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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Hilbert transform

De�nition (Hilbert)

The continuous Hilbert transform is de�ned by

Hf (x) =
1

π
p.v.

∫ ∞

−∞

f (x − s)

s
ds

for appropriate functions f : R→ R.

Theorem (Hilbert)

If Ff denotes the Fourier transform of f , then

F[Hf ](ξ) = (−i sign ξ)Ff (ξ)

for ξ ∈ R.
-2π -π π 2π
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Naive discrete Hilbert transform

De�nition (Hilbert)

The discrete Hilbert transform is given by

Han =
1

π

∑
k∈Z\{0}

an−k

k

for appropriate doubly in�nite sequences (an : n ∈ Z).

Theorem (Fourier?)

If Fa denotes the Fourier series with coe�cients an, then

F[Han](ξ) = (−i sign ξ)(1− 1

π
|ξ|)F[an](ξ)

for ξ ∈ (−π, π).
-2π -π π 2π
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Kak�Hilbert transform

De�nition (Ferrand and Du�n)

The Kak�Hilbert transform is given by

Kan =
2

π

∑
k∈2Z+1

an−k

k

for appropriate doubly in�nite sequences (an : n ∈ Z).

Theorem (Fourier?)

If F[an] denotes the Fourier series with coe�cients an, then

F[Kan](ξ) = (−i sign ξ)F[an](ξ)

for ξ ∈ (−π, π).
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Riesz�Titchmarsh transform

De�nition (Titchmarsh)

The Riesz�Titchmarsh transform is given by

Ran =
1

π

∑
k∈Z

an−k

k + 1

2

for appropriate doubly in�nite sequences (an : n ∈ Z).

Theorem (Fourier?)

If F[an] denotes the Fourier series with coe�cients an, then

F[Ran](ξ) = (−i sign ξ)e iξ/2F[an](ξ)

for ξ ∈ (−π, π).
-2π -π π 2π
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Riesz�Titchmarsh transform

De�nition (Titchmarsh)

The Riesz�Titchmarsh transform is given by

Ran =
1

π

∑
k∈Z

an−k

k + 1

2

for appropriate doubly in�nite sequences (an : n ∈ Z).

Theorem (Fourier?)
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F[Ran](ξ) = (−i sign ξ)e iξ/2F[an](ξ)

for ξ ∈ (−π, π).
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Arcozzi�Domelevo�Petermichl transform

De�nition (Arcozzi�Domelevo�Petermichl)

The Arcozzi�Domelevo�Petermichl transform is given by

ADPan =
1

π

∑
k∈Z

k an−k

k2 − 1

4

for appropriate doubly in�nite sequences (an : n ∈ Z).

Theorem (Fourier?)

If F[an] denotes the Fourier series with coe�cients an, then

F[ADPan](ξ) = (−i sign ξ) cos ξ
2
F[an](ξ)

for ξ ∈ (−π, π).
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Too many discrete analogues of the Hilbert transform

operator Fourier symbol

Han =
1

π

∑
k∈Z\{0}

an−k

k
↭

-2π -π π 2π

-1

1

Kan =
2

π

∑
k∈2Z+1

an−k

k
↭

-2π -π π 2π

-1

1

Ran =
1

π

∑
k∈Z

an−k

k + 1

2

↭
-2π -π π 2π

-1

1

ADPan =
1

π

∑
k∈Z

k an−k

k2 − 1

4

↭
-2π -π π 2π

-1

1



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Elementary reductions

Question (Hilbert)

Is there a constant C such that if bn is the transform of an, then

∥bn∥p ⩽ C∥an∥p.

R ⇒ ADP

ADPan =
1

2
(Ran + Ran−1).

R ⇔ K

bn = Kan ⇐⇒

{
b2n+1 = R[a2n],

b2n = R[a2n−1].
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Slightly less elementary reduction

K ⇒ H

We have

bn = I[Kan] ⇐⇒

{
b2n = Han,

b2n+1 = 0,

where

Ian =
4

π2

∑
k∈2Z+1

an−k

k2

has norm 1 (convolution with a probability kernel).

-2π -π π 2π
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Much less elementary reduction

ADP ⇒ H

We have

Han = J[ADPan],

where

Jan =
1

2π2

∑
k∈Z

(
ψ1(

1

4
+ n

2
)− ψ1(

3

4
+ n

2
)
)
an−k

has norm 1 (convolution with a probability kernel).

-2π -π π 2π

-1

1

Here ψ1 = (log Γ)′′ is the trigamma function.



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Approximation

H ⇒ H
For appropriate functions f : R→ R we have

Hf (x) = lim
δ→0+

δH[f (nδ)]

with n = ⌊ x
δ
⌋. Thus,

∥Han∥p ⩽ C∥an∥p
implies

∥Hf ∥p ⩽ C∥f ∥p.



