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Introduction

The standard mathematical model for insurance risk - the classical
risk process {Rt}t≥0 is given by

Rt = u+ ct−
Nt∑
i=1

Xi.

The initial capital is denoted by u, the Poisson process Nt with
intensity λ describes the number of claims in (0, t] interval and claim
severities are random, given by i.i.d. non-negative sequence {Xk}∞k=1

with mean value µ and variance σ2, independent of Nt. To cover its
liability, the insurance company receives premium at a constant rate
c per unit time, where c = (1 + θ)λµ and θ > 0 is called the relative
safety loading.
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The ruin is said to occur if the insurer’s surplus reaches a specified
lower bound, e.g. minus the initial capital. One measure of risk is the
probability of an event such as this and thus serves as a useful tool in
long range planning for the use of insurer’s funds.

We define a claim surplus process {St}t≥0 as

St = u−Rt =
Nt∑
i=1

Xi − ct.

The time to ruin is defined as

τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u}.

Let L = sup0≤t<∞{St}. The ruin probability in infinite time, i.e. the
probability that the capital of an insurance company ever drops
below zero can be then written as

ψ(u) = P(τ(u) <∞) = P(L > u). (1)
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Considering claim amounts we distinguish between light- and
heavy-tailed distributions.

Distribution FX(x) is said to be light-tailed, if there exist constants
a > 0, b > 0 such that F̄X(x) = 1− FX(x) ≤ ae−bx or, equivalently, if
there exist z > 0, such that MX(z) <∞, where MX(z) is the
moment generating function.

Distribution FX(x) is said to be heavy-tailed, if for all a > 0, b > 0
F̄X(x) > ae−bx, or, equivalently, if ∀z > 0 MX(z) = ∞.

We will study claim size distributions as in Table 1.
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Table 1: Claim size distributions.

Light-tailed distributions

Name Parameters Pdf

Exponential β > 0 fX(x) = βe−βx, x ≥ 0

Gamma α > 0, β > 0 fX(x) = βα

Γ(α)
xα−1e−βx, x ≥ 0

Weibull c > 0, τ ≥ 1 fX(x) = cτxτ−1e−cxτ

, x ≥ 0

Mixed exp’s βi > 0,
n∑

i=1

ai = 1 fX(x) =
n∑

i=1

(aiβie
−βix), x ≥ 0

Heavy-tailed distributions

Name Parameters Pdf

Weibull c > 0, τ < 1 fX(x) = cτxτ−1e−cxτ

, x ≥ 0

Lognormal µ ∈ R σ > 0 fX(x) = 1√
2πσx

e
− (log(x)−µ)2

2σ2 , x ≥ 0

Pareto α > 0, ν > 0 fX(x) = α
ν+x

(
ν

ν+x

)α

, x ≥ 0

Burr α > 0, ν > 0, τ > 0 fX(x) = ατναxτ−1

(ν+xτ )α+1 , x ≥ 0
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The adjustment coefficient

The adjustment coefficient (called also the Lundberg exponent) plays
a key role in calculating the ruin probability in the case of light-tailed
claims. Let γ = supz MX(z) <∞ and let R be a positive solution of
the equation:

1 + (1 + θ)µR = MX(R), R < γ. (2)

If there exists a non-zero solution to the above equation, we call this
R an adjustment coefficient. Clearly, R = 0 satisfies the equation (2),
but there may exist a positive solution as well (this requires that X
has a moment generating function). To see the plausibility of this
result, note that MX(0) = 1, M

′

X(z) < 0, M”
X(z) > 0 and

M
′

X(0) = −µ. Hence, the curves y = MX(z) and y = 1 + (1 + θ)µz
may intersect, as shown in Figure 1.
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Figure 1: Illustration of the existence of the adjustment coefficient.

