Discrete Hilbert transform

Mateusz Kwaśnicki
Wrocław University of Science and Technology
mateusz.kwasnicki@pwr.edu.pl
Joint work with Rodrigo Bañuelos (Purdue University)
Ryll-Nardzewski Day
12 June 2023

Hilbert transform

Definition (Hilbert)

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Hilbert transform

Definition (Hilbert)

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Theorem (Hilbert)

If $\mathcal{F} f$ denotes the Fourier transform of f, then

$$
\mathcal{F}[H f](\xi)=(-i \operatorname{sign} \xi) \mathcal{F} f(\xi)
$$

for $\xi \in \mathbb{R}$.

Naive discrete Hilbert transform

Definition (Hilbert)

The discrete Hilbert transform is given by

$$
\mathcal{H}\left(a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\right.
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Naive discrete Hilbert transform

Definition (Hilbert)

The discrete Hilbert transform is given by

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Theorem (Fourier?)

If \mathcal{F} a denotes the Fourier series with coefficients a_{n}, then

$$
\mathcal{F}\left[\mathcal{H} a_{n}\right](\xi)=(-i \operatorname{sign} \xi)\left(1-\frac{1}{\pi}|\xi|\right) \mathcal{F}\left[a_{n}\right](\xi)
$$

for $\xi \in(-\pi, \pi)$.

Kak-Hilbert transform

Definition (Ferrand and Duffin)

The Kak-Hilbert transform is given by

$$
\mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k}
$$

for appropriate doubly infinite sequences ($a_{n}: n \in \mathbb{Z}$).

Kak-Hilbert transform

Definition (Ferrand and Duffin)

The Kak-Hilbert transform is given by

$$
\mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k}
$$

for appropriate doubly infinite sequences ($a_{n}: n \in \mathbb{Z}$).

Theorem (Fourier?)
If $\mathcal{F}\left[a_{n}\right]$ denotes the Fourier series with coefficients a_{n}, then

$$
\mathcal{F}\left[\mathcal{K} a_{n}\right](\xi)=(-i \operatorname{sign} \xi) \mathcal{F}\left[a_{n}\right](\xi)
$$

for $\xi \in(-\pi, \pi)$.

Riesz-Titchmarsh transform

Definition (Titchmarsh)

The Riesz-Titchmarsh transform is given by

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Riesz-Titchmarsh transform

Definition (Titchmarsh)

The Riesz-Titchmarsh transform is given by

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

for appropriate doubly infinite sequences ($a_{n}: n \in \mathbb{Z}$).

Theorem (Fourier?)

If $\mathcal{F}\left[a_{n}\right]$ denotes the Fourier series with coefficients a_{n}, then

$$
\mathcal{F}\left[\mathcal{R} a_{n}\right](\xi)=(-i \operatorname{sign} \xi) e^{i \xi / 2} \mathcal{F}\left[a_{n}\right](\xi)
$$

for $\xi \in(-\pi, \pi)$.

Arcozzi-Domelevo-Petermichl transform

Definition (Arcozzi-Domelevo-Petermichl)

The Arcozzi-Domelevo-Petermichl transform is given by

$$
\mathcal{A D P a}_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}}
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Arcozzi-Domelevo-Petermichl transform

Definition (Arcozzi-Domelevo-Petermichl)

The Arcozzi-Domelevo-Petermichl transform is given by

$$
\mathcal{A D P} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}}
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Theorem (Fourier?)

If $\mathcal{F}\left[a_{n}\right]$ denotes the Fourier series with coefficients a_{n}, then

$$
\mathcal{F}\left[\mathcal{A D P} a_{n}\right](\xi)=(-i \operatorname{sign} \xi) \cos \frac{\xi}{2} \mathcal{F}\left[a_{n}\right](\xi)
$$

for $\xi \in(-\pi, \pi)$.

Too many discrete analogues of the Hilbert transform

$$
\begin{aligned}
\text { operator } & \text { Fourier symbol } \\
\mathcal{H} a_{n}= & \frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
\mathcal{K} a_{n}= & \frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
\mathcal{R} a_{n}= & \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}} \\
\mathcal{A D P} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}}
\end{aligned}
$$

Elementary reductions

Question (Hilbert)

Is there a constant C such that if b_{n} is the transform of a_{n}, then

$$
\left\|b_{n}\right\|_{p} \leqslant C\left\|a_{n}\right\|_{p} .
$$

Elementary reductions

Question (Hilbert)

Is there a constant C such that if b_{n} is the transform of a_{n}, then

$$
\left\|b_{n}\right\|_{p} \leqslant C\left\|a_{n}\right\|_{\rho} .
$$

$\mathcal{R} \Rightarrow \mathcal{A D P}$

$$
\mathcal{A D P} a_{n}=\frac{1}{2}\left(\mathcal{R} a_{n}+\mathcal{R} a_{n-1}\right) .
$$

