
Annals of Physics 326 (2011) 2431–2443

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Ergodic properties of anomalous diffusion processes
Marcin Magdziarz ∗, Aleksander Weron
Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wyspianskiego 27,
50-370 Wroclaw, Poland

a r t i c l e i n f o

Article history:
Received 1 February 2011
Accepted 21 April 2011
Available online 4 May 2011

Keywords:
Ergodicity
Mixing
Khinchin theorem
Anomalous diffusion
Ornstein–Uhlenbeck process
Fractional Fokker–Planck equation

a b s t r a c t

In this paperwe study ergodic properties of some classes of anoma-
lous diffusion processes. Using the recently developed measure of
dependence called the Correlation Cascade, we derive a general-
ization of the classical Khinchin theorem. This result allows us to
determine ergodic properties of Lévy-driven stochastic processes.
Moreover, we analyze the asymptotic behavior of two different
fractional Ornstein–Uhlenbeck processes, both originating from
subdiffusive dynamics. We show that only one of them is ergodic.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The foundation of statistical mechanics and the explanation of the success of its methods rest on
the fact that the theoretical values of physical quantities (phase averages) may be compared with the
results of experimental measurements (infinite time averages) [1]. L. Boltzmann in his papers on the
kinetic theory of gases introduced a special hypothesis according to which leaving a system in free
evolution and waiting for a sufficient long time, the system will pass through all the states consistent
with its general conditions, namely with given value of the total energy. This hypothesis was later
called the Boltzmann ergodic hypothesis [2].

With J.W. Gibbs’s work and the subsequent arrangement by P. and T. Ehrenfests, this hypothesis
acquired a central position in statisticalmechanics. At the beginning of the 1930s, a complete new and
original approach was attempted by G.D. Birkhoff, B. Koopmann and J. von Neumann. They proposed
the idea of proving the equality of the phase average with the infinite time average without using
the Boltzmann hypothesis [3]. Khinchin in 1949 [4] proposed a new approach to the ergodic problem
and maintained that furnishing an approximate method for evaluating phase averages is part of the
solution to the ergodic problem. The celebrated Khinchin theorem shows that the measure of phase
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points forwhich the infinite time average ofwhatever function differs from the phase average bymore
than a number as small as we please, tends to zero. In other words Khinchin linked the ergodicity of
a physical system with the irreversibility of the corresponding autocorrelation function. However,
the Khinchin theorem cannot be successfully applied to processes with infinite second moments, in
particular to the relevant class of Lévy flights [5].

In this paper, we solve the challenging problem of verifying ergodicity for processes with infinite
second moments, in full generality. Also, we clarify the role of ergodicity and ergodicity breaking
in the context of anomalous diffusion processes. Recently, ergodic properties of systems exhibiting
anomalous behavior have attracted growing attention of researchers in various fields of physics and
related sciences. Ergodicity breaking was reported in blinking quantum dots [6,7]. Analysis of time
averages for non-ergodic systems was introduced in [8]. Ergodicity breaking for systems described by
the fractional Fokker–Planck equationwas studied in [9–11]. For the ergodic properties of generalized
Langevin equations, see [12–17]. The relationship between ergodicity and irreversibility of anomalous
systems was studied in [18]. The analysis of the time average mean-square displacement of fractional
Brownian motion was presented in [19,20].

Consider a dynamical system {St}t∈R describing the temporal evolution of a physical system on a
measure space (X, A, µ). Here, X is the phase space, A is the σ -algebra on X , µ is the probability
measure on X , and {St} is the group of measurable transformations St : X → X , t ∈ R, satisfying the
following two group conditions: S0(x) = x and St(St ′(x)) = St+t ′(x) for x ∈ X , t, t ′ ∈ R.