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Summary

Summary

∥H∥Lp→Lp ⩽ ∥H∥ℓp→ℓp ⩽ ∥ADP∥ℓp→ℓp ⩽ ∥R∥ℓp→ℓp = ∥K∥ℓp→ℓp .

Question (Riesz, Titchmarsh)

Are they all equal?
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Lp bounds for the Hilbert transform

Hf (x) =
1

π
p.v.

∫ ∞

−∞

f (x − s)

s
ds ↭

-2π -π π 2π

-1

1

• H : L2 → L2 is a unitary operator, H−1 = −H (Hilbert)

• H does not extend continuously to L1 and L∞ (Hilbert)

• H extends continuously to Lp for p ∈ (1,∞) (M. Riesz)

• ∥H∥Lp→Lp = max{tan( π
2p
), cot( π

2p
)} (Pichorides and Cole)

(p = 2, 4, 8, 16, . . . : Gohberg�Krupnik)
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Lp bounds for the discrete analogues (1/3)

Han =
1

π

∑
k∈Z\{0}

an−k

k
↭

-2π -π π 2π

-1

1

Ran =
1

π

∑
k∈Z

an−k

k + 1

2

↭
-2π -π π 2π

-1

1

• ∥H∥ℓ2→ℓ2 = 1, but H is not unitary (Shur)

• ∥R∥ℓ2→ℓ2 = 1 and R is unitary (Titchmarsh)

• R extends continuously to Lp for p ∈ (1,∞) (Titchmarsh and M. Riesz)
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Lp bounds for the discrete analogues (2/3)
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• ∥R∥ℓp→ℓp ⩾ ∥H∥Lp→Lp (Titchmarsh)

• ∥R∥ℓp→ℓp ⩽ ∥H∥Lp→Lp , incorrect proof (Titchmarsh)

• R extends continuously to Lp for p ∈ (1,∞) (Titchmarsh)
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Titchmarsh, Reciprocal formulae involving series and integrals

The paper appeared in Mathematische Zeitschrift 25 in 1926.
The next issue contained the following letter.

Czesªaw Ryll-Nardzewski was born on 7 October 1926.
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Lp bounds for the discrete analogues (3/3)

ADPan =
1

π

∑
k∈Z

k an−k

k2 − 1

4

↭
-2π -π π 2π

-1

1

• ∥ADP∥ℓp→ℓp ⩽ max{p − 1, p
p−1

} (Arcozzi�Domelevo�Petermichl)

• ∥H∥ℓp→ℓp = ∥H∥Lp→Lp (Bañuelos�K)
(p = 2, 4, 8, 16, . . . : Verbitsky)

• ∥R∥ℓp→ℓp = ∥H∥Lp→Lp for p = 2, 4, 6, 8, . . . (Bañuelos�K)

Motivation: discrete analogues in harmonic analysis
(Magyar�Stein�Waigner, Pierce)
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B¦dlewo

I learned about the problem at the Probability and Analysis conference
in B¦dlewo (15�19 May 2017).

source: IMPAN
impan.pl
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B¦dlewo

During a BBQ dinner, with free beer and a bon�re, Rodrigo Bañuelos and
Eero Saksman invited me to join their �reside chat, and told me about it.

They forgot to mention that it was a 90-year-old conjcecture.

source: SACNAS
sacnas.org

source: University of Helsinki
helsinki.�
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Main results

Theorem (Bañuelos�K)

For p ∈ (1,∞) we have

∥H∥ℓp→ℓp = ∥H∥Lp→Lp .

Theorem (Bañuelos�K)

For p = 2, 4, 6, 8, . . . we have

∥R∥ℓp→ℓp = ∥H∥Lp→Lp .
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Hilbert transform and harmonic functions

• For y > 0 de�ne the Poisson integrals

u(x , y) =
1

π

∫ ∞

−∞
f (x − s)

y

s2 + y 2
ds,

v(x , y) =
1

π

∫ ∞

−∞
f (x − s)

s

s2 + y 2
ds.

• Then u and v are conjugate harmonic functions:

∆u = ∆v = 0, ∇v =
(

0 1

−1 0

)
∇u.

• The boundary values of u and v are given by

f (x) = u(x , 0), Hf (x) = v(x , 0).



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Hilbert transform and harmonic functions

• For y > 0 de�ne the Poisson integrals

u(x , y) =
1

π

∫ ∞

−∞
f (x − s)

y

s2 + y 2
ds,

v(x , y) =
1

π

∫ ∞

−∞
f (x − s)

s

s2 + y 2
ds.

• Then u and v are conjugate harmonic functions:

∆u = ∆v = 0, ∇v =
(

0 1

−1 0

)
∇u.

• The boundary values of u and v are given by

f (x) = u(x , 0), Hf (x) = v(x , 0).