STFruin01.xpl

Analytical solution to eq. (2) exists only for few claim distributions.
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However, it is quite easy to obtain a numerical solution. The
coefficient R satisfies the inequality:

R <
2θµ
µ(2)

, (3)

where µ(2) = EX2
i . Let D(z) = 1 + (1 + θ)µz −MX(z). Thus, the

adjustment coefficient R > 0 satisfies the equation D(R) = 0. In
order to get the solution one may use the Newton-Raphson formula

Rj+1 = Rj −
D(Rj)
D′(Rj)

, (4)

with R0 = 2θµ/µ(2). Moreover, if it is possible to calculate the third
raw moment µ(3), we can obtain a sharper bound than (3):

R <
12µθ

3µ(2) +
√

9(µ(2))2 + 24µµ(3)θ
,

and use it as the initial condition in (4).
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Exact ruin probabilities in infinite time

In order to present a ruin probability formula we use the
representation of the ruin probability in terms of L and the
decomposition of the maximum L as a sum of ladder heights {Lk}∞k=1

- the sequence of independent and identically distributed variables
with the density

fL1(x) = F̄X(x)/µ. (5)

One may also show that the number of ladder heights K is given by
the geometric distribution with the parameter q = θ/(1 + θ). Thus,
the random variable L may be expressed as

L =
K∑

i=1

Li (6)
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and it has a compound geometric distribution. The above fact leads
to the Pollaczeck–Khinchine formula for the ruin probability:

ψ(u) = 1− P(L ≤ u) = 1− θ

1 + θ

∞∑
n=0

(
1

1 + θ

)n

F ∗nL1
(u), (7)

where F ∗nL1
(u) denotes the nth convolution of the distribution

function FL1 .

We shall briefly present a collection of basic exact results on the ruin
probability in infinite time. The ruin probability ψ(u) is always
considered as a function of the initial surplus u.
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No initial capital

When u = 0 it is easy to obtain the exact formula

ψ(u) =
1

1 + θ
,

Notice that the formula depends only on θ, regardless of the claim
frequency rate λ and claim size distribution. The ruin probability is
clearly inversely proportional to the safely loading.
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Exponential claim amounts

One of the first results on ruin probability is the explicit formula for
exponential claims with the parameter β, namely

ψ(u) =
1

1 + θ
exp

(
− θβu

1 + θ

)
. (8)

We can observe the ruin probability decreases as the capital grows:

Table 2: The ruin probability for exponential claims with β =
1/158893135.4 and θ = 0.3.

u 0 107 108 109 1010

ψ(u) 0.76923077 0.75813955 0.66524508 0.18001426 0.00000038

STFruin03.xpl
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Gamma claim amounts

It was shown by Grandell and Segerdahl that for the gamma claim
amount distribution with mean 1 and α ≤ 1 the exact value of ruin
probability can be computed via the formula

ψ(u) =
θ(1−R/α) exp(−Ru)

1 + (1 + θ)R− (1 + θ)(1−R/α)
+
αθ sin(απ)

π
· I, (9)

where

I =
∫ ∞

0

xα exp {−(x+ 1)αu}
[xα {1 + α(1 + θ)(x+ 1)} − cos(απ)]2 + sin2(απ)

dx. (10)
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The assumption on the mean is not restrictive since for claims X
with arbitrary mean µ we have that ψX(u) = ψX/µ(u/µ). As the
gamma distribution is closed under scale changes we obtain that
ψG(α,β)(u) = ψG(α,α)(βu/α). Table 3 shows the ruin probability
values for gamma claims with with α = 0.49345, β = 561633357.3
and safety loading θ = 30% with respect to the initial capital u.

Table 3: The ruin probability for gamma claims with α = 0.49345,
β = 561633357.3 and θ = 0.3.

u 0 107 108 109 1010

ψ(u) 0.76923070 0.75824563 0.66662131 0.18483976 0.00000050

STFruin04.xpl
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Mixture of two exponentials claim amounts

For the claim size distribution being a mixture of two exponentials
with the parameters α, β and weights q, 1− q, using the Laplace
transform inversion, one may obtain an explicit formula, see Panjer
and Willmot (1992):

ψ(u) =
1

(1 + θ)(r2 − r1)
{(ρ− r1) exp(−r1u) + (r2− ρ) exp(−r2u)} ,

where

r1 =
ρ+ θ(α+ β)−

[
{ρ+ θ(α+ β)}2 − 4αβθ(1 + θ)

]1/2

2(1 + θ)
,

r2 =
ρ+ θ(α+ β) +

[
{ρ+ θ(α+ β)}2 − 4αβθ(1 + θ)

]1/2

2(1 + θ)
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and

p =
qα−1

qα−1 + (1− q)β−1
, ρ = α(1− p) + βp.

