[photo]

Mateusz Kwaśnicki

Department of Pure Mathematics
Wrocław University of Science and Technology
ul. Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

e-mail:
skype: mateusz.kwasnicki
ORCID: 0000-0003-3896-8124

Research articles

For an author's copy of any of the following papers, please send me an email at
[MathSciNet | zbMATH | Scholar | Scopus | Web of Science | ORCID | MathOverflow]

Preprint articles

Publications

  1. Mateusz Kwaśnicki,
    Harmonic extension technique for non-symmetric operators with completely monotone kernels,
    Calc. Var. Partial. Differ. Equ. 61 (2022), no. 202: 1–40
    [online | zb]
  2. Mateusz Kwaśnicki, Thomas Simon,
    Characterisation of the class of bell-shaped functions,
    Math. Zeitschrift 301(3) (2022): 2659–2683
    [online | MR | zb]
  3. Andreas E. Kyprianou, Mateusz Kwaśnicki, Sandra Palau and Tsogzolmaa Saizmaa,
    Oscillatory attraction and repulsion from a subset of the unit sphere or hyperplane for isotropic stable Lévy processes,
    In: L. Chaumont, A. E. Kyprianou (eds.), A Lifetime of Excursions Through Random Walks and Lévy Processes, Progress in Probability 78, Springer Nature Switzerland AG, 2021
    [online | MR]
  4. Mateusz Kwaśnicki,
    Random walks are determined by their trace on the positive half-line,
    Ann. Henri Lebesgue 3 (2020): 1389–1397 [online | MR | zb]
  5. Mateusz Kwaśnicki,
    A new class of bell-shaped functions,
    Trans. Amer. Math. Soc. 373(4) (2020): 2255–2280
    [online | MR | zb]
  6. Alexey Kuznetsov, Mateusz Kwaśnicki,
    Minimal Hermite-type eigenbasis of the discrete Fourier transform,
    J. Fourier Anal. Appl. 25(3) (2019): 1053–1079
    [online | MR | zb]
  7. Mateusz Kwaśnicki,
    Fluctuation theory for Lévy processes with completely monotone jumps,
    Electron. J. Probab. 24 (2019), no. 40: 1–40
    [online | MR | zb]
    (supersedes: Rogers functions and fluctuation theory, unpublished [arXiv])
  8. Rodrigo Bañuelos, Mateusz Kwaśnicki,
    On the $\ell^p$ norm of the discrete Hilbert transform,
    Duke Math. J. 168(3) (2019): 471–504
    [online | MR | zb]
  9. Mateusz Kwaśnicki, Richard S. Laugesen, Bartłomiej Siudeja
    Pólya’s conjecture fails for the fractional Laplacian,
    J. Spectral Theory 9(1) (2019): 127–135
    [online | MR | zb]
  10. Mateusz Kwaśnicki,
    Fractional Laplace Operator and its Properties,
    in: A. Kochubei, Y. Luchko, Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, De Gruyter Reference, De Gruyter, Berlin, 2019
    [online | MR | google]
  11. Mateusz Kwaśnicki, Jacek Mucha,
    Extension technique for complete Bernstein functions of the Laplace operator,
    J. Evol. Equ. 18(3) (2018): 1341–1379
    [online | MR | zb]
  12. Alexey Kuznetsov, Mateusz Kwaśnicki,
    Spectral analysis of stable processes on the positive half-line,
    Electron. J. Probab. 23 (2018), no. 10: 1–29
    [online | MR | zb]
  13. Kamil Kaleta, Mateusz Kwaśnicki, József Lőrinczi,
    Contractivity and ground state domination properties for non-local Schrödinger operators,
    J. Spectr. Theory 8 (2018): 165–189
    [online | MR | zb]
  14. Tomasz Grzywny, Mateusz Kwaśnicki,
    Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes,
    Stoch. Proc. Appl. 128(1) (2018): 1–38
    [online | MR | zb]
  15. Tomasz Juszczyszyn, Mateusz Kwaśnicki,
    Martin kernels for Markov processes with jumps,
    Potential Anal. 47(3) (2017): 313–335
    [online | MR | zb]
  16. Bartłomiej Dyda, Alexey Kuznetsov, Mateusz Kwaśnicki,
    Eigenvalues of the fractional Laplace operator in the unit ball,
    J. London Math. Soc. 95 (2017): 500–518
    [online | MR | zb]
  17. Bartłomiej Dyda, Alexey Kuznetsov, Mateusz Kwaśnicki,
    Fractional Laplace operator and Meijer G-function,
    Constructive Approx. 45(3) (2017): 427–448
    [online | MR | zb]
  18. Mateusz Kwaśnicki,