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Hilbert transform and harmonic functions

• For y > 0 de�ne the Poisson integrals

u(x , y) =
1

π

∫ ∞

−∞
f (x − s)

y

s2 + y 2
ds,

v(x , y) =
1

π

∫ ∞

−∞
f (x − s)

s

s2 + y 2
ds.

• Then u and v are conjugate harmonic functions:

∆u = ∆v = 0, ∇v =
(

0 1

−1 0

)
∇u.

• The boundary values of u and v are given by

f (x) = u(x , 0), Hf (x) = v(x , 0).



Hibert transforms Some history Continuous Continuous meets discrete Discrete

Harmonic functions and martingales

• Let Bt be the 2-D standard Brownian motion.

• Suppose that B0 = (0, y0), where y0 ≫ 0.

• Let τ be the hitting time of R× {0} for Bt .

• If u is a harmonic function in R× (0,∞),
then, by the Itô formula, the process

Mt = u(Bt)

is a martingale for t ⩽ τ .

• Indeed:

dMt = ∇u(Bt) · dBt ,

d [M]t = |∇u(Bt)|2dt.
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Mt = u(Bt)

is a martingale for t ⩽ τ .

• Indeed:

dMt = ∇u(Bt) · dBt ,
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Hilbert transform and martingales

• We have de�ned two conjugate harmonic functions: u(x , y) and v(x , y),
with boundary values f (x) and Hf (x), respectively.

• The corresponding martingales are

Mt = u(Bt), Nt = v(Bt).

• Quadratic variations of these martingales satisfy

d [M]t = |∇u(Bt)|2dt = |∇v(Bt)|2dt = d [N]t

and

d [M ,N]t = ∇u(Bt) · ∇v(Bt)dt = 0dt

for t < τ .
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Burkholder's inequality

Theorem (Bañuelos�Wang)

If Mt and Nt are martingales and

• Nt is di�erentially subordinate to Mt :

d [N]t ⩽ d [M]t ;

• Mt and Nt are orthogonal:

d [M ,N]t = 0dt,

then

E|Nτ − N0|p ⩽ (Cp)
p E|Mτ −M0|p,

with Cp = max{tan( π
2p
), cot( π

2p
)}.
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Pichorides�Cole estimate

• De�ne two conjugate harmonic functions u and v ,
with boundary values f and Hf . . .

• . . . and two martingales Mt = u(Bt), Nt = v(Bt).

• Clearly, Mτ = f (Bτ ) and Nτ = Hf (Bτ ).

• Burkholder's inequality implies that

E|Hf (Bτ )− v(0, y0)|p ⩽ (Cp)
p E|f (Bτ )− u(0, y0)|p.

• Pass to the limit as y0 → ∞ to get

∥Hf ∥pp ⩽ (Cp)
p ∥f ∥pp.
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Discrete analogue?

Idea
Replace the Brownian motion by a simple random walk.

• Problem: No conjugate harmonic function v .

• Solution: De�ne it on the dual lattice!

• Problem: No way do de�ne the martingale transform Nt .

• Solution: Work with particle systems.

• Problem: No orthogonality, suboptimal constant.

• No workaround, sorry!
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Semi-discrete analogue?

Idea
Replace the 2-D Brownian motion by

• a continuous-time simple random walk on the x axis,

• the Brownian motion on the y axis.

• Problem: No conjugate harmonic function v .

• Solution: De�ne the martingale transform Nt as an Itô integral!

• Problem: No orthogonality, suboptimal constant.

• No workaround, sorry!

• Carried out by Arcozzi�Domelevo�Petermichl.
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Conditioned process

• Problem: At time τ , the Brownian motion Bt hits the entire boundary.

• Solution: Replace Bt by a di�usion Zt which only hits lattice points!

• Construct Zt by conditioning the Brownian motion so that

Bτ ∈
⋃
k∈Z

(k − ε, k + ε)× {0},

and passing to the limit as ε→ 0+. (Doob)
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What changes?

• Problem: No conjugate harmonic function v .

• Solution: De�ne the martingale transform by an Itô integral!

• The �nal result is the expected ℓp estimate

∥H̃an∥ℓp ⩽ Cp∥an∥ℓp ,

for an appropriate transform H̃.

• Surprise: after lengthy calculations, we �nd that

H̃an =
1

π

∑
k∈Z\{0}

an−k

k

(
1+

∫ ∞

0

2y 3

(y 2 + π2k2) sinh2y
dy

)
.

(Initially I made a sign error and I got H̃ = H. . . )
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Convolution trick

• Solution: Prove that

Han = Ĩ[H̃an],

where Ĩ has norm 1 as a convolution with a probability kernel.

• We �nd the kernel of Ĩ explicitly (in terms of a rather complicated integral),
after tedious calculations involving a number of miraculous explicit identities.

