lated trajectory from the LSM with �=1.85 and H=1 /� �red
squares�—diffusion case in double logarithmic scale. Estimated ex-
ponents equal 0.77 �corresponding black dotted line�, 1.31 �blue
dashed line�, and 0.99 �red dash-dot line�, respectively.
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FIG. 1. �Color online� Box plots of the sample MSD estimates of the memory parameter d obtained via 1000 simulated trajectories of
FLSM of length 210 with different H’s and �’s. �Top left panel� H=0.4, �=2 �FBM�, d=H−1 /�=−0.1, �top right panel� H=0.4, �=1.85
d�−0.1405, �bottom left panel� H=0.7, �=1.85, d�0.1595, �bottom right panel� H=0.7, �=1 /0.7 �LM�, d=0.

FRACTIONAL LÉVY STABLE MOTION CAN MODEL… PHYSICAL REVIEW E 82, 021130 �2010�

021130-3



model�. For a self-similar model in the superdiffusion case,
sample p-variation as a function of m should be monotonic
and change its behavior from an increasing function to a
decreasing one for some p=1 /H, 0�H�1. In the subdiffu-
sion case, light-tailed and heavy-tailed �power-law� dynam-
ics differ.

�i� If the underlying model is a FBM, then sample
p-variation should behave exactly as in the superdiffusion
case, namely change its monotonic character from a decreas-
ing to an increasing one for some p=1 /H, 0�H�1.

�ii� If the underlying model is a FLSM, then sample
p-variation as a function of m should be a decreasing func-
tion for all p=1 /H, 0�H�1 �in practice, for simulated
samples from a FLSM one can observe that for large p the
function has a quite chaotic character for moderate sample
sizes�.

In Figs. 3–6 we illustrate the behavior of sample
p-variation for sub- and superdiffusion cases for both FBM
and FLSM. The simulated samples are of length 210 resem-
bling the situation of the biological data studied in �9�. In the
superdiffusion case �Figs. 4 and 6�, sample p-variation as a
function of m is monotonic and changes its behavior from an
increasing function to a decreasing one for some p=1 /H, 0
�H�1 for both FBM and FLSM.

In the subdiffusion case �Figs. 3 and 5� p-variation dy-
namics test allows to distinguish between a FBM �a light-
tailed model� and a FLSM �a heavy-tailed model�. If the
underlying model is a FBM, then sample p-variation behaves
exactly as in the superdiffusion case, namely, changes its
monotonic character from a decreasing to an increasing one
for some p=1 /H, 0�H�1. The behavior within a FLSM
model is different, sample p-variation as a function of m
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FIG. 3. �Color online� Sample p-variation for m=1,2 , . . . ,10, H=0.1,0.2, . . . ,0.9 for a simulated trajectory from the FBM with H
=0.4 �the subdiffusion case�. We observe that in the first three panels, sample 1 /H-variation increases, it stabilizes in the fourth panel
�corresponding to H=0.4�, and it decreases in the subsequent panels.

0 2 4 6 8 10
0

5

10

15
x 10

5

m

V
(p

)
m

p=1/0.1

0 2 4 6 8 10
0

2000

4000

m

V
(p

)
m

p=1/0.2

0 2 4 6 8 10
0

500

1000

m

V
(p

)
m

p=1/0.3

0 2 4 6 8 10
0

200

400

m

V
(p

)
m

p=1/0.4

0 2 4 6 8 10
100

200

300

m

V
(p

)
m

p=1/0.5

0 2 4 6 8 10
100

150

200

m

V
(p

)
m

p=1/0.6

0 2 4 6 8 10
150

160

170

180

m

V
(p

)
m

p=1/0.7

0 2 4 6 8 10
100

150

200

m

V
(p

)
m

p=1/0.8

0 2 4 6 8 10
100

150

200

250

m

V
(p

)
m

p=1/0.9

FIG. 4. �Color online� Sample p-variation for m=1,2 , . . . ,10, H=0.1,0.2, . . . ,0.9 for a simulated trajectory from the FBM with H
=0.7 �the superdiffusion case�. We observe that in the first six panels, sample 1 /H-variation increases, it stabilizes in the seventh panel
�corresponding to H=0.7�, and it decreases in the subsequent panels.
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should be a decreasing function for all p=1 /H, 0�H�1.
However, we can observe in Fig. 5, that for simulated time
series from a FLSM, for large p, the function has a quite
chaotic character for such a moderate sample size.

IV. EMPIRICAL DATA

We illustrate our findings on the data of Golding and Cox
describing the motion of individual fluorescently labeled
mRNA molecules inside live E. coli cells �9�. The data
clearly follows the subdiffusive character and consists of 27
two-dimensional trajectories. In �7� two distinct models were
analyzed for the underlying dynamics, namely FBM and
CTRW. The main conclusion of the paper was a suggestion

that FBM can be considered as a possible model for the data.
This was done on the basis of the calculation of sample
p-variation for two values of p: p=2 and p=1 /0.35 �0.35
was the value of the Hurst exponent taken from �9��. Here,
we show that FLSM is a much better model, at least for some
of the trajectories, which is justified by the studies of the
self-similarity parameter, stability index and both sample
MSD and sample p-variation. We illustrate the fit of the
FLSM model to the y-coordinate of the longest trajectory of
1600 points and show it is a subdiffusive one, since d=H
−1 /��0.