Table 4 shows the ruin probability values for mixture of 2
exponentials claims with α = 1/190744933.98, β = 1/84535691.61,
q = 0.78 and θ = 30% with respect to the initial capital u.

Table 4: The ruin probability for mixture of 2 exponentials claims with
α = 1/190744933.98, β = 1/84535691.61, q = 0.78 and θ = 0.3

u 0 107 108 109 1010

ψ(u) 0.76923077 0.75872977 0.67258748 0.21205921 0.00000214

STFruin05.xpl
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Approximations of the ruin probability in
infinite time

When the claim size distribution is exponential (or closely related),
simple analytic results for the ruin probability in infinite time may be
possible. For more general claim amount distributions, e.g.
heavy-tailed, the Laplace transform technique does not work and one
may need some estimates. Here we will present 12 different
well-known and not so well-known approximations. Next, numerical
comparison of the different approximations is done.
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Cramér–Lundberg approximation

One may obtain approximate formulae for ψ(u) for large u.
Cramér–Lundberg’s asymptotic ruin formula is given by

ψCL(u) = Ce−Ru, (11)

where C = θµ/ {M ′
X(R)− µ(1 + θ)} . The classical

Cramér–Lundberg approximation yields quite accurate results,
however we must remember that it requires the adjustment
coefficient to exist, therefore merely the light-tailed distributions can
be taken into consideration. For exponentially distributed claims the
formula (11) yields an exact result.
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In Table 5 the Cramér–Lundberg approximation for mixture of 2
exponentials claims with α = 1/190744933.98, β = 1/84535691.61,
q = 0.78 and the relative safety loading θ = 30% with respect to the
initial capital u is given.

Table 5: The Cramér–Lundberg approximation.

u 0 107 108 109 1010

ψCL(u) 0.76139296 0.75172213 0.67002910 0.21205910 0.00000214

STFruin06.xpl
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Exponential approximation

This approximation was proposed and derived by De Vylder (1996).
It requires the first three moments to be finite.

ψE(u) = exp

{
−1− 2µθu− µ(2)√

(µ(2))2 + (4/3)θµµ(3)

}
. (12)

Table 6 shows the results of the exponential approximation for
mixture of 2 exponentials claims with respect to u.

Table 6: The exponential approximation.

u 0 107 108 109 1010

ψE(u) 0.80689909 0.79634099 0.70732285 0.21617418 0.00000154

STFruin07.xpl
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Lundberg approximation

The following formula, called the Lundberg approximation, comes
from Grandell (2000). It requires the first three moments to be finite.

ψL(u) =
{

1 +
(
θu− µ(2)

2µ

)
4θµ2µ(3)

3(µ(2))3

}
exp

(
−2µθu
µ(2)

)
. (13)

In Table 7 the Lundberg approximation for mixture of 2 exponentials
claims with respect to u is given.

Table 7: The Lundberg approximation.

u 0 107 108 109 1010

ψL(u) 0.68952377 0.68317733 0.62709804 0.22624195 0.00000031

STFruin08.xpl
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Beekman–Bowers approximation

The Beekman–Bowers approximation uses the following
representation of the ruin probability.

ψ(u) = P(L > u) = P(L > 0)P(L > u|L > 0). (14)

The idea of the approximation is to replace the conditional
probability 1− P(L > u|L > 0) with a gamma distribution function
G(u) by fitting first two moments. This leads to:

ψBB(u) =
1

1 + θ
(1−G(u)), (15)

where the parameters α, β of G are given by

α =
{

1 +
(

4µµ(3)

3(µ(2))2
− 1

)
θ

}
/(1+θ), β = 2µθ/

{
µ(2) +

(
4µµ(3)

3µ(2)
− µ(2)

)
θ

}
.
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The Beekman–Bowers approximation gives rather accurate results.
In the exponential case it becomes the exact formula. It can be used
only for distributions with finite first three moments.