Elementary reductions

Question (Hilbert)

Is there a constant C such that if b_{n} is the transform of a_{n}, then

$$
\left\|b_{n}\right\|_{p} \leqslant C\left\|a_{n}\right\|_{\rho} .
$$

$\mathcal{R} \Rightarrow \mathcal{A D P}$

$$
\mathcal{A D P} a_{n}=\frac{1}{2}\left(\mathcal{R} a_{n}+\mathcal{R} a_{n-1}\right) .
$$

$\mathcal{R} \Leftrightarrow \mathcal{X}$

$$
b_{n}=\mathcal{K} a_{n} \Longleftrightarrow\left\{\begin{array}{l}
b_{2 n+1}=\mathcal{R}\left[a_{2 n}\right], \\
b_{2 n}=\mathcal{R}\left[a_{2 n-1}\right] .
\end{array}\right.
$$

Slightly less elementary reduction

$\mathcal{X} \Rightarrow \mathcal{H}$

We have

$$
b_{n}=\mathcal{J}\left[\mathcal{K} a_{n}\right] \Longleftrightarrow\left\{\begin{array}{l}
b_{2 n}=\mathcal{H} a_{n} \\
b_{2 n+1}=0
\end{array}\right.
$$

where

$$
\mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}}
$$

has norm 1 (convolution with a probability kernel).

Much less elementary reduction

$\mathcal{A D P} \Rightarrow \mathcal{H}$

We have

$$
\mathcal{H} a_{n}=\mathcal{J}\left[\mathcal{A D P} a_{n}\right]
$$

where

$$
\mathcal{J} a_{n}=\frac{1}{2 \pi^{2}} \sum_{k \in \mathbb{Z}}\left(\psi_{1}\left(\frac{1}{4}+\frac{n}{2}\right)-\psi_{1}\left(\frac{3}{4}+\frac{n}{2}\right)\right) a_{n-k}
$$

has norm 1 (convolution with a probability kernel).

Here $\psi_{1}=(\log \Gamma)^{\prime \prime}$ is the trigamma function.

Approximation

$\mathcal{H} \Rightarrow H$

For appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
H f(x)=\lim _{\delta \rightarrow 0^{+}} \delta \mathcal{H}[f(n \delta)]
$$

with $n=\left\lfloor\frac{x}{\delta}\right\rfloor$. Thus,

$$
\left\|\mathcal{H} a_{n}\right\|_{p} \leqslant C\left\|a_{n}\right\|_{p}
$$

implies

$$
\|H f\|_{p} \leqslant C\|f\|_{p} .
$$

Summary

Summary

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\|\mathcal{H}\|_{\varphi_{\rho} \rightarrow \varphi^{\rho}} \leqslant\|\mathcal{A D P}\|_{\varphi_{\rho} \rightarrow \varphi^{\rho}} \leqslant\|\mathcal{R}\|_{\varphi^{\rho} \rightarrow \varphi^{\rho}}=\|\mathcal{K}\|_{\varphi^{\rho} \rightarrow \varphi^{\rho}} .
$$

Summary

Summary

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

Question (Riesz, Titchmarsh)

Are they all equal?

L^{P} bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

L^{p} bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator, $H^{-1}=-H$
(Hilbert)

L^{p} bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator, $H^{-1}=-H$
- H does not extend continuously to L^{1} and L^{∞}
(Hilbert)
(Hilbert)

L^{p} bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

\leftrightarrow

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator, $H^{-1}=-H$
- H does not extend continuously to L^{1} and L^{∞}
(Hilbert)
- H extends continuously to L^{p} for $p \in(1, \infty)$

L^{p} bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-s)}{s} d s
$$

\leftrightarrow

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator, $H^{-1}=-H$
- H does not extend continuously to L^{1} and L^{∞}
(Hilbert)
(Hilbert)
- H extends continuously to L^{p} for $p \in(1, \infty)$
(M. Riesz)
- $\|H\|_{L^{\rho} \rightarrow L^{p}}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}$
(Pichorides and Cole)
($p=2,4,8,16, \ldots$: Gohberg-Krupnik)