One of themost fundamental concepts in the theory of dynamical systems is ergodicity. Intuitively,
a system is ergodic if the phase space X cannot be divided into two regions such that a phase point
starting in one region will always stay in that region. More formally, we say that a system is ergodic if
every invariant set A ∈ A is such that either µ(A) = 0 or µ(X \ A) = 0 (in other words, for an ergodic
system all invariant sets are trivial). Recall that a set A ∈ A is called invariant if St(A) = A for all
t ∈ R. The celebrated Birkhoff ergodic theorem states that if {St} is ergodic and measure-preserving
(i.e. µ(St(A)) = µ(A) for all A ∈ A), then the temporal and ensemble averages coincide:

lim
T→∞

1
T

∫ T

0
f (St(x))dt =

∫
X
f (x)µ(dx). (1)

Here, f is an arbitrary integrable function.
Another concept arising naturally in the studies of dynamical systems is mixing. We say that a

measure-preserving dynamical system {St} on a measure space (X, A, µ) is mixing if

lim
t→∞

µ(A ∩ St(B)) = µ(A)µ(B) (2)

for all A, B ∈ A. The above condition for mixing has a simple interpretation. It can be viewed as an
asymptotic independence of the sets A and B under the transformation St . Alternatively, condition (2)
states that the fraction of points starting in A that end up in B after long time t , is equal to the product
of the measures of A and B. It is straightforward to prove that mixing is a stronger property than
ergodicity [21]. Thus, it is enough to verify condition (2) in order to show that the system is ergodic.

In this paper we concentrate on the ergodic properties of some classes of anomalous diffusion
processes. Consider a stationary stochastic process {Y (t), t ∈ R}. In its canonical representation [22],
Y (t) can be treated as a probability measure P on the space RR. Here, by RR we denote the space
of all the functions f : R → R. Additionally, on RR we consider a σ -algebra B generated by
cylinder sets [23], and a group of left-shift transformations {St}t∈R, i.e. St(f )(s) = f (s + t) for any
f ∈ RR. Observe that the group {St}t∈R on the measure space (RR, B, P) is a typical object of study
in the theory of dynamical systems. Therefore, ergodic properties of stationary stochastic processes
can be successfully studied as a part of the general theory of dynamical systems. The assumption
about stationarity of the process Y (t) is absolutely crucial. Its physical meaning is obvious — the
system is in thermal equilibrium. From the mathematical point of view, stationarity implies that the
shift transformations {St} are measure-preserving. Consequently, if Y (t) is ergodic, then the Birkhoff
theorem applies and we obtain the equality of time and ensemble averages

lim
T→∞

1
T

∫ T

0
Y (t)dt = E(Y (0)), (3)
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provided that E(|Y (0)|) < ∞. Property (3) is fundamental in statistical mechanics. Let us underline
that for non-stationary processes the Birkhoff theorem does not apply and the above equality in
general does not hold.

This paper is structured as follows. In the next section we discuss the ergodic properties of
stationary Gaussian processes. We show that ergodicity of the fractional Brownian motion and the
fractional Langevin equation follows immediately from the very old results of Maruyama [24] and
Grenander [25]. Next, using the so-called Lévy autocorrelation function, which is an analogue of
autocorrelation for Lévy-driven processes, we derive a generalized Khinchin theorem. This result
allows us to verify ergodic properties of Lévy-driven stochastic processes, in particular Lévy flights.
In the final section we investigate the ergodic properties of two fractional Ornstein–Uhlenbeck (O–U)
processes, both exhibiting subdiffusive behavior. The first one is defined as the stationary solution of
the fractional Fokker–Planck equation, the second one is derived via Lamperti transformation of the
force-free subdiffusion process. We prove that the second process is mixing (and therefore ergodic),
whereas the first process is known to display ergodicity breaking.

2. Ergodic properties of Gaussian processes

Consider a stationary Gaussian process {Y (t), t ∈ R}. The problem of ergodicity of Y (t)
was completely solved over sixty years ago by Maruyama [24] and Grenander [25]. They proved
independently that the stationary Gaussian process Y (t) is ergodic if and only if its spectral measure
is continuous. Recall that the autocorrelation function of Y (t) can be written in the form

r(t) =
E[(Y (0) − m)(Y (t) − m)]

E[Y 2(0)]
=

∫
∞

−∞

eitλν(dλ),

where ν is the spectral measure of Y (t) andm = E(Y (0)). It can be assumedwithout loss of generality
that ν is a probability measure. Thus, it is sufficient and necessary for Y (t) to be ergodic that ν admits
a density function.