    Ten equivalent definitions of the fractional Laplace operator,
    Frac. Calc. Appl. Anal. 20(1) (2017): 7–51
    [online | MR | zb]
  19. Kamil Kaleta, Mateusz Kwaśnicki, Jacek Małecki,
    Asymptotic estimate of eigenvalues of pseudo-differential operators in an interval,
    J. Math. Anal. Appl. 439(2) (2016): 896–924
    [online | MR | zb]
  20. Tadeusz Kulczycki, Mateusz Kwaśnicki, Bartłomiej Siudeja,
    The shape of the fundamental sloshing mode in axisymmetric containers,
    J. Eng. Math. 99(1) (2016): 157–183
    [online | MR | zb]
  21. Tomasz Juszczyszyn, Mateusz Kwaśnicki,
    Hitting times of points for symmetric Lévy processes with completely monotone jumps,
    Electron. J. Probab. 20 (2015), no. 48: 1–24
    [online | MR | zb]
  22. Krzysztof Bogdan, Takashi Kumagai, Mateusz Kwaśnicki,
    Boundary Harnack inequality for Markov processes with jumps,
    Trans. Amer. Math. Soc. 367(1) (2015): 477–517
    [online | MR | zb]
  23. James Burridge, Alexey Kuznetsov, Andreas Kyprianou, Mateusz Kwaśnicki,
    New families of subordinators with explicit transition probability semigroup,
    Stoch. Proc. Appl. 124(10) (2014): 3480–3495
    [online | MR | zb]
  24. Nikolay Kuznetsov, Tadeusz Kulczycki, Mateusz Kwaśnicki, Alexander Nazarov, Sergey Poborchi, Iosif Polterovich and Bartłomiej Siudeja,
    The Legacy of Vladimir Andreevich Steklov,
    Notices Amer. Math. Soc. 61(1) (2014): 9–23
    [online | MR | zb]
  25. Kamil Kaleta, Mateusz Kwaśnicki, Jacek Małecki,
    One-dimensional quasi-relativistic particle in the box,
    Rev. Math. Phys. 25(8) (2013) 1350014
    [online | MR | zb]
  26. Mateusz Kwaśnicki, Jacek Małecki, Michał Ryznar,
    Suprema of Lévy processes,
    Ann. Probab. 41(3B) (2013): 2047–2065
    [online | MR | zb]
  27. Mateusz Kwaśnicki, Jacek Małecki, Michał Ryznar,
    First passage times for subordinate Brownian motions,
    Stoch. Proc. Appl. 123 (2013): 1820–1850
    [online | MR | zb]
  28. Mateusz Kwaśnicki, Tadeusz Kulczycki,
    On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains,
    Proc. London Math. Soc. 105(5) (2012): 921–952
    [online | MR | zb]
  29. Mateusz Kwaśnicki,
    Spectral theory for one-dimensional symmetric Lévy processes killed upon hitting the origin,
    Electron. J. Probab. 17 (2012), no. 83: 1–29
    [online | MR | zb]
  30. Mateusz Kwaśnicki,
    Eigenvalues of the fractional Laplace operator in the interval,
    J. Funct. Anal. 262(5) (2012): 2379–2402
    [online | MR | zb]
  31. Mateusz Kwaśnicki,
    Spectral analysis of subordinate Brownian motions on the half-line,
    Studia Math. 206(3) (2011): 211–271
    [online | MR | zb]
  32. Kamil Kaleta, Mateusz Kwaśnicki,
    Boundary Harnack inequality for α-harmonic functions on the Sierpiński triangle,
    Probab. Math. Stat. 30(2) (2010): 353–368
    [online | MR | zb]
  33. Tadeusz Kulczycki, Mateusz Kwaśnicki, Jacek Małecki and Andrzej Stós,
    Spectral properties of the Cauchy process on half-line and interval,
    Proc. London Math. Soc. 101(2) (2010): 589–622
    [online | MR | zb]
  34. Mateusz Kwaśnicki,
    Eigenvalues of the Cauchy process on an interval have at most double multiplicity,
    Semigroup Forum 79(1) (2009): 183–192
    [online | MR | zb]
  35. Mateusz Kwaśnicki,
    Intrinsic ultracontractivity for stable semigroups on unbounded open sets,
    Potential Anal. 31(1) (2009): 57–77
    [online | MR | zb]
  36. Mateusz Kwaśnicki,
    Spectral gap estimate for stable processes on arbitrary bounded open sets,
    Probab. Math. Statist. 28(1) (2008): 163–167
    [online | MR | zb]
  37. Krzysztof Bogdan, Tadeusz Kulczycki, Mateusz Kwaśnicki,
    Estimates and structure of $\alpha$-harmonic functions,
    Prob. Theory Rel. Fields 140(3–4) (2008): 345–381
    [online | MR | zb]

Papers of my PhD students

Selected conference presentations