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Hilbert transform

Definition (Hilbert)

The continuous Hilbert transform is defined by

Hf (x) = lp.v./_oO mds

T w S

for appropriate functions f : R — R.
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Hibert transforms Some histor: Continuous Continuous meets discrete Discret

Hilbert transform
Definition (Hilbert)

The continuous Hilbert transform is defined by

Hf (x) = %p.v./_(>o f(XS_ S) ds

(e.9]

for appropriate functions f : R — R.

Theorem (Hilbert)

If Ff denotes the Fourier transform of f, then —

F[HF1(§) = (—isign&)FF(E) T
for 5 € R. e
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Naive discrete Hilbert transform

Definition (Hilbert)
The discrete Hilbert transform is given by
1 an—k
Ha, = —
an s Z k
kez\{0}
for appropriate doubly infinite sequences (a, : n € 7).
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Naive discrete Hilbert transform
Definition (Hilbert)
The discrete Hilbert transform is given by

j‘can - l Z ank_k

T kez\{0}

for appropriate doubly infinite sequences (a, : n € 7).

Theorem (Fourier?)

If Fa denotes the Fourier series with coefficients a,, then

FHan](§) = (—isign&)(1 — +1€])F[aal(8)

for & € (—m, ).
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Kak—Hilbert transform

Definition (Ferrand and Duffin)
The Kak—Hilbert transform is given by

2 .
Kan=" D akk

ke2Z+1

for appropriate doubly infinite sequences (a, : n € 7).
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Kak—Hilbert transform

Definition (Ferrand and Duffin)
The Kak—Hilbert transform is given by

2 .
Kan=" D akk

ke2Z+1

for appropriate doubly infinite sequences (a, : n € 7).

Theorem (Fourier?)

If F[a,] denotes the Fourier series with coefficients a,,, then

F[Kan](€) = (—isign&)Fan](€)
for & € (—m, ). -1

5
!
=
N
=
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Riesz—Titchmarsh transform

Definition (Titchmarsh)

The Riesz—Titchmarsh transform is given by

1 dn—k
Ra, = =
? Wzk+%

keZ

for appropriate doubly infinite sequences (a, : n € 7).
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Riesz—Titchmarsh transform

Definition (Titchmarsh)

The Riesz—Titchmarsh transform is given by

1 dn—k
Ra, = =
? Wzk+%

keZ

for appropriate doubly infinite sequences (a, : n € 7).

Theorem (Fourier?)
If F[a,] denotes the Fourier series with coefficients a,, then ‘I //] //I

F[Ran) (&) = (—isign€)e’?F[a,)(€)
for & € (—m, 7). -
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Arcozzi-Domelevo—Petermichl transform

Definition (Arcozzi-Domelevo—Petermichl)
The Arcozzi-Domelevo—Petermichl transform is given by

1 ka,,_k
ADPa, = %Z/@—%

keZ

for appropriate doubly infinite sequences (a, : n € 7).
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Arcozzi-Domelevo—Petermichl transform

Definition (Arcozzi-Domelevo—Petermichl)
The Arcozzi-Domelevo—Petermichl transform is given by

1 ka,,_k
ADPa, = %Z/@_%

keZ

for appropriate doubly infinite sequences (a, : n € 7).

Theorem (Fourier?)

If F[a,] denotes the Fourier series with coefficients a,,, then

FIADPa,|(€) = (—isign&) cos % Flan](&)

for £ € (—m, ).
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Too many discrete analogues of the Hilbert transform

operator Fourier symbol
1 a ’
fHa,, - - Z nok A -~ B
keZ\{0} . ’
2 an_ 171 M
j(:an - — Z u o -3 o 2t
T kéaz 1] L
1 dn—k
TS X SR A
TiezXt2 1 [
1 ka,_
ADPay =~ 1 e ] . 2
7T keZ 4 -1 [
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Elementary reductions
Question (Hilbert)

Is there a constant C such that if b, is the transform of a,, then

[Ballp < Cllanllp-
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Elementary reductions
Question (Hilbert)