An even simpler condition has to be checked in order to verify that the Gaussian process is mixing.
Following the classical result of Itô [26] (see also [27]), the stationary Gaussian process Y (t) is mixing
if and only if its autocorrelation function satisfies

lim
t→∞

r(t) = 0. (4)

Since mixing is a stronger property than ergodicity, condition (4) implies that the process Y (t) is
ergodic. This implication is known as the Khinchin theorem [4].

In general, condition (4) is rather easy to verify. Taking advantage of this fact, one can prove
ergodicity of many Gaussian anomalous diffusion processes.
Fractional Brownian motion. The first example considered here is the celebrated fractional Brownian
motion (FBM). FBM is themean-zero Gaussian process (denoted here by BH(t)), whose autocovariance
function is given by

E[BH(s)BH(t)] =
1
2


s2H + t2H − |t − s|2H


, t, s ≥ 0.

Here 0 < H < 1 is the Hurst index. For H = 1/2 FBM reduces to the standard Brownian motion. The
mean-square dispacement of FBM equals E[B2

H(t)] = t2H , which for H < 1/2 gives the subdiffusive
dynamics, whereas for H > 1/2 we obtain superdiffusion. Moreover, FBM has stationary increments.
The stationary sequence of FBM increments bH(j) = BH(j+1)−BH(j) is very strongly correlated. One
can show that the autocorrelation function of bH(j) satisfies

r(j) = E[bH(j)bH(0)] ∼ H(2H − 1)j2H−2

as j → ∞. The last result immediately implies that r(j) → 0 as j → ∞. Thus, by condition (4), the
stationary increments of FBM are mixing, and therefore also ergodic.
Langevin equation with fractional Gaussian noise. In a similar way we prove ergodicity of the stochastic
process defined by the following Langevin equation with fractional Gaussian noise:

dWH(t) = −λWH(t)dt + σdBH(t), λ, σ > 0. (5)
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This equation was studied in detail in [28]. The corresponding Kramers problem was considered
in [29]. The stationary solution of (5) has the form

WH(t) = σ

∫ t

−∞

e−λ(t−s)dBH(s).

Moreover, its autocorrelation function satisfies [28]

r(t) ∝ t2H−2

as t → ∞. Therefore r(t) → 0 as t → ∞, which, by (4), implies thatWH(t) is mixing and ergodic.
Fractional Langevin equation. Another importantGaussianmodel of anomalous diffusion (subdiffusion)
is the fractional Langevin equation (FLE). FLE is the generalized Langevin equation (developed
in [30,31]) with power-law memory kernel. FLE for a single particle of mass m in the absence of
external force has the form

m
dV
dt

= −γ

∫ t

0

1
(t − u)β

V (u)du + σ
dBH(t)

dt
, (6)

where γ > 0 is the friction constant and 0 < β < 1 is the fractional exponent. Moreover, dBH (t)
dt is the

fractional Gaussian noise with the Hurst parameter H > 1/2 satisfying the relation β = 2 − 2H .
Solution of the above FLE is a stationary Gaussian process [32] with the autcovariance function

c(t) = E[V (t)V (0)] whose Laplace transform yields [31]

c(ω) =
1

ω + cωβ−1
.

Here, c > 0 is the appropriate constant. Consequently, from the Tauberian theorem, the
corresponding autocorrelation function satisfies r(t) → 0 as t → ∞. Thus, the process V (t) ismixing
and ergodic. Similarly, one can prove ergodicity of FLE in the presence of a harmonic potential [33].

We underline that an analogous method of verifying ergodic properties, based on the analysis of
the asymptotic behavior of the autocorrelation function, can be applied to other stationary Gaussian
processes.

3. Ergodic properties of Lévy-driven processes

The classical Khinchin theorem can be successfully applied under the assumption that the second
moment (and thus the autocorrelation function) of the considered process is finite. This assumption
is obviously fulfilled by the previously discussed family of Gaussian processes. However, different
methods need to be used in order to analyze processes with infinite second moment, in particular
α-stable processes with 0 < α < 2 [22,34,35]. These processes, being the natural models for
Lévy flight dynamics, have found widespread applications in various areas of physics (see [36] and
references therein).

