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Abstract

We demonstrate how the basic ideas of the fractal and the heterogeneous market hypotheses
lead to a rigorous mathematical model, which can be used to solve the problem of character-
izing the distribution of price changes corresponding to the empirical scaling law of volatility
for high-frequency data from the foreign exchange market. For this purpose, we adopt the con-
ditionally exponential decay model, which describes asymptotic behaviour of general complex
systems. We also discuss the overall rationale for why one might expect such scaling laws to
hold for �nancial data. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Methods originating in statistical physics have been proved useful in analysing �-
nancial data [1–5]. This inspired us to test a model, originally developed to explain
dielectric relaxation in dipolar materials [6–8], on �nancial markets. More speci�cally,
we adopt the conditionally exponential decay (CED) model [9] and show how to use
it to solve the problem of characterizing the distribution of returns (price changes)
corresponding to the empirical scaling law of volatility for high-frequency data from
the foreign exchange (FX) market [4,10].
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Fig. 1. Histogram of the empirical density (kernel estimator) of the Dow Jones Industrial Average (DJIA)
daily returns from January 1901 till May 1996 and four estimating densities: stable, normal inverse Gaussian
(NIG), hyperbolic and Gaussian (left panel). The same plot on a semilog scale (right panel).

In recent years, the set of available data from �nancial markets has grown rapidly.
In the 1960s and 1970s, most of the empirical studies were based on yearly, quarterly,
or monthly data. During the 1980s, the study of weekly and daily data led to the
discovery of new properties such as autoregressive heteroskedasticity. The studies of
intra-day data in the 1990s revealed a new wealth of complexity [11,12].
It is well known, starting from Mandelbrot [13,14] and Fama [15], that market

returns are not normally distributed. However, this information has been downplayed
or rationalized away over the years to maintain the crucial assumption of the traditional
e�cient market hypothesis (EMH). In conventional economies, markets are assumed
to be e�cient if all available information is re
ected in current market prices [16].
In the search for satisfactory descriptive models of economic data, large numbers of
distributions have been tried and even entire classes of distributional types have been
constructed [17–21]. In any particular case it is always possible to �nd a distribution
that �ts the data well, provided one works within a suitably broad and 
exible class
of candidates, see Fig. 1, where some alternatives to the normal distribution – like
the stable, the hyperbolic and the normal inverse Gaussian (NIG) distribution – are
compared. Table 1 below contains the estimated parameters of these four laws [22].
However, it is not enough to �t given data through the choice of a “good distribu-

tion”. It is much more important to explain return’s data behaviour with a statistical
model that predicts the data’s main characteristics. This is the main problem we address
in this paper.
The e�cient market hypothesis (EMH), including arbitrage pricing theory (APT) and

the capital asset pricing model (CAPM), was very successful in making the mathemat-
ical environment easier, but unfortunately is not justi�ed by the real data. Instead, there
is a need to seek for a market hypothesis that �ts the observed data better and takes into
account why markets exist to begin with. In the place of EMH, the fractal and the het-
erogeneous market hypotheses (FMH resp. HMH) have been proposed recently [12,23].
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Table 1

Distribution Estimated parameters

�-stable �̂ = 1:6147 �̂ = 0:0051
�̂ =−0:1581 �̂ = 5:8× 10−5

NIG �̂ = 4:8918× 10−5  ̂ = 4:438× 103

�̂ =−5:6673 �̂ = 7:7× 10−4

Hyperbolic �̂ = 1:3053× 10−6  ̂ = 2:1466× 104

�̂ =−6:885 �̂ = 8:3868× 10−4

Gaussian �̂ = 0:0106 �̂ = 1:8× 10−4

Based on current developments of chaos theory and using the fractal objects whose
disparate parts are self-similar, these hypotheses provide a new framework for a more
precise modelling of turbulence, discontinuity, and non-periodicity that truly character-
ize today’s �nancial markets.