Table 8: The Beekman–Bowers approximation.

u 0 107 108 109 1010

ψBB(u) 0.76923077 0.75876182 0.67379297 0.21161637 0.00000224

sTFruin09.xpl

Table 8 shows the results of the Beekman–Bowers approximation for
mixture of 2 exponentials claims with α = 1/190744933.98,
β = 1/84535691.61, q = 0.78 and θ = 30% with respect to u. The
results justify the thesis the approximation yields accurate results.
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Renyi approximation

The Renyi approximation may be derived from (15) when we replace
the gamma distribution function G with an exponential one,
matching only the first moment. Hence, it can be regarded as a
simplified version of the Beekman–Bowers approximation.

ψR(u) =
1

1 + θ
exp

{
− 2µθu
µ(2)(1 + θ)

}
. (16)

Table 9: The Renyi approximation.

u 0 107 108 109 1010

ψR(u) 0.76923077 0.75937197 0.67613874 0.21176217 0.00000192

STFruin10.xpl
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De Vylder approximation

The idea of this approximation is to replace the claim surplus process
St with the claim surplus process S̄t with exponentially distributed
claims such that the three moments of the process coincide, namely
ESk

t = ES̄k
t for k = 1, 2, 3. The process S̄t is determined by the three

parameters (λ̄, θ̄, β̄). Thus the parameters must satisfy

λ̄ =
9λµ(2)3

2µ(3)2
, θ̄ =

2µµ(3)

3µ(2)2
θ, and β̄ =

3µ(2)

µ(3)
.

Then De Vylder’s approximation is given by

ψDV (u) =
1

1 + θ̄
exp

(
− θ̄β̄u

1 + θ̄

)
. (17)
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Table 10 shows the results of the De Vylder approximation for
mixture of 2 exponentials claims with α = 1/190744933.98,
β = 1/84535691.61, q = 0.78 and the relative safety loading θ = 30%
with respect to the initial capital u. The approximation gives
surprisingly good results.

Table 10: The De Vylder approximation.

u 0 107 108 109 1010

ψDV (u) 0.76308137 0.75337907 0.67142556 0.21224673 0.00000211

STFruin11.xpl
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4-moment gamma De Vylder approximation

The 4-moment gamma De Vylder approximation, proposed by
Burnecki, Místa and Weron (2003) is based on De Vylder’s idea to
replace the claim surplus process St with another one S̄t for which
the expression for ψ(u) is explicit. This time we calculate the
parameters of the new process with gamma distributed claims and
apply the exact formula (9) for the ruin probability. To this end we
match the four moments of St and S̄t. First, let us note that the
claim surplus process S̄t with gamma claims is determined by the
four parameters (λ̄, θ̄, µ̄, µ̄(2)).
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Since

ESt = −θλµt,

ES2
t = λµ(2)t+ (θλµt)2,

ES3
t = λµ(3)t− 3(λµ(2)t)(θλµt)− (θλµt)2,

ES4
t = λµ(4)t− 4(λµ(3)t)(θλµt) + 3(λµ(2)t)2 + 6(λµ(2)t)(θλµt)2 + (θλµt)4

and for the gamma distribution µ̄(3) = µ̄(2)

µ̄ (2µ̄(2) − µ̄2),

µ̄(4) = µ̄(2)

µ̄2 (2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2), the parameters (λ̄, θ̄, µ̄, µ̄(2))
must satisfy the equations

θλµ = θ̄λ̄µ̄, λµ(2) = λ̄µ̄(2),

λµ(3) = λ̄(2µ̄(2)−µ̄2)µ̄(2)/µ̄2, λµ(4) = λ̄(2µ̄(2)−µ̄2)(3µ̄(2)−2µ̄2)µ̄(2)/µ̄2.
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Hence

λ̄ =
λ(µ(3))2(µ(2))3{

µ(2)µ(4) − 2(µ(3))2
} {

2µ(2)µ(4) − 3(µ(3))2
} , θ̄ =

θµ
{

2(µ(3))2 − µ(2)µ(4)
}

(µ(2))2µ(3)
,

µ̄ =
3(µ(3))2 − 2µ(2)µ(4)

µ(2)µ(3)
, µ̄(2) =

{
µ(2)µ(4) − 2(µ(3))2

} {
2µ(2)µ(4) − 3(µ(3))2

}
(µ(2)µ(3))2

.