In what follows, we consider stochastic processes of the general form

Y (t) =

∫
∞

−∞

K(t, x)dL(x), t ∈ R. (7)

Here, K(t, x) is the nonnegative deterministic integration kernel and L(x) is the driving Lévy
process with stationary and independent increments [37]. The Fourier transform of L(x) is given by
(Lévy–Khinchin formula)

E[exp(izL(x))] = exp (xΨ (z)) ,

where

Ψ (z) = iµz − σ 2z2/2 +

∫
R
(eizx − 1 − izx1{|x|<1})Q (dx).

Here, µ ∈ R is the drift parameter, σ 2 is the variance of the Gaussian part of Y (t) and Q is the
so-called Lévy measure of Y (t), see [37] for the details. Since the case of Gaussian processes was
discussed in detail in the previous section,we further assume that theGaussian part of Y (t) disappears
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(µ = σ 2
= 0). Additionally, we use the assumption that Y (t) is stationary (the system is in thermal

equilibrium).
The list of physically relevant processes and distributions, which can be represented in the form

(7), includes α-stable, tempered α-stable, exponential, gamma, Poisson, Pareto, Linnik, Mittag-Leffler,
to name only a few.

A challenging problem we are going to discuss now is how to verify ergodicity of the stationary
process Y (t) admitting representation (7). Note that, in general, the second moment of Y (t) can be
infinite. Thus, the standard autocorrelation function is not an appropriate tool for analyzing ergodicity
and mixing of Y (t). This implies that the classical Khinchin theorem cannot be applied for processes
of the general form (7). Therefore, it is necessary to use a different mathematical tool, which will
substitute the autocorrelation function. In a recent paper by Eliazar and Klafter [38], the authors
introduce a new concept of the Lévy Correlation Cascade, which is a promising tool for studying
the dependence structure of Lévy-driven processes. Lévy Correlation Cascade corresponding to the
process Y (t) admitting representation (7) is defined as [38]

Cl(t1, . . . , tn) =

∫
∞

−∞

Λ

l · min{|K(t1, x)|, . . . , |K(tn, x)|}−1 dx, (8)

where n ∈ N, t1, . . . , tn ∈ R, l > 0 is the resolution level, and Λ(z) is the tail of the Lévy measure Q ,
i.e.Λ(z) = Q ({x : |x| > z}). Themulti-dimensional function Cl(t1, . . . , tn) takes the role of an n-point
correlation function. In particular, for stationary Y (t), the function

Rl(t) =
Cl(0, t)

√
Cl(0)

√
Cl(t)

= cl

∫
∞

−∞

Λ

l · min{|K(0, x)|, |K(t, x)|}−1 dx (9)

is the Lévy analogue of the autocorrelation function. Here cl > 0 is the appropriate constant. Rl(t) is
called the Lévy autocorrelation function. It is instructive to discuss the interpretation of Rl(t). Let us
denote by ν0t the Lévy measure of the vector (Y (0), Y (t)). It means that the characteristic function of
(Y (0), Y (t)) can be written as [37]

E[exp(i(z1Y (0) + z2Y (t)))]

= exp
∫

R2
(ei(z1x1+z2x2) − 1 − i(z1x1 + z2x2)1{|x21+x22|<1})ν0t(dx1, dx2)


.

As shown in [39], the following relationship between Rl(t) and the Lévy measure ν0t of the vector
(Y (0), Y (t)) holds:

Rl(t) = c · ν0t{(x, y) : min{|x|, |y|} > l}. (10)

Here, c > 0 is the appropriate constant. The set A = {(x, y) : min{|x|, |y|} > l} is depicted in Fig. 1.
The above relationship indicates that Rl(t) tells us howmuchmass of the measure ν0t is concentrated
beyond the axes OX and OY . Noting that independence of the coordinates of the vector (Y (0), Y (t))
is equivalent to the fact that the whole mass of ν0t is concentrated on the axes, Rl(t) actually tells us
how dependent Y (0) and Y (t) are. This is just analogous to the interpretation of the autocorrelation
function in the Gaussian case! For more details on the general properties of Correlation Cascades,
see [38,40,41].