2. Fractal and Heterogeneous Market Hypotheses

The success of the fractal approach gave rise to the hypothesis that the market itself
is fractal, with heterogeneous trading behaviour. The fractal market hypothesis (FMH)
emphasizes the impact of information and investment horizons on the behaviour of
investors. In traditional �nance theory, the investor is generic. Basically, an investor is
anyone who wants to buy, sell, or hold a security because of the available information,
which is also treated as a generic item. The investor is considered a rational price-taker,
i.e. someone who always wants to maximize return and knows how to value current
information. This generic approach, where information and investors are general cases,
implies that all types of information impact all investors equally. That is where it fails.
The following assumptions were proposed for the FMH [23]: the market is made up

of many individuals with a large number of di�erent investment horizons; information
has a di�erent impact on di�erent investment horizons; the stability of the market is
largely a matter of liquidity (balancing of supply and demand). Liquidity is present
when the market is composed of many investors with many di�erent investment hori-
zons; prices re
ect a combination of short-term technical trading and long-term funda-
mental valuation; if a security has no tie to the economic cycle, then there will be no
long-term trend. Trading, liquidity, and short-term information will dominate.
The purpose of the FMH is to give a model of investor behaviour and market price

movements that �ts our observations. When markets are considered stable, the EMH
and CAPM seem to work �ne. However, during panics and stampedes, these models
break down, like singularities in physics. This is not unexpected, because the EMH,
APT, and the CAPM are equilibrium models. They cannot handle the transition to
turbulence. Unlike the EMH, the FMH says that information is valued according to the
investment horizon of the investor. The key fact is that under the FMH the market is



554 R. Weron et al. / Physica A 264 (1999) 551–561

stable when it has no characteristic time scale or investment horizon. Instability occurs
when the market loses its fractal structure and assumes a fairly uniform investment
horizon.
A statistical study of �nancial data from the fractal point of view is based on the

analysis of time intervals �t of di�erent sizes. A reasonable question to ask is: what
is the relation between volatility and the size of time intervals? The answer to this
question is the scaling law reported in M�uller et al. [11], which relates the mean
of the absolute logarithmic price change – known also as the volatility – in foreign
exchange markets

v(ti) ≡ 1
n

n∑
k=1

|x(ti−k)− x(ti−k −�t)|= c(�t)D ; (1)

where c is an empirical constant and D is the empirical drift exponent. In spite of
its elementary nature, a scaling law study is immediately able to reject the Gaussian
hypothesis and reveal an important property of �nancial time series. For the Gaussian
case the above formula is true with a drift exponent of 0.5, while the empirical val-
ues of drift exponents D are signi�cantly di�erent from that value. These and other
recently found properties of empirical time series have led the researchers at Olsen
& Associates to the heterogeneous market hypothesis (HMH) as opposed to the as-
sumption of a homogeneous market where all participants interpret news and react to
news in the same way. The HMH is characterized by the following interpretations of
the empirical �ndings: di�erent actors in the heterogeneous market have di�erent time
horizons and dealing frequencies; the market is heterogeneous with a fractal structure
of the participants’ time horizons as it consists of short-, medium- and long-term com-
ponents; di�erent actors are likely to settle for di�erent prices and decide to execute
their transactions in di�erent market situations (in other words, they create volatility);
the market is also heterogeneous in the geographic location of the participants.
The market participants of the HMH also di�er in the other aspects beyond the time

horizons and the geographic locations: they can have di�erent degrees of risk aversion,
institutional constraints, and transactions costs [12,10].
Guillaume et al. [10] present stylized facts concerning the spot intra-daily FX market.

They uncover a new wealth of structures that demonstrates the complexity of this
market. Further, they group empirical regularities of the FX market data under three
major topics: the distribution of price changes, the process of price formation, and the
heterogeneous structure of the market. Independently Gallucio et al. [4] addressed the
same problem and found that FX rates have a far more complex nature than random
walk, since hidden correlations are present in the data. In both papers the following
problem is posed:

Problem. How to characterize the mathematical structure of the distributions of price
changes corresponding to the empirical scaling law for volatility?