Is there a constant C such that if b, is the transform of a,, then

[Ballp < Cllanllp-

R = ADP

ADPa, = 3(Ra, + Ra,_1).
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Elementary reductions
Question (Hilbert)

Is there a constant C such that if b, is the transform of a,, then

[Ballp < Cllanllp-

R = ADP
ADPa, = 3(Ra, + Ra,_1).
Re XK

bony1 = :R[a2n];

b, = Ka, <—
byn = R[a2n—1]-
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Slightly less elementary reduction

We have
b2n = j{am

bony1 =0,

Ja, = % Z a;k ,\ A\V/Z:

b, =J[Ka,| < {

where

ke2Z+1 -%nv
has norm 1 (convolution with a probability kernel). A
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Much less elementary reduction

ADP = H

We have
Hay, = J[ADPa,),
where
Jan = 55 S (G + 8) — a3 + £))ank
keZ
has norm 1 (convolution with a probability kernel). L

Here ¢y = (logl)” is the trigamma function.
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Approximation

For appropriate functions f : R — R we have
Hf (x) = 5|—|>n3+ d H[f(nd)]
with n = [5]. Thus,
[Hanllp, < Cllanll
implies

IHllp < ClIfllp-
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Summary

[H[co—1e < [|H][eo—eo < [ADP|eoose0 < (| Rl|er—er = (| K| eo—see-
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Summary

[H[co—1e < [|H][eo—eo < [ADP|eoose0 < (| Rl|er—er = (| K| eo—see-

Question (Riesz, Titchmarsh)
Are they all equal?
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LP bounds for the Hilbert transform

-2 -7 T 27




Hibert transforms Some history Continuous Continuous meets

00000000000 @0000000 00000 0000000

LP bounds for the Hilbert transform

discrete Discrete
000000

-2 -7

Hf(x):%p.v./_oomds s

—_ S

e H: %2 — [?is a unitary operator, H™! = —H

(Hilbert)
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LP bounds for the Hilbert transform

1 f(x—
Hf(X) = —pV/ (X 5) ds o -2 -7 s 27
7r o S
e H: L2 — [?is a unitary operator, H™! = —H (Hilbert)

e H does not extend continuously to L and L> (Hilbert)
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LP bounds for the Hilbert transform

1 [ f(x—
Hf(x) = = p.v./ (x=s) ds s
T e S
e H: %2 — [?is a unitary operator, H™! = —H

e H does not extend continuously to L! and L[>

e H extends continuously to LP for p € (1, 00)

(Hilbert)
(Hilbert)
(M. Riesz)
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LP bounds for the Hilbert transform

Hf(x) = %p.v./ f(xs_ ) ds e

(e.9]

H : 1?2 — L2 is a unitary operator, H™! = —H

H does not extend continuously to L' and L

H extends continuously to LP for p € (1,00)

[H|| 11> = max{tan(35), cot(5;)}

-2 -7 T 27

— | f—

(Hilbert)
(Hilbert)
(M. Riesz)
(Pichorides and Cole)

(p=2,4,8,16,...: Gohberg—Krupnik)
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LP bounds for the discrete analogues (1/3)
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LP bounds for the discrete analogues (1/3)
] /
J—Can = Z An—k S -An fr T 2
kez\{0} » A
1 ] g
dn—k
fRa,, — Z 1 Nt An T T 2
Tz kT3
1 L

(Shur)

e ||H||z—e =1, but H is not unitary
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LP bounds for the discrete analogues (1/3)
] /
dn—k
J—Can - Z k o~ -2 fr o
kez\{0} » A
Rap = = 3 ok
n=— 1 o Tn -
Tz kT3 /
1 L
e ||H||z—e =1, but H is not unitary (Shur)
(Titchmarsh)

e ||R]|z—e2 =1 and R is unitary
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LP bounds for the discrete analogues (1/3)

(Shur)

e ||H||z—e =1, but H is not unitary
(Titchmarsh)

e ||R]|z—e2 =1 and R is unitary
(Titchmarsh and M. Riesz)

e R extends continuously to LP for p € (1,00)
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LP bounds for the discrete analogues (2/3)