As we will show, Rl(t) plays a fundamental role in determining ergodic properties of Lévy-driven
processes (7).We startwith the following extensionof theKhinchin theorem to Lévy-drivenprocesses.

Theorem 1 (Generalized Khinchin Theorem). If the Lévy autocorrelation function Rl(t) corresponding to
Y (t) given by (7) satisfies

lim
t→∞

Rl(t) = 0 for every l > 0, (11)

then the process Y (t) is ergodic. Moreover, then the Boltzmann hypothesis is true; i.e., the temporal and
ensemble averages coincide:

lim
T→∞

1
T

∫ T

0
f (Y (t))dt = E[f (Y (0))],
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Fig. 1. The hashed area is the set A = {(x, y) : min{|x|, |y|} > l}. The Lévy autocorrelation function Rl(t) is equal (up to
a constant) to ν0t {A}. This property allows us to interpret Rl(t) as a measure of dependence for Lévy-driven processes. See
Section 3 for the details.

provided that E[|f (Y (0))|] < ∞.

To prove the above theorem, let us first note that the refined version of the classical Maruyama’s
mixing theorem [42,43] states that Y (t) is mixing if and only if the Lévy measure ν0t of the vector
(Y (0), Y (t)) satisfies

lim
t→∞

ν0t{(x, y) : |xy| > l} = 0 for every l > 0. (12)

Thus, using (10) we get that

Rl(t) −−−→
t→∞

0 for every l > 0

if and only if (12) is satisfied. Consequently, since mixing is stronger than ergodicity, we obtain that
condition (11) implies ergodicity. The Boltzmann hypothesis is the immediate consequence of the
Birkhoff ergodic theorem. This ends the proof.

The above considerations actually show that condition (11) is equivalent to mixing. This fact
together with Theorem 1 demonstrates that Rl(t) is a very powerful mathematical tool for studying
ergodic properties of Lévy-driven processes. Condition (11) can be viewed as the Lévy analogue of (4)
for the Gaussian case. Another great advantage of the Lévy autocorrelation function is the fact that
Rl(t) can be easily calculated for many relevant processes (see examples below).

In what follows, we apply the above theoretical results to some specific classes of Lévy-driven
processes.

3.1. α-stable processes

The first considered example is the α-stable processes. In this case, the process L(x) in (7) is the
α-stable Lévy process, 0 < α < 2, with the corresponding Lévy measure Q given by

Q (dx) = c
1 + θ

2
|x|−α−11{x<0}dx + c

1 − θ

2
x−α−11{x≥0}dx.
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Here, c > 0 and −1 ≤ θ ≤ 1 is the assymetry parameter. The Fourier transform of L(x) is given by
the well-known formula

logE[exp(ikL(x))] =


−xc|k|α(1 + iθsgn(k) tan(πα/2)), α ≠ 1
−xc|k|(1 − 2iθsgn(k) log(|k|)/π), α = 1.

The corresponding Lévy autocorrelation function Rl(t) is given by the simple formula

Rl(t) =

∫
∞

−∞

min{|K(0, x)|, |K(t, x)|}αdx.

The above formula shows that in the α-stable case Rl(t) does not depend on the parameter l (Rl(t)
is resolution-free). Thus, condition (11) simplifies significantly and looks very much like (4) for the
Gaussian case. It should be added that the α-stable case is the only one for which Rl(t) is resolution-
free.

Ergodic properties of α-stable processes in the context of the Lévy autocorrelation function were
considered in detail in the recent paper [5], where it was shown that α-stable Ornstein–Uhlenbeck
processes, fractionalα-stable noises and α-stablemoving averages are ergodic andmixing. Also in [5],
ergodicity breaking was reported for the family of α-stable harmonizable processes.

