[Photo of M. Kwasnicki]

Mateusz Kwaśnicki

Department of Pure Mathematics
Wrocław University of Science and Technology
ul. Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

e-mail:
skype: mateusz.kwasnicki
ORCID: 0000-0003-3896-8124

Research articles

For an author's copy of any of the following papers, please send me an email at .

Preprint articles

Publications

  1. Random walks are determined by their trace on the positive half-line, Ann. Henri Lebesgue 3 (2020): 1389–1397 [online|MR|zb]
  2. A new class of bell-shaped functions, Trans. Amer. Math. Soc. 373(4) (2020): 2255–2280 [online|MR|zb]
  3. Minimal Hermite-type eigenbasis of the discrete Fourier transform with Alexey Kuznetsov, J. Fourier Anal. Appl. 25(3) (2019): 1053–1079 [online|MR|zb]
  4. Fluctuation theory for Lévy processes with completely monotone jumps, Electron. J. Probab. 24 (2019), no. 40 [online|MR|zb]
    (supersedes: Rogers functions and fluctuation theory [arXiv])
  5. On the $\ell^p$ norm of the discrete Hilbert transform with Rodrigo Bañuelos, Duke Math. J. 168(3) (2019): 471–504 [online|MR|zb]
  6. Pólya’s conjecture fails for the fractional Laplacian with Richard S. Laugesen and Bartłomiej Siudeja, J. Spectral Theory 9(1) 2019: 127–135 [online|MR|zb]
  7. Fractional Laplace Operator and its Properties, in: A. Kochubei, Y. Luchko, Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, De Gruyter Reference, De Gruyter, Berlin, 2019 [online|MR|google]
  8. Extension technique for complete Bernstein functions of the Laplace operator with Jacek Mucha, J. Evol. Equ. 18(3) (2018): 1341–1379 [online|MR|zb]
  9. Spectral analysis of stable processes on the positive half-line with Alexey Kuznetsov, Electron. J. Probab. 23 (2018), no. 10 [online|MR|zb]
  10. Contractivity and ground state domination properties for non-local Schrödinger operators with Kamil Kaleta and József Lőrinczi, J. Spectr. Theory 8 (2018): 165–189 [online|MR|zb]
  11. Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes with Tomasz Grzywny, Stoch. Proc. Appl. 128(1) (2018): 1–38 [online|MR|zb]
  12. Martin kernels for Markov processes with jumps with Tomasz Juszczyszyn, Potential Anal. 47(3) (2017): 313–335 [online|MR|zb]
  13. Eigenvalues of the fractional Laplace operator in the unit ball with Bartłomiej Dyda and Alexey Kuznetsov, J. London Math. Soc. 95 (2017): 500–518 [online|MR|zb]
  14. Fractional Laplace operator and Meijer G-function with Bartłomiej Dyda and Alexey Kuznetsov, Constructive Approx. 45(3) (2017): 427–448 [online|MR|zb]
  15. Ten equivalent definitions of the fractional Laplace operator, Frac. Calc. Appl. Anal. 20(1) (2017): 7–51 [online|MR|zb]
    Note: $p \in (1, \infty)$ should read $p \in (1, \tfrac{d}{\alpha})$ in page 22, line 20.
  16. The shape of the fundamental sloshing mode in axisymmetric containers with Tadeusz Kulczycki and Bartłomiej Siudeja, J. Eng. Math. 99(1) (2015): 157–183 [online|MR|zb]
  17. Asymptotic estimate of eigenvalues of pseudo-differential operators in an interval with Kamil Kaleta and Jacek Małecki, J. Math. Anal. Appl. 439(2) (2016): 896–924 [online|MR|zb]
  18. Hitting times of points for symmetric Lévy processes with completely monotone jumps with Tomasz Juszczyszyn, Electron. J. Probab. 20 (2015), no. 48 [online|MR|zb]
  19. Boundary Harnack inequality for Markov processes with jumps with Krzysztof Bogdan and Takashi Kumagai, Trans. Amer. Math. Soc. 367(1) (2015): 477–517 [online|MR|zb]
  20. New families of subordinators with explicit transition probability semigroup with James Burridge, Alexey Kuznetsov and Andreas Kyprianou, Stoch. Proc. Appl. 124(10) (2014): 3480–3495 [online|MR|zb]
  21. The Legacy of Vladimir Andreevich Steklov with Nikolay Kuznetsov, Tadeusz Kulczycki, Alexander Nazarov, Sergey Poborchi, Iosif Polterovich and Bartłomiej Siudeja, Notices Amer. Math. Soc. 61(1) (2014): 9–23 [online|MR|zb]
  22. One-dimensional quasi-relativistic particle in the box with Kamil Kaleta and Jacek Małecki, Rev. Math. Phys. 25(8) (2013) 1350014 [online|MR|zb]
    Note: In the first displayed formula in Lemma~4.2 the norm in the left-hand side should not be squared.
  23. Suprema of Lévy processes with Jacek Małecki and Michał Ryznar, Ann. Probab. 41(3B) (2013): 2047–2065 [online|MR|zb]
  24. First passage times for subordinate Brownian motions with Jacek Małecki and Michał Ryznar, Stoch. Proc. Appl. 123 (2013): 1820–1850 [online|MR|zb]
  25. On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains with Tadeusz Kulczycki, Proc. London Math. Soc. 105(5) (2012): 921–952 [online|MR|zb]
  26. Spectral theory for one-dimensional symmetric Lévy processes killed upon hitting the origin, Electron. J. Probab. 17 (2012), no. 83 [online|MR|zb]
  27. Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal. 262(5) (2012): 2379–2402 [online|MR|zb]
  28. Spectral analysis of subordinate Brownian motions on the half-line, Studia Math. 206(3) (2011): 211–271 [online|MR|zb]
  29. Boundary Harnack inequality for α -harmonic functions on the Sierpiński triangle with Kamil Kaleta, Probab. Math. Stat. 30(2) (2010): 353–368 [online|MR|zb]
  30. Spectral properties of the Cauchy process on half-line and interval with Tadeusz Kulczycki, Jacek Małecki and Andrzej Stós, Proc. London Math. Soc. 101(2) (2010): 589–622 [online|MR|zb]
  31. Eigenvalues of the Cauchy process on an interval have at most double multiplicity, Semigroup Forum 79(1) (2009): 183–192 [online|MR|zb]
  32. Intrinsic ultracontractivity for stable semigroups on unbounded open sets, Potential Anal. 31(1) (2009): 57–77 [online|MR|zb]
  33. Spectral gap estimate for stable processes on arbitrary bounded open sets, Probab. Math. Statist. 28(1) (2008): 163–167 [online|MR|zb]
  34. Estimates and structure of $\alpha$-harmonic functions with Krzysztof Bogdan and Tadeusz Kulczycki, Prob. Theory Rel. Fields 140(3–4) (2008): 345–381 [online|MR|zb]
    Note: The first displayed formula in p. 352 should read $w = r^{-2} (r^2 - |x|^2) (r^2 - |v|^2) / |x - v|^2$.

Selected conference presentations