L^{p} bounds for the discrete analogues $(1 / 3)$

L^{p} bounds for the discrete analogues $(1 / 3)$

$$
\begin{aligned}
& \mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
\end{aligned}
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary
L^{p} bounds for the discrete analogues $(1 / 3)$

$$
\begin{aligned}
\mathcal{H} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
\mathcal{R} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
\end{aligned}
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary
- $\|\mathcal{R}\|_{\ell^{2} \rightarrow \ell^{2}}=1$ and \mathcal{R} is unitary
(Titchmarsh)
L^{p} bounds for the discrete analogues $(1 / 3)$

$$
\begin{aligned}
& \mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
\end{aligned}
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary
- $\|\mathcal{R}\|_{\ell^{2} \rightarrow \ell^{2}}=1$ and \mathcal{R} is unitary
(Titchmarsh)
- \mathcal{R} extends continuously to L^{p} for $p \in(1, \infty)$
(Titchmarsh and M. Riesz)
L^{p} bounds for the discrete analogues $(2 / 3)$

$$
\begin{aligned}
& r_{0}-\frac{1}{1} \sum_{10} \frac{n}{x}
\end{aligned}
$$

- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{\rho} \rightarrow L^{\rho}}$
(Titchmarsh)
L^{p} bounds for the discrete analogues $(2 / 3)$

$$
\begin{aligned}
& v_{0}-\frac{1}{T_{1}} \sum_{010} \frac{n}{x}
\end{aligned}
$$

- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{p}} \geqslant\|H\|_{L^{p} \rightarrow L^{p}}$
(Titchmarsh)
- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant\|H\|_{L^{p} \rightarrow L^{p}}$, incorrect proof
(Titchmarsh)

Titchmarsh, Reciprocal formulae involving series and integrals

The paper appeared in Mathematische Zeitschrift 25 in 1926.
The next issue contained the following letter.

Correction.

E. C. Thon Tharsh.
I. In paragraph 4 of my paper on 'Reciprocal formulae involving series and integrals' (Math. Zeitschr. 25 (1926), pp. 321-347), the proof that $N_{p} \leqq N_{p}^{\prime}$ is incorrect, and should be deleted. This does not affect anything else in the paper.
II. In obtaining the inequality which follows formula (2.32), we have assumed that (4a) as well as (3a) holds for the particular value of p taken. This merely involves a slight rearrangement of the proof.
III. The following references to the work of M. Riesz should have been given:

Comptes Rendus 178 (Apr. 28, 1924), pp. 1464-1467 and Proc. London Math. Soc. (2) 23 (1925), pp. XXIV-XXVI (Records for Jan. 17, 1924). I should have said that I was already familiar with Riesz's methods, and not merely his results, when I wrote my paper.
(Eingegangen am 10. November 1926.)

Titchmarsh, Reciprocal formulae involving series and integrals

The paper appeared in Mathematische Zeitschrift 25 in 1926.
The next issue contained the following letter.

Correction.

E. C. Titchmarsh.
I. In paragraph 4 of my paper on 'Reciprocal formulae involving series and integrals' (Math. Zeitschr. 25 (1926), pp. 321-347), the proof that $N_{p} \leqq N_{p}^{\prime}$ is incorrect, and should be deleted. This does not affect anything else in the paper.
II. In obtaining the inequality which follows formula (2.32), we have assumed that (4a) as well as (3a) holds for the particular value of p taken. This merely involves a slight rearrangement of the proof.
III. The following references to the work of M. Riesz should have been given:

Comptes Rendus 178 (Apr. 28, 1924), pp. 1464-1467 and Proc. London Math. Soc. (2) 23 (1925), pp. XXIV-XXVI (Records for Jan. 17, 1924). I should have said that I was already familiar with Riesz's methods, and not merely his results, when I wrote my paper.
(Eingegangen am 10. November 1926.)

Czesław Ryll-Nardzewski was born on 7 October 1926.

L^{p} bounds for the discrete analogues $(3 / 3)$

$$
\mathcal{A D P}_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}}
$$

\leftrightarrow

- $\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \max \left\{p-1, \frac{p}{p-1}\right\}$
(Arcozzi-Domelevo-Petermichl)
L^{p} bounds for the discrete analogues $(3 / 3)$

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

\leftrightarrow

- $\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \max \left\{p-1, \frac{p}{p-1}\right\}$
- $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$

(Arcozzi-Domelevo-Petermichl)
(Bañuelos-K)

$$
(p=2,4,8,16, \ldots: \text { Verbitsky })
$$

L^{p} bounds for the discrete analogues $(3 / 3)$

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

- $\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \max \left\{p-1, \frac{p}{p-1}\right\}$
- $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$
(Arcozzi-Domelevo-Petermichl)
(Bañuelos-K)

$$
(p=2,4,8,16, \ldots: \text { Verbitsky })
$$

- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}}$ for $p=2,4,6,8, \ldots$
L^{p} bounds for the discrete analogues $(3 / 3)$

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

- $\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \max \left\{p-1, \frac{p}{p-1}\right\}$
- $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$
(Arcozzi-Domelevo-Petermichl)
(Bañuelos-K)

$$
(p=2,4,8,16, \ldots: \text { Verbitsky })
$$

- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}}$ for $p=2,4,6,8, \ldots$
(Bañuelos-K)
Motivation: discrete analogues in harmonic analysis
(Magyar-Stein-Waigner, Pierce)

Będlewo

I learned about the problem at the Probability and Analysis conference in Będlewo (15-19 May 2017).