In what follows we show how to use the CED model to solve this problem.
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3. The CED model

The CED approach clari�es the ideas of the FMH or the HMH and provides a
rigorous mathematical framework for further analysis of �nancial complex processes.
Moreover, the obtained distributional form of returns has important implications for
theoretical and empirical analyses in economics and �nance, since portfolio and option
pricing theories are typically based on distributional assumptions [22].
The market is made up of participants, from tick traders to long-term investors. Each

has a di�erent investment horizon that can be ordered in time. When all investors
with di�erent horizons are trading simultaneously the market is stable. The stability
of the market relies, however, not only on a random diversi�cation of the investment
horizons of the participants but also on the fact that the di�erent horizons value the
importance of the information 
ow di�erently. Hence, both the information 
ow and the
investment horizons should have their own contribution to the observed global market
features. In general, the locally random markets have a global statistical structure that
is non-random.
We assume that the model is a discrete time economy with a �nite number of trading

dates from time 0 to time T and its uncertainty has a global impact on the market index
returns on the interval [0; T ]. As a proxy of the capital market index we can use a
stock index, for example DJIA or S&P500, and as a proxy of the FX market index for
a particular currency – the prevailing exchange rate, i.e. the local currency rate against
one of the global currencies (e.g. USD, DEM). In the family of all world investors let
us identify those N who are acting on a given market described by a chosen index.
Call them I1N ; I2N ; : : : ; INN . Let RiN be the positive (or the absolute value of negative)
part of the ith investor’s return. Each ith investor is related to a cluster of agents
acting simultaneously on common complement markets. The in
uence of this cluster
of agents is of the type of short-range (intra-cluster) interactions and is re
ected by a
random risk-aversion factor Ai. The long-range type of interactions are imposed on the
ith investor by the inter-cluster relationship manifested by the random risk factors Bi

j

for all j 6= i. They re
ect how fast the information 
ows to the ith investor, see [24].

Condition CED1. For the ith investor the following property holds:

�iN (r|a; b) =P(RiN¿r|Ai = a; b−1N max(Bi
1; : : : ; B

i
i−1; B

i
i+1; : : : ; B

i
N ) = b)

= exp(−[amin(r; b)]c) ; (2)

where r, a and b are non-negative constants, bN is a suitable, positive normalizing
constant and c¿1.

The dependence in the CED model measured by the conditional return excess decays
similarly as in some conditionally heteroscedastic models, i.e. in an exponential way,
see (2), but re
ects both short- as well as long-range e�ects. This idea concerns systems
in which the behaviour of each individual entity strongly depends on its short- and
long-range random interactions.
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Condition CED2. Investors have di�erent investment horizons (“short-range interac-
tion”) a�ected by di�erent information sets (“long-range interaction”). The
investment horizon of the investor is re
ected by the random variable Ai, while
{Bi

j; j = 1; 2; : : : ; N; j 6= i} re
ect the information 
ow to this investor.

The probability that the return RiN will not be less than r is conditioned by the value
a taken by the random variable Ai and by the value b taken by the maximum of the
set of random variables {Bi

j; j = 1; 2; : : : ; N; j 6= i}. Therefore (2) can be rewritten as
follows:

�iN (r|a; b) =


1 for r = 0 ;
exp(−(ar)c) for r ¡b ;
exp(−(ab)c) for r¿b ;

i.e. the conditional return excess �iN (r|a; b) decays exponentially with a decay rate a
and exponent c as r tends to the value b. Then it takes a constant value . 1. The
basic statistical assumption is that

Condition CED3. The random variables A1; A2; : : : and Bi
1; B

i
2; : : : form independent

and convergent (with respect to addition and maximum, respectively [9]) sequences of
non-negative, independent, identically distributed (iid) random variables. The variables
R1N ; : : : ; RNN are also non-negative, iid for each N .