(Titchmarsh)

o [|Rl|ee—see = ||HI[ o1
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s Semsdine Contes
LP bounds for the discrete analogues (2/3)
] /
dn—k
J’Ca,, = — Z k o - TT 7T
keZ\{0} / ’
=4
Rap = = 3 ok
n=— 1 o Tn -
Tz kT3 /
1 L
 [IRllermee = [[Hllps1r

|
|H||p— 1, incorrect proof

VAN

® [|R]leposer

Discrete
000000

(Titchmarsh)
(Titchmarsh)
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Titchmarsh, Reciprocal formulae involving series and integrals

The paper appeared in Mathematische Zeitschrift 25 in 1926.
The next issue contained the following letter.

Correction.
E. C. Titohmarsh.

I In. paragraph 4 of my paper on ‘Reciprocal formulae involving
series and integrals’ (Math. Zeitschr. 25 (1926), pp. 321 —347), the proof
that N, < N, is incorrect, and should be deleted. This does not affect
apything else in the paper.

II. In obtaining the inequality which follows formula (2.32), we
have assumed that (4a) as well as (3a) holds for the particular value
of p taken. This merely involves a slight rearrangement of the proof.

III. The following references to the work of M. Riesz should have
been given:-

Comptes Rendus 198 (Apr. 28, 1924), pp. 1464—1467 and Proc.
London Math. Soc.(2) 28 (1925), pp. XXIV—XXVI (Records for Jan. 17,
1924). I should have said that I was already familiar with Riesz’s methods,
and not merely his results, when I wrote my paper.

(Eingegangen am 10, November 1926.)
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Titchmarsh, Reciprocal formulae involving series and integrals

The paper appeared in Mathematische Zeitschrift 25 in 1926.
The next issue contained the following letter.

Correction.
E. C. Titohmarsh.

I In. paragraph 4 of my paper on ‘Reciprocal formulae involving
series and integrals’ (Math. Zeitschr. 25 (1926), pp. 321 —347), the proof
that N, < N, is incorrect, and should be deleted. This does not affect
apything else in the paper.

II. In obtaining the inequality which follows formula (2.32), we
have assumed that (4a) as well as (3a) holds for the particular value
of p taken. This merely involves a slight rearrangement of the proof.

III. The following references to the work of M. Riesz should have
been given:-

Comptes Rendus 198 (Apr. 28, 1924), pp. 1464—1467 and Proc.
London Math. Soc.(2) 28 (1925), pp. XXIV—XXVI (Records for Jan. 17,
1924). I should have said that I was already familiar with Riesz’s methods,
and not merely his results, when I wrote my paper.

(Eingegangen am 10, November 1926.)

Czestaw Ryll-Nardzewski was born on 7 October 1926.
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LP bounds for the discrete analogues (3/3)

T BV

o [[ADP[[er—ser < max{p —1, 55} (Arcozzi-Domelevo—Petermichl)

[ary
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LP bounds for the discrete analogues (3/3)

1 g~ o 1 A/
== B S R i l/[:
kezZ\{0} »
o [[ADP[[er—ser < max{p —1, 55} (Arcozzi-Domelevo—Petermichl)
o ||H||psee = ||H||Lp—1r (Bafiuelos—K)

(p=12,4,8,16,...: Verbitsky)
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LP bounds for the discrete analogues (3/3)

=+ An—k o { //l /,I
R WZ/H‘E V 1|/ [

kEZ

° ||‘A‘D:P||ZP—>[P < max{p — 1, p_fl}
o [[FHllee—ser = [[H| o1

(p=2,4,8,16,..
[ J ||:R“gp_)gp = ”HHLP—>LP for p = 2,4,6,8, e

(Baﬁuelos—

)
)
. Verbitsky)
)

(Bafiuelos—K

Discrete
000000

(Arcozzi-Domelevo—Petermichl
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LP bounds for the discrete analogues (3/3)

Ra, = lz Ok A7 _‘l,, /1 /

1 2
d keZ k+ 2 V I/ [
o [ADP|lp—ee < max{p — 1, 5} (Arcozzi-Domelevo—Petermichl)
o ||H||psee = ||H||Lp—1r (Bafiuelos—K)
(p=12,4,8,16,...: Verbitsky)
o | R|leo—e = ||H||p—1r for p=2,4,6,8,... (Bafiuelos—K)

Motivation: discrete analogues in harmonic analysis
(Magyar—Stein—Waigner, Pierce)
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Bedlewo

| learned about the problem at the Probability and Analysis conference
in Bedlewo (15-19 May 2017).