(Had I not sent an enthusiastic email to Rodrigo before noticing the error,
I would have never found enough motivation to do that.)
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

Why this cannot work for the Riesz�Titchmarsh transform

• In the proof, H is expressed as the composition of four operations:

(1) de�nition of the martingale: an ⇝ Mt ;

(2) martingale transform: Mt ⇝ Nt ;

(3) conditional expectation: Nt ⇝ H̃an;

(4) application of Ĩ: H̃an ⇝ Han.

• Steps (3) and (4) do not preserve the ℓ2 norm.

• Therefore, no similar argument can be given for the unitary operator R.
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Factorization

• Replace H by an equivalent operator, denoted again H, analogous to K:

Kan =
2

π

∑
k∈2Z+1

an−k

k
↭

-2π -π π 2π

-1

1

Han =
2

π

∑
k∈2Z\{0}

an−k

k
↭

-2π -π π 2π

-1

1

Ian =
4

π2

∑
k∈2Z+1

an−k

k2
↭

-2π -π π 2π

-1

1

• I is a convolution operator with a probability kernel.

• We have Han = I[Kan].
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Product rule

Lemma (Titchmarsh)

We have

Kan ·Kbn = K[Han · bn] +K[an ·Hbn] + I[an · bn].

• This is the discrete counterpart of

Hf · Hg = H[Hf · g ] + H[f · Hg ] + f · g . . .

• . . . which is a consequence of
(f + iHf ) · (g + iHg) = (f · g − Hf · Hg) + i(Hf · g + f · Hg).

• Compare with the cotangent of sum formula

cotα cot β = cot(α + β) cotα + cot(α + β) cot β + 1.
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

p ⇝ 2p

• By the product rule:

(Kan)
2 = 2K[Han · an] + I[a2n].

• If ∥an∥p = 1, then

∥Kan∥2p = ∥(Kan)
2∥p/2 ⩽ 2∥K∥ℓp/2→ℓp/2∥H∥ℓp→ℓp + 1.

• We know that ∥H∥ℓp→ℓp = cot π
2p

when p ⩾ 2.

• Assume that ∥K∥ℓp/2→ℓp/2 = cot π
p
for some p ⩾ 4. Then

(∥K∥ℓp→ℓp)
2 ⩽ 2 cot π

p
cot π

2p
+ 1 = (cot π

2p
)2.

• p = 2 ⇝ p = 4 ⇝ p = 8 ⇝ . . .

• Note: we can replace ∥H∥ℓp→ℓp = cot π
2p

by ∥H∥ℓp→ℓp ⩽ ∥K∥ℓp→ℓp .
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

p ⇝ 3p (1/2)

• By the product rule:

(Kan)
3 = 2Kan ·K[Han · an] +Kan · I[a2n]
= 2K[(Han)

2 · an] + 2K[an ·H[Han · an]]
+ 2I[Han · a2n] +Kan · I[a2n].

• If ∥an∥p = 1, then

∥Kan∥3p = ∥(Kan)
3∥p/3 ⩽ 2∥K∥ℓp/3→ℓp/3(∥H∥ℓp/2→ℓp/2)

2

+ 2∥K∥ℓp/3→ℓp/3∥H∥ℓp/2→ℓp/2∥H∥ℓp→ℓp

+ 2∥H∥ℓp→ℓp + ∥K∥ℓp→ℓp .
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

p ⇝ 3p (2/2)

• We know that ∥H∥ℓp→ℓp = cot π
2p

and ∥H∥ℓp/2→ℓp/2 = cot π
p
when p ⩾ 4.

• Assume that ∥H∥ℓp/3→ℓp/3 = cot 3π
2p

for some p ⩾ 6. Then

(∥K∥ℓp→ℓp)
3 ⩽ 2 cot 3π

2p
cot2 π

p
+ 2 cot 3π

2p
cot π

p
cot π

2p
+ 2 cot π

2p
+ ∥K∥ℓp→ℓp .

• After a short calculation, this implies that ∥K∥ℓp→ℓp ⩽ cot π
2p
.

• Note: we use ∥H∥ℓp/2→ℓp/2 = cot π
p
in an essential way.
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Hibert transforms Some history Continuous Continuous meets discrete Discrete

p ⇝ np

• We apply the same strategy:

▶ Start with (Kan)
n with ∥an∥p = 1.

▶ Use the product rule repeatedly for Kan ·K[longest expression].

▶ Apply Hölder's inequality.

▶ Use known bounds on ∥H∥ℓp/k→ℓp/k .

▶ Use the cotangent of sum formula.

▶ Show that ∥K∥ℓp/n→ℓp/n ⩽ cot nπ
2p

implies ∥K∥ℓp→ℓp ⩽ cot π
2p
.

• Enumeration of all intermediate terms is a non-obvious task.

• To get things under control, we introduce frames, skeletons and buildings.
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