Observe that the dependence on external conditions is expressed by the relationship
(2) of each RiN with Ai and max(Bi

1; : : : ; B
i
i−1; B

i
i+1; : : : ; B

i
N ). Condition CED3 can be

partially justi�ed by the following argument. Institutional trading is a major factor in
the determination of security prices. If professional investment managers have similar
beliefs, then the iid distributions assumption may hold as a �rst approximation. Profes-
sional managers are likely to have similar beliefs because they have access to similar
information sources. This uniformity of information over time would tend to generate
similar beliefs [24].
The basic result which allows us to see the structure of distributions describing

market returns is the following: if the global behaviour of the market is given by

�(r) = P
(
lim

N→∞
rN min(R1N ; : : : ; RNN )¿r

)
; (3)

where rN is a suitable, positive normalizing constant, then we have that under conditions
CED1-CED3 the function �(r) ful�ls the global return equation:

d�
dr
(r) =−��(�r)�−1

(
1− exp

(
− (�r)

−�

k

))
�(r) ; (4)

where the parameters �¿ 0; k ¿ 0 and �¿ 0 are determined by the limiting procedure
in (3).
A more general type of the above equation has been recently studied in the con-

text of complex stochastic systems in [7,9]. It turns out that the solution of (4) has
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Fig. 2. Double logarithmic plots of the empirical densities (kernel estimators) of the USD=DEM exchange
rate 30min returns for positive (left panel) and absolute value of negative returns (right panel). Bold lines
represent the two power-laws, see (6). For positive returns the maximum likelihood estimation yielded the
following values: �+ = 1:0781, �+ = 1156 and k+ = 0:2508.

the following integral form:

�(r) = exp

[
−1

k

∫ k(�r)�

0
(1− e−1=s) ds

]
:

The function �(r) monotonically decreases from �(0)=1 to �(∞)=0. Moreover, the
probability density of the global return f(r) =−d�(r)=dr is given by the formula

f(r)=��(�r)�−1
[
1− exp

(
− (�r)

−�

k

)]
exp


−1

k

k(�r)�∫
0

(
1− e−1=s

)
ds


 ; (5)

and exhibits the two power-laws property, see Fig. 2

f(r)˙
{
(�r)�−1 for �r.1;
(�r)−�=k−1 for �r/1 :

(6)

Hence, the global return distribution is characterized by the following three parameters:
�; � and k, where � is the shape and � is the scale parameter. In general, parameter
� slows down, in comparison with an individual investor, the return rate ��(�r)�−1 of
the global market return distribution. Let us stress here the role of the parameter k. It
decides how fast the information 
ow is spread out in the market. If k → 0 then the
long-range interaction is neglected and (4) takes the form of the Weibull probability
density function.
How can we �t the CED model to �nancial data? One way to do it is to use the

most commonly employed estimation procedure among practitioners – the maximum
likelihood (ML) method. The ML method is a prescription for producing an estimator
�̂ of the vector of parameters – in our case �=(�; �; k), called the maximum likelihood
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estimator (MLE). The prescription is to consider the likelihood function

L�(R1; : : : ; Rn) =
n∏

k=1

f(Rk) ;

where R= (R1; : : : ; Rn) is the sample (e.g. 30min returns of the USD=DEM exchange
rate) and f is the probability density, as a function of �, and to let the MLE estimator
�̂ be any estimator such that it is the value of the argument � which maximizes L�(R).
Observe that L�(R) obtains a maximum exactly for the same values of � as the so-called
log-likelihood function

log L�(R1; : : : ; Rn) =
n∑

k=1

logf(Rk) :

This observation usually leads to much easier maximization algorithms.
From formula (5) we can calculate the log-likelihood function of the CED model

log L�(R1; : : : ; Rn) =
n∑

k=1

{
log ���+(�−1)log(Rk)+log

[
1−exp

(
−(�Rk)−�

k

)]}

−
n∑

k=1

{
1
k

∫ k(�Rk )
�

0

(
1− e−1=s

)
ds

}
:

Then using the Nelder–Mead simplex minimization procedure (MATLAB implementa-
tion) applied to the function

−log L�(R1; : : : ; Rn) ;

we obtain estimates of �; �, and k.