1 .

source: IMPAN
impan.pl
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Bedlewo

During a BBQ dinner, with free beer and a bonfire, Rodrigo Bafiuelos and
Eero Saksman invited me to join their fireside chat, and told me about it.

source: SACNAS
sacnas.org helsinki.fi

source: University of Helsinki
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Bedlewo

During a BBQ dinner, with free beer and a bonfire, Rodrigo Bafiuelos and
Eero Saksman invited me to join their fireside chat, and told me about it.

They forgot to mention that it was a 90-year-old conjcecture.

source: SACNAS source: University of Helsinki
sacnas.org helsinki.fi



Hibert transforms Some history Continuous Continuous meets discrete Discrete
00000000000 O000000e 00000 0000000 000000

Main results

Theorem (Bafiuelos—K)
For p € (1, 00) we have

[H e~ = [|H]| o 10-

Theorem (Bafiuelos—K)
For p=2,4,6,8,... we have

[Rlleo—see = || H|[ o Lo
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Hilbert transform and harmonic functions

e For y > 0 define the Poisson integrals

1 [~ y
u(x,y):;/ f(x—s)s2+y2ds,

o0

v(x,y)zl/oo Fx —s) =

™) o s?+y?

Discrete
000000
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Hilbert transform and harmonic functions

e For y > 0 define the Poisson integrals

1 [ y
u(x,y):;/ f(x—s)s2+y2ds,

1 [ s
V(X,}/)Z;/ f(X—S)m

e Then v and v are conjugate harmonic functions:

Au=Av =0, Vv=(194)Vu.

Discrete
000000
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Hilbert transform and harmonic functions

e For y > 0 define the Poisson integrals

1 [~ y
u(x,y):;/ f(x—s)s2+y2ds

1 [~ s
== Flx —s)—>
vxn) == [ Fx—s)
e Then v and v are conjugate harmonic functions:
Au=Av =0, Vv=(194)Vu.

e The boundary values of u and v are given by

f(x) = u(x,0), Hf (x) = v(x,0).
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Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.
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Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.

e Suppose that By = (0, yp), where yy > 0.
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Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.
e Suppose that By = (0, yp), where yy > 0.
e Let 7 be the hitting time of R x {0} for B;.

Discrete
000000




Hibert transforms Some history Continuous Continuous meets discrete Discrete
00000000000 00000000 0@000 0000000 000000

Harmonic functions and martingales Oyl
e Let B; be the 2-D standard Brownian motion. W
e Suppose that By = (0, yp), where yy > 0.
e Let 7 be the hitting time of R x {0} for B;.
e If uis a harmonic function in R x (0, 00), s
then, by the Ité6 formula, the process 7
Mt — U(Bt) k

is a martingale for t < 7.
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Harmonic functions and martingales

Let B; be the 2-D standard Brownian motion.

Suppose that By = (0, yp), where yy > 0.
Let 7 be the hitting time of R x {0} for B;.

If uis a harmonic function in R x (0, c0),
then, by the Ité6 formula, the process

M, = u(B)
is a martingale for t < 7.
Indeed:
dM, = Vu(B;) - dB;,
d[M]; = |Vu(B;)*dt.