3.2. Tempered α-stable processes

The second example is the tempered α-stable processes. Their relevance in physics stems from the
fact that tempered α-stable processes are extremely useful in the modelling of the transition from
anomalous to normal diffusion [44]. Moreover, tempered stable distributions have finite moments of
all orders; on the other hand they are similar to stable laws in many aspects [45]. Applications of the
tempered stable distributions and processes in the context of astrophysics and relaxation can be found
in [46]. For the Fokker–Planck equation describing tempered dynamics, see [46,47]. Other important
applications related to finance and geophysics can be found in [48–50], respectively.

In the tempered stable case, the process L(x) in representation (7) is the tempered α-stable Lévy
process, 0 < α < 2, with the corresponding Lévy measure Q given by

Q (dx) = c
1 + θ

2
|x|−α−1e−λ|x|1{x<0}dx + c

1 − θ

2
x−α−1e−λx1{x≥0}dx.

Here, 0 < α ≤ 2, c > 0, −1 ≤ θ ≤ 1, and λ > 0 is the tempering parameter. The Fourier transform
of L(x) is given by [44]

logE[exp(ikL(x))]

=


−

xc
2 cos(πα/2)

[(1 + θ)(λ + ik)α + (1 − θ)(λ − ik)α − 2λα
]

−
xc

2 cos(πα/2)
[(1 + θ)(λ + ik)α + (1 − θ)(λ − ik)α − 2λα

− 2ikαθλα−1
]

for 0 < α < 1 and 1 < α ≤ 2, respectively. The corresponding Lévy autocorrelation function Rl(t) is
given by

Rl(t) = cl

∫
∞

−∞

Λ

l · min{|K(0, x)|, |K(t, x)|}−1 dx,

where the tail function Λ(z), z > 0, satisfies

Λ(z) = c3

∫
∞

z
x−α−1e−λxdx

for some c3 > 0. Clearly

Λ(z) ≤ c4z−α

for the appropriate constant c4 > 0. Therefore

Rl(t) ≤

∫
∞

−∞

min{|K(0, x)|, |K(t, x)|}αdx. (13)
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Now, we are in position to discuss ergodic properties of the following specific examples of
tempered α-stable processes.
Tempered α-stable Ornstein–Uhlenbeck process. This process is defined as

Y1(t) = σ

∫ t

−∞

e−κ(t−x)dL(x), κ, σ > 0.

Recall that here L(x) is the tempered α-stable Lévy process. Using (13) with K(t, x) = σ e−κ(t−x)1{x<t},
we get that the Lévy autocorrelation function corresponding to Y1(t) satisfies

Rl(t) ≤ ce−ακt

for some appropriately large c > 0. Thus, condition (11) is satisfied. Therefore, Y1(t) is mixing and
ergodic.
Tempered α-stable noise. The process of increments of the tempered α-stable Lévy process, defined as

l(t) = L(t + 1) − L(t), t ∈ N,

is a stationary sequence of independent and identically distributed random variables. l(t) is called the
tempered α-stable noise. It can be represented as

l(t) = L(t + 1) − L(t) =

∫ t+1

t
dL(x) =

∫
∞

−∞

1{t<x<t+1}dL(x).

Therefore, by (13), the Lévy autocorrelation function of l(t) is equal to zero. This corresponds to the
well known property that the autocorrelation of independent random variables is equal to zero. Since
condition (11) is satisfied, the tempered α-stable noise l(t) is ergodic and mixing.
Fractional tempered α-stable noise. Let 0 < α ≤ 2, 0 < H < 1, H > 1/α. Then, the process

LH(t) =

∫
∞

−∞


(t − x)H−1/α

+ − (−x)H−1/α
+


dL(x) (14)

is called the fractional tempered α-stable motion. Here x+ = max{x, 0}. The stationary process of
increments of LH(t) defined as

lH(t) = LH(t + 1) − LH(t) =

∫
∞

−∞


(t + 1 − x)H−1/α

+ − (t − x)H−1/α
+


dL(x),

t ∈ N, is called the fractional tempered α-stable noise. Contrary to the above considered noise l(t),
the dependence between even very distant time points of lH(t) is very strong. Therefore, the fractional
tempered α-stable noise is often used to model phenomena displaying long memory [51,52]. Using
(13) we get that

Rl(t) ≤ c

1
t

α(1−H)

for the appropriate constant c > 0. Therefore, the Lévy autocorrelation function of lH(t) yields
lim
t→∞

Rl(t) = 0.