We also need to assume that µ(2)µ(4) < 3
2 (µ3)2 to ensure that

µ̄(2) > µ̄2 andµ̄, µ̄(2) > 0. In case this assumption can not be fulfilled,
we simply set µ̄ = µ and do not calculate the fourth moment. This
case leads to

λ̄ =
2λ(µ(2))2

µ(µ(3) + µ(2)µ)
, θ̄ =

θµ(µ(3) + µ(2)µ)
2(µ(2))2

, µ̄ = µ, µ̄(2) =
µ(µ(3) + µ(2)µ)

2µ(2)
.

(18)
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All in all, we get the approximation

ψ4MGDV (u) =
θ̄(1− R

ᾱ )e−
β̄R
ᾱ u

1 + (1 + θ̄)R− (1 + θ̄)(1− R
ᾱ )

+
ᾱθ̄sin(ᾱπ)

π
· I, (19)

where

I =
∫ ∞

0

xᾱe−(x+1)β̄u dx[
xᾱ

{
1 + ᾱ(1 + θ̄)(x+ 1)

}
− cos(ᾱπ)

]2 + sin2(ᾱπ)
,

and (ᾱ, β̄) are given by ᾱ = µ̄2/
(
µ̄(2) − µ̄2

)
, β̄ = µ̄/

(
µ̄(2) − µ̄2

)
.

In the exponential and gamma case this method gives the exact
result. For other claim distributions the first four (or three) moments
have to exist. Burnecki, Místa and Weron showed numerically that
the method gives a slight correction to the De Vylder approximation,
which is often regarded as the best among ’simple’ approximations.
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In Table 11 the 4-moment gamma De Vylder approximation for
mixture of 2 exponentials claims and θ = 30% with respect to u is
given. The most striking impression of Table 11 is certainly the
extremely good accuracy of the simple 4-moment gamma De Vylder
approximation. The relative error with respect to the exact values
presented in Table 4 is always below 0.3%.

Table 11: The 4-moment gamma De Vylder approximation.

u 0 107 108 109 1010

ψ(u) 0.76746161 0.75702255 0.67221498 0.21209805 0.00000213

STFruin12.xpl
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Heavy traffic approximation

The term ’heavy traffic’ comes from queuing theory. In risk theory it
means that on the average the premiums exceed only slightly the
expected claims. It implies that safety loading is positive and small.

ψHT (u) = exp
(
−2θµu
µ(2)

)
. (20)

Table 12: The heavy traffic approximation.

u 0 107 108 109 1010

ψHT (u) 1.00000000 0.98337076 0.84561548 0.18695163 0.00000005

STFruin13.xpl
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Light traffic approximation

The queuing theory term ’light traffic’ has an obvious interpretation
also in risk theory, namely, on the average, the premiums are much
larger than the expected claims. It implies that θ is large.

ψLT (u) = λ

∫ ∞

u

F̄X(x)dx. (21)

The method gives accurate results merely for huge values of θ.

Table 13: The light traffic approximation.

u 0 107 108 109 1010

ψLT (u) 0.76923077 0.72475312 0.43087903 0.00361367 0.00000000

STFruin14.xpl
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Heavy-light traffic approximation

The crude idea of this approximation is to combine heavy and light
approximation:

ψHLT (u) =
θ

1 + θ
ψLT

(
θu

1 + θ

)
+

1
(1 + θ)2

ψHT (u), (22)

The particular features of this one is that it is exact for the
exponential case and asymptotically correct both in light and heavy
traffic.

Table 14: The heavy-light traffic approximation.

u 0 107 108 109 1010

ψHLT (u) 0.76923077 0.75696126 0.65517763 0.15895288 0.00000091

STFruin15.xpl
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Heavy-tailed claims approximation

First, let us introduce the class of subexponential distributions S,
namely

S =

{
F : lim

x→∞

F ∗2(x)
F̄ (x)

= 2

}
. (23)

Here F ∗2(x) is the convulsion square. In terms of random variables
(23) means P (X1 +X2 > x) ∼ 2P (X1 > x), x→∞, where X1, X2

are independent random variables with distribution F .