Continuous meets discrete
0000000

Ki

4 “;?“'&g

Discrete
000000
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are

M, = u(B:), N = v(B).
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are
M, = u(B:), N = v(B).
e Quadratic variations of these martingales satisfy
d[M]; = |[Vu(B;)?dt = |Vv(B:)|*dt = d[N];
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are
M, = u(B:), N = v(B).
e Quadratic variations of these martingales satisfy
d[M]; = |Vu(B:)]2dt = |[Vv(B,)|*dt = d[N].
and
d[M, N]; = Vu(B;) - Vv(B;)dt = 0dt
for t <.
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Burkholder's inequality

Theorem (Bafiuelos-Wang)
If M; and N, are martingales and
e N, is differentially subordinate to M,:

d[N]; < d[M];;
e M, and N, are orthogonal:
d[M, N], = 0dt,
then
EIN: — No|” < (G)? E[M: — Mol®,
with G, = max{tan(3;), cot(3;)}.
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Pichorides—Cole estimate

e Define two conjugate harmonic functions v and v,
with boundary values f and Hf. ..
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with boundary values f and Hf. ..

e ...and two martingales M; = u(B;), N; = v(B:).
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Pichorides—Cole estimate

e Define two conjugate harmonic functions v and v,
with boundary values f and Hf. ..

e ...and two martingales M; = u(B;), N; = v(B:).
e Clearly, M. = f(B;) and N, = Hf(B,).
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Pichorides—Cole estimate

Define two conjugate harmonic functions u and v,
with boundary values f and Hf. ..

e ...and two martingales M; = u(B;), N; = v(B:).
Clearly, M. = f(B;) and N, = Hf(B;).
Burkholder's inequality implies that
E|Hf(B;) = v(0,%)|” < ()P E|f(B;) — u(0, y0)|”-
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Pichorides—Cole estimate

Define two conjugate harmonic functions u and v,
with boundary values f and Hf. ..

e ...and two martingales M; = u(B;), N; = v(B:).
Clearly, M. = f(B;) and N, = Hf(B;).
Burkholder's inequality implies that
E|Hf(B;) = v(0,%)|” < ()P E|f(B;) — u(0, y0)|”-

Pass to the limit as y; — oo to get
IHF]15 < (Co)P I3
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Discrete analogue?

Replace the Brownian motion by a simple random walk.
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Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.
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Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.

e Solution: Define it on the dual lattice!



Hibert transforms Some history Continuous Continuous meets discrete Discrete
00000000000 00000000 00000 000000 000000

Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.

e Solution: Define it on the dual lattice!

e Problem: No way do define the martingale transform N,.
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Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.
e Solution: Define it on the dual lattice!

e Problem: No way do define the martingale transform N,.

e Solution: Work with particle systems.
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Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.

e Solution: Define it on the dual lattice!

Problem: No way do define the martingale transform N,.

Solution: Work with particle systems.

Problem: No orthogonality, suboptimal constant.
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Discrete analogue?

Replace the Brownian motion by a simple random walk.

e Problem: No conjugate harmonic function v.
e Solution: Define it on the dual lattice!

Problem: No way do define the martingale transform N,.

Solution: Work with particle systems.

Problem: No orthogonality, suboptimal constant.

No workaround, sorry!
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,

e the Brownian motion on the y axis.
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,

e the Brownian motion on the y axis.

e Problem: No conjugate harmonic function v.
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,

e the Brownian motion on the y axis.

Problem: No conjugate harmonic function v.

Solution: Define the martingale transform N; as an It6 integral!
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,
e the Brownian motion on the y axis.

Problem: No conjugate harmonic function v.

Solution: Define the martingale transform N; as an It6 integral!

Problem: No orthogonality, suboptimal constant.
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,

e the Brownian motion on the y axis.

Problem: No conjugate harmonic function v.

Solution: Define the martingale transform N; as an It6 integral!

Problem: No orthogonality, suboptimal constant.

No workaround, sorry!
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Semi-discrete analogue?

Replace the 2-D Brownian motion by
e a continuous-time simple random walk on the x axis,

e the Brownian motion on the y axis.

Problem: No conjugate harmonic function v.

Solution: Define the martingale transform N; as an It6 integral!

Problem: No orthogonality, suboptimal constant.

No workaround, sorry!

Carried out by Arcozzi-Domelevo—Petermichl.
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Conditioned process

e Problem: At time 7, the Brownian motion B; hits the entire boundary.

e Solution: Replace B; by a diffusion Z; which only hits lattice points!

e Construct Z; by conditioning the Brownian motion so that
B, € | J(k—z k+e)x {0},
kEZ.

and passing to the limit as ¢ — 0. (Doob)
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What changes?