This implies that the fractional tempered α-stable noise is ergodic and mixing.

4. Ergodic properties of fractional Ornstein–Uhlenbeck processes

The classical O–U process is one of the most fundamental processes in statistical physics. It gives
the foundation of linear nonequilibrium thermodynamics and describes the velocity in the celebrated
Klein–Kramers model. The O–U process is defined as a stationary solution of the Langevin equation
for the overdamped oscillator

dZ(t) = −λZ(t)dt + dB(t), λ > 0, (15)
with B(t) being the standard Brownian motion. The corresponding Fokker–Planck equation,
describing the probability density function of Z(t), has the form

∂ f (x, t)
∂t

=

[
∂

∂x
λx +

1
2

∂2

∂x2

]
f (x, t). (16)
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It can be easily verified that the autocorrelation function of Z(t) satisfies r(t) = exp{−λt}, therefore
the O–U process is ergodic and mixing.

Interestingly enough, the O–U process can be equivalently defined via the so-called Lamperti
transformation [53,54] from the Brownian motion B(t), i.e.

Z(t) = e−λtB(e2λt). (17)
This curious fact shows that by the appropriate stretching of time and shrinking of space, self-similar
Brownian motion can be transformed into the stationary O–U process.

The fractional (subdiffusive) O–U process is defined by the celebrated fractional Fokker–Planck
equation [36]

∂w(x, t)
∂t

= 0D1−α
t

 ∂

∂x
λx +

1
2

∂2

∂x2


w(x, t), (18)

which is a fractional extension of (16). Here, the operator 0D1−α
t , 0 < α < 1 is the fractional

Riemann–Liouville derivative. The above equation was derived in the framework of continuous-time
random walk (CTRW) with heavy-tailed waiting times. The Langevin-type process corresponding to
(18) has the form [55–58]

Z1(t) = Z(Sα(t)), (19)
where Z(t) is given by (15) and Sα(t) is the inverse α-stable subordinator independent of Z(t). Sα(t)
is defined in the following way:

Sα(t) = inf{τ > 0 : Uα(τ ) > t}, (20)
whereUα(t) is theα-stable subordinator [22,37]with Laplace transform given by E


e−uUα(t)


= e−tuα

,
0 < α < 1.

On the other hand, following the same lines as in (17) we can define the fractional O–U process via
the Lamperti transormation. Since the force-free subdiffusion process B(Sα(t)) is α/2-self-similar, the
Lamperti transformation from B(Sα(t)) leads to the following fractional O–U process:

Z2(t) = e−αλtB(Sα(e2λt)). (21)
In the classical case, the Fokker–Planck equation (16) and the Lamperti transformation (17) lead to

the same O–U process Z(t). However, this is no longer true in the fractional case. It appears that Z1(t)
and Z2(t) are two different fractional O–U processes, both originating from subdiffusive dynamics. As
shown in [59], the process Z1(t) displays ergodicity breaking, since its time average does not vanish
for long times. However, our next result shows that the second fractional O–U process Z2(t) preserves
the mixing property. Therefore, it is also ergodic and the Boltzmann hypothesis holds. This assures
that Z1(t) and Z2(t) are two very different fractional O–U processes.

Theorem 2. The fractional O–U process Z2(t) defined in (21) is mixing.
Proof. See Appendix. �

5. Conclusions

In this paper we have analyzed ergodic properties of some classes of anomalous diffusion
processes. Within the family of Gaussian processes, we have shown that both the Langevin equation
with fractional Gaussian noise and the fractional Langevin equation are ergodic and mixing.

Based on the concept of Lévy Correlation Cascades, we have developed a rigorous mathematical
approach to analyze ergodic properties of the large class of Lévy-driven processes. We have extended
the classical Khinchin ergodic theorem to the family of Lévy-driven processes. As an example, we have
studied the subclass of tempered α-stable processes in some detail.

Finally, we have verified the chaotic properties of two different fractional Ornstein–Uhlenbeck
processes, both originating from subdiffusive dynamics. We have shown that only one of them is
ergodic and mixing.