4. High-frequency data

In the last section of this paper we discuss the scaling law for volatility using
high-frequency data from the foreign exchange market. The considered data set was
released by Olsen & Associates for the HFDF-II conference. It included exchange rates
of major currencies (of which the USD=DEM and the DEM=FRF exchange rates are
studied below) from 1 January 1996 to 31 December 1996. The data came in �les
where GMT time and FX rates were reported sequentially in 30min intervals, thus the
number of data was 17 520 for each exchange rate. As in [4], data are international
quotations of foreign currencies available from Reuters, Knight-Ridder and Telerate,
and do not correspond to real prices in the global FX market.
The FX spot market is a 24 h global market, mostly inactive during weekends and

national holidays. The �rst observation of the week arrives at 22:30 Greenwich Mean
Time (GMT) on Sunday with the opening of the Asian markets and the last observation
comes from the West Coast of the USA at about 22:30 GMT on Friday. Due to these
features of the FX market, we have excluded inactive periods from the calculations.
In contrast to traditional high-frequency analysis [11,12], where inactive periods are
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included, this method is much better suited for comparison of scaling laws for di�erent
instruments, some of which trade more and some less often. For example in 1996, the
market for the most actively traded exchange rate – USD=DEM – was active for 80%
of the time, whereas the market for the DEM/FRF exchange rate – only for 71% of
the time.
Adequate analysis of the high-frequency (intra-daily) data relies on an explicit de�-

nition of the variables under study. These include the price, the change of price, and
the volatility. The price at time ti is de�ned as

x(ti) ≡ x(ti;�t) ≡ 1
2 (logpbid(ti) + logpask(ti)) ;

where {ti} is the sequence of the regular spaced in time data, �t is the time interval
(�t=30min, �t=1h, etc.) and pbid(ti) (pask(ti)) is the arithmetic average of the bid
(ask) quotes just prior to and just after time ti. The de�nition takes the average of the
bid and ask price rather than either the bid or the ask series as a better approximation
of the transaction price. The change of price r(ti) at time ti is de�ned as

r(ti) ≡ r(ti;�t) ≡ (x(ti)− x(ti −�t)) :

In fact, this is the change of the logarithmic price and is often referred to as return.
Note that it depends on the parameter �t, which represents the investment horizon.
The change of price, rather than the price itself, is the variable of interest for traders
who try to maximize short-term investment returns. The volatility v(ti) at time ti is
de�ned as

v(ti) ≡ v(ti;�t; T ) ≡ 1
n

n∑
k=1

|r(ti−k ;�t)| ; (7)

where T is the sample period over which the volatility is computed (e.g. one day, one
year) and n is a positive integer with T = n�t. A usual example is the computation
of the daily volatility as the average daily volatility over one year: T =1 year, n=250
(working) days and �t = 1 day.
As we have already mentioned, one of the most striking facts is the fractal structure

of FX rates. Observe that formula (7) gives a good estimator of the mean value of the
probability distribution of returns. Thus estimating the parameters of a CED distribution
describing asset returns and approximating the mean value of the CED distribution by
1=� we can compare the empirical and theoretical scaling laws for volatility. This is
illustrated in Fig. 3, where the scaling laws for volatility of the USD=DEM and the
DEM=FRF exchange rates and of the estimated CED models are compared. The �t is
very good, especially for the USD=DEM exchange rate.
Our �ndings (Demp; DCED ¡ 0:5) are quite di�erent from some of the earlier results

[10,12], where the exponent D of about 0.58 for the major FX rates was measured. The
di�erences were probably caused by the di�erent time intervals taken into account –
in their case – 1987–1993, or by the sampling method. As we have said earlier, in our
analysis we excluded the inactive periods from the data. This seems to be consistent
with the results of Gallucio et al. [4], where an exponent of about 0.45 was measured
for the USD=DEM exchange rate and the 1 October 1992–30 September 1993 period.
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Fig. 3. Scaling law for the USD=DEM exchange rate with exponent Demp = 0:4614 and the approximating
CED density with DCED = 0:4777 (left panel). Scaling law for the DEM=FRF exchange rate with exponent
Demp = 0:3249 and the approximating CED density with DCED = 0:3477 (right panel).

These studies demonstrate that, in principle, it is possible to estimate the empirical
drift exponent D, see formula (1), of the scaling law reported in [11,12] from the CED
approach. Thus we have shown that the CED model can be used to solve the problem
of Guillaume et al. [10].
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