Problem: No conjugate harmonic function v.
Solution: Define the martingale transform by an It6 integral!

The final result is the expected (P estimate

|1Fanllee < Collanller,

for an appropriate transform (.

Surprise: after lengthy calculations, we find that

T 1 dn—k /oc 2y3 )
Ha, = — 1+ dy |.
m Z k ( o (y2+ m2k?)sinh’y d

keZ\{0}

(Initially | made a sign error and | got 5 = .. )
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where J has norm 1 as a convolution with a probability kernel.
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Convolution trick

e Solution: Prove that
Ha, = J[Ha,),
where J has norm 1 as a convolution with a probability kernel.

o We find the kernel of T explicitly (in terms of a rather complicated integral),
after tedious calculations involving a number of miraculous explicit identities.

(Had I not sent an enthusiastic email to Rodrigo before noticing the error,
| would have never found enough motivation to do that.)
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Why this cannot work for the Riesz—Titchmarsh transform

e In the proof, 3 is expressed as the composition of four operations:

(1) definition of the martingale: ap ~ My,
(2) martingale transform: M, ~~ Ny,
(3) conditional expectation: N, ~ Hap;
(4) application of J: Ha, ~ Ha,.

e Steps (3) and (4) do not preserve the ¢? norm.
e Therefore, no similar argument can be given for the unitary operator R.
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e Replace H by an equivalent operator, denoted again H, analogous to X:

2 dp—k
Ka, = — E : s
s
ke2Z+1

2 dn—k

Hap, = —

an =~ > e
ke27\{0}
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Factorization

e Replace H by an equivalent operator, denoted again H, analogous to X:

2 dp—k
Ka, = — E : s
s
ke2Z+1

2 dn—k

Hap, = —

an =~ > e
ke27\{0}

g 4 dn—k
a, — — A
n 2 2 : k2
ke2Z+1
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Factorization

e Replace H by an equivalent operator, denoted again H, analogous to X:

fKan: g Z n—k “anny

T
ke2Z+1
2 dn—k
ﬂ{an = — 5 n “nry
T k
ke2Z\ {0}
g 4 dn—k
a, — — N2 2d
o2 Z k2
ke2Z+1

e J is a convolution operator with a probability kernel.
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Factorization

e Replace H by an equivalent operator, denoted again H, analogous to X:

fKan: g Z n—k “anny

T
ke2Z+1
2 dn—k
ﬂ-fan = — 5 n “nry
T k
ke2Z\ {0}
g 4 dn—k
a, — — N2 2d
o2 Z k2
ke2Z+1

e J is a convolution operator with a probability kernel.
e We have Ha, = J[Ka,].
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Product rule
Lemma (Titchmarsh)

We have
Ka, - Kb, = K[Hap, - b,] + K[a, - Hb,] + I[an - by].

e This is the discrete counterpart of
Hf - Hg = H[Hf - g] + H[f - Hg] + f - g ...

e ...which is a consequence of
(f +iHf) - (g + iHg) = (f - g — Hf - Hg) + i(Hf - g + f - Hg).

e Compare with the cotangent of sum formula

cot acot f = cot(a + ) cot a + cot(ax + [5) cot § + 1.
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p~2p
e By the product rule:
(Kan)? = 2K[Ha, - a,] + I[a%].
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p~2p
e By the product rule:
(Kan)? = 2K[Ha, - a,] + I[a%].

If ||]a,||, =1, then
1Kanll = (Kan)llpr2 < 201K /2 o2 ]| F oo + 1.
We know that ||

Assume that [|K|| ;2,2 = cot % for some p > 4. Then

p_sgp = COt % when p > 2.

(|’j<:”fp—>€p)2 < 2cot%cot21p +1= (Cot 21,;)2-

e p=2~ p=4 ~ p=8 ~ ...
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p~2p
e By the product rule:
(Kan)? = 2K[Ha, - a,) + I[a2].
e If ||an]|, = 1, then
1Kanll = (Kan)llpr2 < 201K /2 o2 ]| F oo + 1.
e We know that |7

e Assume that | X||s/2_,p/2 = cot 7 for some p > 4. Then

p_sgp = COt i‘p when p > 2.