It should be added that the ergodic properties of infinitely divisible processes can be analyzed using
different tools. The approach based on the so-called dynamical functional can be found in [22,62,63],
the relationship between codifference and ergodicity is discussed in detail in [64,65].



2440 M. Magdziarz, A. Weron / Annals of Physics 326 (2011) 2431–2443

Acknowledgment

The first author acknowledges partial financial support by KBN grant NN201 417639.

Appendix

Proof of Theorem 2. Let us put for simplicityλ = 1/2 (the proof for arbitraryλ > 0 is analogous, only
the notation is more complicated). In order to prove that Z2(t) is mixing it suffices to show that [42]

E
[
exp


i

m−
k=1

zkZ2(sk) + i
n−

k=m+1

zkZ2(sk + t)
]

t→∞
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[
exp
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i
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zkZ2(sk)
]

E
[
exp
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i
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k=m+1

zkZ2(sk)
]

, (22)

for every n ∈ N,m ∈ N0, 0 ≤ m ≤ n, z1, . . . , zn ∈ R and 0 < s1 < · · · < sn.
In what follows, we will show a more general result, namely

E
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, (23)

where x is an arbitrary real number satisfying 0 ≤ x ≤ es1 . Note that for x = 0 we obtain (22).
We will prove formula (23) by induction on the parameter n.

Step I. Let n = 1. We consider two cases:
(i) First letm = 0. Then, we have

E
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exp
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,

which proves expression (23). Here, we have used the fact that the Laplace transform of Sα(t) is given
by E[exp(−zSα(t))] = Eα(−ztα), with Eα(·) being the Mittag-Leffler function [60].
(ii) Form = 1, formula (23) is trivially fulfilled.
Step II. In the second step of induction, let us assume that formula (23) holds for some n − 1. We will
show that (23) also holds for n.

We will use the following elementary formula for Brownian motion:

E
[
exp


i
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]

= exp


−
1
2
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aj


, (24)

where n ≥ 1, 0 ≤ τ1 ≤ · · · ≤ τn, a1, . . . , an ∈ R. We will also use the following recurrence
relation [61]:
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where n ≥ 2, 0 ≤ τ1 ≤ · · · ≤ τn, θ1, . . . , θn ∈ R.
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In order to complete the second step of induction, we consider two cases:
(i) First, letm = 0. Set

ak = zke−(sk+t)α/2, ak = zke−skα/2,

ck =


a2k + 2ak
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for k = 1, . . . , n. Then, applying (24) and (25), we obtain that the left side of expression (23) is equal
to
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Now, applying the fact that E[exp(−zSα(t))] = Eα(−ztα) and by the change of variables y →

u(
∑n
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−1/α , we get that the above formula is equal to
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Consequently, applying the induction assumption and the dominated convergence theorem, we get
that for t → ∞ the above formula converges to
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This ends the proof for the casem = 0.
(ii) The second case ism ≥ 1. Put

ak = zke−skα/2 for k = 1, . . . ,m,

ak = zke−(sk+t)α/2 for k = m + 1, . . . , n,

ck =


a2k + 2ak

n−
j=k+1

aj


for k = 1, . . . , n.
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Then, applying (24) and (25), we get that the left side of expression (23) equals

E
[
exp


−

1
2

m−
k=1

ckSα(esk − x) −
1
2

n−
k=m+1

ckSα(esk+t
− x)

]

= E
[
exp


−

1
2

m−
k=2

ckSα(esk − x) −
1
2

n−
k=m+1

ckSα(esk+t
− x)

]

+
−

1
2 c1

−
1
2

n∑
k=1

ck

∫ es1−x

0
E
[
exp


−

1
2

m−
k=2

ckSα(esk − x − y)

−
1
2

n−
k=m+1

ckSα(esk+t
− x − y)

]
dyE

[
exp


−

1
2
Sα(y)

n−
k=1

ck

]
. (26)

Putck =
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
, k = 1, . . . ,m. Now, applying the induction assumption and the

dominated convergence theorem, we get that the right side of Eq. (26) converges to (as t → ∞)
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This yields (23) and ends the proof of the theorem. �
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