Solving quadratic equations in complex domain

Consider a quadratic equation

\[ax^2 + bx + c = 0 \] \hspace{1cm} (1)

where \(a, b, c \in \mathbb{R} \).

Let \(\Delta = b^2 - 4ac \) be the discriminant of (1).

If \(\Delta > 0 \), then the equation (1) has two distinct real roots given by

\[x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a} \] \hspace{1cm} (2)

If \(\Delta = 0 \), then the equation has a double real root given by

\[x_{1,2} = \frac{-b}{2a} \]

Finally, if \(\Delta < 0 \), then the equation has no real roots.

On the other hand, if follows from the Fundamental Theorem of Algebra that each complex polynomial of degree \(n \) has \(n \) complex roots (possibly all non-real), counting their multiplicities. For example:

\(x^4 - 1 \) (degree 4) has four roots: 1, \(-1\), \(i\) and \(-i\), as it can be decomposed as

\[x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x - i)(x + i) \]

\(x^4 - 1 \) has four simple roots: 1, \(-1\), \(i\) and \(-i\), and one root 5 of multiplicity 3.

It follows that the equation (1) always has complex roots. Let us take a closer look at the whole situation.

Consider the equation (1) again but now suppose that \(a, b, c \) are complex. Suppose that the discriminant \(\Delta = b^2 - 4ac \) is non-zero, and that \(\delta \) is such that \(\delta^2 = \Delta \)\(^1\). The equation (1) then has two distinct complex roots given by

\[x_1 = \frac{-b - \delta}{2a}, \quad x_2 = \frac{-b + \delta}{2a} \] \hspace{1cm} (3)

\(^1\)It is an easy exercise to prove that for each non-zero complex number \(w \) the equation \(z^2 = w \) has exactly two solutions \(z_1, z_2 \) and \(z_2 = -z_1 \).
Example. The discriminant of $x^2 - 4x + 5$ is $\Delta = -9$. Writing $-9 = (3i)^2$, we get the following roots of $x^2 - 4x + 5$:

$$x_1 = \frac{4 - 3i}{2} = 2 - \frac{3}{2}i, \quad x_2 = \frac{4 + 3i}{2} = 2 + \frac{3}{2}i$$

Example. The discriminant of $x^2 + (1 + i)x + i$ is:

$$\Delta = (2 + 2i)^2 - 4i = 8i - 4i = 4i$$

Writing $4i$ in the trigonometric form, $4i = 4(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})$, we see that one of the two complex roots of order 2 of Δ is:

$$w_1 = 2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} + i\sqrt{2}$$

and the other is $w_2 = -\sqrt{2} - i\sqrt{2}$.

Therefore the roots of $x^2 + (1 + i)x + i$ are:

$$x_1 = \frac{-(1 + i) - (\sqrt{2} + i\sqrt{2})}{2} = \frac{-1 - \sqrt{2}}{2} + \frac{-1 - \sqrt{2}}{2}i$$

$$x_2 = \frac{-(1 + i) + (\sqrt{2} + i\sqrt{2})}{2} = \frac{-1 + \sqrt{2}}{2} + \frac{-1 + \sqrt{2}}{2}i$$

Note. If the coefficients a, b, c in (1) are real, the discriminant Δ is real. If $\Delta < 0$, then we can write $\Delta = (\sqrt{-\Delta} i)^2$. From (3) we then get:

$$x_1 = \frac{-b - \sqrt{-\Delta} i}{2a}, \quad x_2 = \frac{-b + \sqrt{-\Delta} i}{2a} \quad (4)$$

Example. Solve the equation:

$$x^4 + x^2 + 1 = 0 \quad (5)$$

Putting $x^2 = t$ brings (5) into the quadratic equation:

$$t^2 + t + 1 = 0 \quad (6)$$

whose discriminant is $\Delta = -3$. In view of (4), the roots of (6) are:

$$t_1 = \frac{-1 - \sqrt{3} i}{2}, \quad t_2 = \frac{-1 + \sqrt{3} i}{2} \quad (7)$$
In that way we have the following two equations to solve with x:

$$x^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \quad x^2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \quad (8)$$

Since $-\frac{1}{2} - \frac{\sqrt{3}}{2}i = \cos \frac{4}{3}\pi + i\sin \frac{4}{3}\pi$, the first equation in (8) has the solutions:

$$x_1 = \cos \frac{4}{6}\pi + i\sin \frac{4}{6}\pi = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad x_2 = -x_1 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Similarly, since $-\frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos \frac{2}{3}\pi + i\sin \frac{2}{3}\pi$, the second equation in (8) has the solutions:

$$x_3 = \cos \frac{2}{6}\pi + i\sin \frac{2}{6}\pi = \frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad x_2 = -x_1 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

P.Kajetanowicz