The class contains lognormal and Weibull (for τ < 1) distributions.
Moreover, all distributions with a regularly varying tail (e.g.
loggamma, Pareto and Burr distributions) are subexponential.
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For subexponential distributions we can formulate the following
approximation of the ruin probability. If F ∈ S, then the asymptotic
formula for large u is given by

ψHT (u) =
1
θµ

(
µ−

∫ u

0

F̄ (x)dx
)
, (24)

The approximation is considered to be inaccurate. The problem is a
very slow rate of convergence as u→∞. Even though the
approximation is asymptotically correct in the tail, one may have to
go out to values of ψ(u) which are unrealistically small before the fit
is reasonable. However, we will show that it is not always the case.
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Computer approximation via the
Pollaczeck–Khinchine formula

Pollaczeck–Khinchine formula (7) can be used to derive explicit
solutions for only a few claim amount distributions. For the rest, in
order to calculate the ruin probability, the Monte Carlo method can
be applied to (1) and (6). The main problem is to simulate random
variables from the density fL1(x). Only four of the considered
distributions lead to a close form of the density, namely

• for exponential claims, fL1(x) is the density of the same
exponential distribution,

• for mixture of exponentials claims, fL1(x) is the density of the
mixture of exponential distribution with the weights(

a1
β1
/

{∑n
i=1

(
ai

βi

)}
, · · · , an

βn
/

{∑n
i=1

(
ai

βi

)})
,
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• for Pareto claims, fL1(x) is the density of the Pareto distribution
with the parameters α− 1 and ν,

• for Burr claims, fL1(x) is the density of the transformed beta
distribution.

For other studied here distributions in order to generate random
variables Lk we use formula (5) and controlled, numerical integration.
We note that the methodology based on the Pollaczeck–Khinchine
formula works for all considered claim distributions and can be
chosen as the reference method for calculating the ruin probabilty.
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Summary of the approximations

Table 15: Indication when the approximations can be applied

Exp. Gamma Weib. Mix.Exp. Lognor. Loggam. Pareto Burr

Cramér + + – + – – – –

Exponential + + + + + β > 3 α > 3 ατ > 3

Lundberg + + + + + β > 3 α > 3 ατ > 3

B-B + + + + + β > 3 α > 3 ατ > 3

Renyi + + + + + β > 2 α > 2 ατ > 2

De Vylder + + + + + β > 3 α > 3 ατ > 3

4M GDeV + + + + + β > 3 α > 3 ατ > 3

H-Traffic + + + + + β > 2 α > 2 ατ > 2

L-Traffic + + + + + + + +

H-L-Traffic + + + + + β > 2 α > 2 ατ > 2

H-tailed – – 0<τ<1 – + + + +

Pol-Khin + + + + + + + +
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Numerical comparison of the infinite time
approximations

We will now illustrate all 12 approximations presented before. To
this end we consider three claim amount distributions which were
best fitted to the catastrophe data, namely the mixture of two
exponentials, lognormal and Pareto distributions. The parameters of
the distributions are: α = 1/190744933.98, β = 1/84535691.61,
q = 0.78 (mixture), µ = 18.44, σ = 1.13 (lognormal), and α = 2.39,
λ = 3.03 · 108 (Pareto). The ruin probability will be depicted as a
function of the initial capital u ranging from USD 0 to 10 billions.
The relative safety loading is set to 30%.
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Figure 2: The exact value of the ruin probability (left panel), the relative error of

the approximations (right panel). The Cramér-Lundberg (blue line), exponential

(orange circles), Lundberg (red dashed line), Beekman–Bowers (dashed brown line),

Renyi (green line), De Vylder (black ”x”), 4-moment gamma De Vylder (dark green

circles), heavy traffic (magenta rectangles), light traffic (cyan line with crosses) and

heavy-light traffic (grey circles) approximations. The mixture of 2 exps case.
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Figure 3: The exact value of the ruin probability (left panel), the relative error

of the approximations (right panel). The exponential (orange circles), Lundberg

(red dashed line), Beekman–Bowers (dashed brown line), Renyi (green line), De

Vylder (black ”x”), 4-moment gamma De Vylder (dark green circles), heavy traffic

(magenta rectangles), light traffic (cyan line with crosses), heavy-light traffic (grey

circles) and heavy tailed claims (blue stars) approximations. The lognormal case.
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Figure 4: The exact value of the ruin probability (left panel), the relative error

of the approximations (right panel). Renyi (green line), heavy traffic (magenta

rectangles), light traffic (cyan line with crosses), heavy-light traffic (grey circles)

and heavy tailed claims (blue stars) approximations. The Pareto case.
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