(1K Nl ep—er)* < 2cot;cot21p + 1 =(cot 21,;)2'

e p=2~ p=4 ~ p=8 ~ ...

e Note: we can replace ||J([[o..o = cot 7 by [[F[lre—ee < [|K][ore.
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p~3p(1/2)

e By the product rule:
(Ka,)® = 2Ka, - K[Ha, - an] + Ka, - I[a?]
= 2K[(Han)? - an] + 2K[an - H[Ha, - a,]]
+ 29[Ha, - a2] + Ka, - I[a2].



Discrete
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p~3p(1/2)

e By the product rule:
(Ka,)® = 2Ka, - K[Ha, - an] + Ka, - I[a?]
= 2K[(Han)? - an] + 2K[an - H[Ha, - a,]]
+ 29[Ha, - a2] + Ka, - I[a2].
e If ||an]|, = 1, then
1Kanll; = [1(Kan)*llp/3 < 201K lleoi5 ors (13 5720012 )?

+ 20K gor3 s 013 [|FC| o125 o2 || FC | 0 0
+ 2[|Hleo—eo + [|K[[o00-
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p~3p (2/2)

o We know that [|J([[» ..o = cot 7~ and [[H(][,2 2 = cot - when p > 4.
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p~3p (2/2)

o We know that ||J[[»..o = cot 7> and [[H][,s2 s> = cot - when p > 4.

e Assume that ||JH||jp/3_, /3 = cot g—g for some p > 6. Then

(1K er—e0)® < 2 cot 5 cot? 2+ 2cot 3% cot T cot 57 + 2 cot go + || Kl v
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o We know that |[J(][;»—.» = cot 7 and [/

¢p/2_ypp/2 — cot I When p 2 4

e Assume that ||F(|| o3 s = cot 3 37“ for some p > 6. Then
([|K || ep—er)® < 2cot 32 cot2 2+ 2cot I > cot £ cot 3o + 2 cot 3 + || K| oo

o After a short calculation, this implies that [|X||e—e < cot .
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p~3p (2/2)

We know that [|J([[» ..o = cot 57 and |

¢p/2_ypp/2 — cot I When p 2 4

Assume that |||,/ ,4p/s = cot 5 37“ for some p > 6. Then

([|K || ep—er)® < 2cot 32 cot2 = +2cot > cot £ cot 3o + 2 cot 3 + || K| oo

After a short calculation, this implies that ||X||z— < cot 7.

Note: we use ||J([[;p2 42 = cot | in an essential way.
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p ~ np

e We apply the same strategy:
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p ~ np

e We apply the same strategy:
» Start with (Xa,)" with ||a,|/, = 1.

Use the product rule repeatedly for Ka, - K[longest expression.

Apply Holder's inequality.

Use known bounds on ||J{

¢p/k_pp/k-
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Use the cotangent of sum formula.
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p ~ np

e We apply the same strategy:
» Start with (Xa,)" with ||a,|/, = 1.
Use the product rule repeatedly for Ka, - K[longest expression.
Apply Holder's inequality.

/P k_ypp/k-

>
>
» Use known bounds on ||
» Use the cotangent of sum formula.
>

Show that [|XC|[ sp/n_,pe/n < cot 57 implies || K[| < cot 77
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e Enumeration of all intermediate terms is a non-obvious task.
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p ~ np

e We apply the same strategy:
» Start with (Xa,)" with ||a,|/, = 1.

Use the product rule repeatedly for Ka, - K[longest expression.

Apply Holder's inequality.

Use known bounds on ||J{

/P k_ypp/k-

>
>
>
» Use the cotangent of sum formula.

> Show that || K{|p/n_m < cot 37 implies || K[ < cot 5.

e Enumeration of all intermediate terms is a non-obvious task.

e To get things under control, we introduce frames, skeletons and buildings.
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