In order to check self-similarity of the data we used sev-
eral estimation procedures of the Hurst exponent H, namely,
absolute value, FIRT and variance of residuals �DFA� meth-
ods �36,37�. The results for H varied around 0.4. To estimate
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FIG. 5. �Color online� Sample p-variation for m=1,2 , . . . ,10, H=0.1,0.2, . . . ,0.9 for a simulated trajectory from the FLSM with H
=0.4 and �=1.85 �the subdiffusion case�. We observe that in the first three panels, sample 1 /H-variation does not show any clear trend, and
it decreases in the subsequent panels.
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FIG. 6. �Color online� Sample p-variation for m=1,2 , . . . ,10, H=0.1,0.2, . . . ,0.9 for a simulated trajectory from the FLSM with H
=0.7 and �=1.85 �the superdiffusion case�. We observe that in the first six panels, sample 1 /H-variation increases, it stabilizes in the seventh
panel �corresponding to H=0.7�, and it decreases in the subsequent panels.
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the stability index we employed a regression-type estimator,
which is regarded as both accurate and fast �38�. The esti-
mated stability index �=1.85. To check the hypothesis of
stability, we implemented following statistical tests:
Kolmogorov-Smirnov, Kuiper, Cramer-von-Mises, Watson,
and Anderson-Darling �39,40�. The calculated p-values for
the considered tests were: 0.816, 0.793, 0.766, 0.709, 0.416,
respectively. Such high p-values indicate the Lévy stable fit
is very good. Applying the same procedure, we verified the
hypothesis of normality, only the maximum likelihood
method was used to estimate parameters of the Gaussian dis-
tribution. The calculated p-values for all considered tests
were lower than 0.001, clearly indicating that a normal dis-
tribution hypothesis should be definitely rejected for the data.
Both the Lévy stable and normal fits are illustrated in Fig. 7,
where tails of the fitted and empirical distribution functions
are depicted in the log-log scale.

Next, we calculated sample MSD for the data and for
sample trajectories of both the fitted FBM and FLSM. In Fig.
8 we present the results. It appears that the estimated diffu-
sion exponent for the data equals 0.65. Similar values are
reproduced when simulating FLSM with H=0.4 and �
=1.85, and not by simulating FBM with the estimated Hurst
exponent H=0.4. Finally, we plotted sample p-variation with
respect to m for p=1 /H, where H=0.1,0.2, . . . ,0.9 for the
studied data and for simulated realizations of both the fitted
FBM and FLSM, see Fig. 9. We can see that the behavior of
the p-variation for the data is similar to that of the simulated
FLSM but not the FBM. Namely, the function does not show
any clear trend for large p �equivalently, for small H� and is
decreasing with respect to m otherwise, whereas simulated
trajectories of FBM produce increasing functions of m for
p�1 /0.4, become flat around the value p=1 /0.4, and for
p�1 /0.4 they result in decreasing functions.

V. CONCLUSIONS

Our main finding is that the sample �time average� MSD
is well defined for H-self-similar Lévy �-stable processes for

��2 and their diffusion character is fully controlled by the
memory parameter d, see Eq. �4�. Negative dependence cor-
responds to the subdiffusion case, whereas long-range depen-
dence relates to the superdiffusion case. Hence a FLSM for
d�0 can serve also as an example of subdiffusive dynamics.

We sum up now the presented results concerning the
sample MSD:

�i� No �-stable data for ��2 can be subdiffusive in the
traditional �ensemble� MSD sense since their second moment
always diverges. Therefore, such data are classified as super-
diffusive.

�ii� Hence in order to properly categorize the Golding and
Cox experimental results �some of their data are 0.4-self-
similar and 1.85-stable, which was statistically checked in
this paper�, we are forced to replace MSD with sample MSD,
which allows a wider categorization of subdiffusion.

�iii� For FLSM we have: ensemble MSD���=�, whereas,
as we proved, sample MN��� is proportional to �2d+1.

�iv� The diffusion type is determined now by the memory
parameter d which combines both the self-similarity param-
eter H and stability index �.

�v� Sample MSD for finite second moment processes re-
turns the same values as the traditional MSD, e.g., for the
fractional Brownian motion MN��� is proportional to
�2�H−1/2�+1=�2H.

�vi� Therefore, we claim that the sample MSD is a proper
measure for categorization of anomalous diffusion in Gauss-
ian and non-Gaussian cases and is closer to experimental
data analysis.

In contrast to �7�, we also described the dynamics of the
sample p-variation for general Lévy stable processes, in par-
ticular, for a FBM and a FLSM. As a consequence, we con-
structed a new test which allows to check whether the dy-
namics underlying the data has a self-similar character and
distinguish between two types of subdiffusive dynamics:
FBM and FLSM. Finally, we showed that some of the bac-
terial cytoplasm data �9� can be modeled by a FLSM with
d�0. This was done employing various statistical tests, in-
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troduced notion of sample MSD, and sample p-variation.
Let us also note that we have observed a similar effect for

the data describing the epidermal growth factor receptor la-
beled with quantum dots in the plasma membrane of live
cells presented in �5�. Nevertheless, we would like to warn
the readers that one cannot rush into conclusions about the
data, at least not until longer experiments are made. There-
fore, we encourage experimentalists to make longer measure-
ments with more trajectories, and with higher resolution. We
hope that proposed in this paper statistical methodology will

be useful in determining rigorously the appropriate stochastic
model behind the data.
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