Będlewo

During a BBQ dinner, with free beer and a bonfire, Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about it.

source: SACNAS sacnas.org

source: University of Helsinki

Będlewo

During a BBQ dinner, with free beer and a bonfire, Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about it.
They forgot to mention that it was a 90 -year-old conjcecture.

source: SACNAS sacnas.org

source: University of Helsinki

Main results

Theorem (Bañuelos-K)
For $p \in(1, \infty)$ we have

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}} .
$$

Theorem (Bañuelos-K)
For $p=2,4,6,8, \ldots$ we have

$$
\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

Hilbert transform and harmonic functions

- For $y>0$ define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{y}{s^{2}+y^{2}} d s \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{s}{s^{2}+y^{2}} d s
\end{aligned}
$$

Hilbert transform and harmonic functions

- For $y>0$ define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{y}{s^{2}+y^{2}} d s, \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{s}{s^{2}+y^{2}} d s .
\end{aligned}
$$

- Then u and v are conjugate harmonic functions:

$$
\Delta u=\Delta v=0, \quad \nabla v=\left(\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right) \nabla u .
$$

Hilbert transform and harmonic functions

- For $y>0$ define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{y}{s^{2}+y^{2}} d s, \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-s) \frac{s}{s^{2}+y^{2}} d s .
\end{aligned}
$$

- Then u and v are conjugate harmonic functions:

$$
\Delta u=\Delta v=0, \quad \nabla v=\left(\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right) \nabla u .
$$

- The boundary values of u and v are given by

$$
f(x)=u(x, 0), \quad H f(x)=v(x, 0) .
$$

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- Suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- Suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- Suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.
- If u is a harmonic function in $\mathbb{R} \times(0, \infty)$, then, by the Itô formula, the process

$$
M_{t}=u\left(B_{t}\right)
$$

is a martingale for $t \leqslant \tau$.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- Suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.
- If u is a harmonic function in $\mathbb{R} \times(0, \infty)$, then, by the Itô formula, the process

$$
M_{t}=u\left(B_{t}\right)
$$

is a martingale for $t \leqslant \tau$.

- Indeed:

$$
\begin{aligned}
d M_{t} & =\nabla u\left(B_{t}\right) \cdot d B_{t}, \\
d[M]_{t} & =\left|\nabla u\left(B_{t}\right)\right|^{2} d t .
\end{aligned}
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{t}\right), \quad N_{t}=v\left(B_{t}\right) .
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{t}\right), \quad N_{t}=v\left(B_{t}\right) .
$$

- Quadratic variations of these martingales satisfy

$$
d[M]_{t}=\left|\nabla u\left(B_{t}\right)\right|^{2} d t=\left|\nabla v\left(B_{t}\right)\right|^{2} d t=d[N]_{t}
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{t}\right), \quad N_{t}=v\left(B_{t}\right) .
$$

- Quadratic variations of these martingales satisfy

$$
d[M]_{t}=\left|\nabla u\left(B_{t}\right)\right|^{2} d t=\left|\nabla v\left(B_{t}\right)\right|^{2} d t=d[N]_{t}
$$

and

$$
d[M, N]_{t}=\nabla u\left(B_{t}\right) \cdot \nabla v\left(B_{t}\right) d t=0 d t
$$

for $t<\tau$.

Burkholder's inequality

Theorem (Bañuelos-Wang)

If M_{t} and N_{t} are martingales and

- N_{t} is differentially subordinate to M_{t} :

$$
d[N]_{t} \leqslant d[M]_{t}
$$

- M_{t} and N_{t} are orthogonal:

$$
d[M, N]_{t}=0 d t
$$

then

$$
\mathbb{E}\left|N_{\tau}-N_{0}\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|M_{\tau}-M_{0}\right|^{p},
$$

with $C_{p}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}$.

Pichorides-Cole estimate

- Define two conjugate harmonic functions u and v, with boundary values f and $H f \ldots$

Pichorides-Cole estimate

- Define two conjugate harmonic functions u and v, with boundary values f and $H f \ldots$
- ... and two martingales $M_{t}=u\left(B_{t}\right), N_{t}=v\left(B_{t}\right)$.

Pichorides-Cole estimate

- Define two conjugate harmonic functions u and v, with boundary values f and $H f \ldots$
- ... and two martingales $M_{t}=u\left(B_{t}\right), N_{t}=v\left(B_{t}\right)$.
- Clearly, $M_{\tau}=f\left(B_{\tau}\right)$ and $N_{\tau}=H f\left(B_{\tau}\right)$.

Pichorides-Cole estimate

- Define two conjugate harmonic functions u and v, with boundary values f and $H f$...
- ... and two martingales $M_{t}=u\left(B_{t}\right), N_{t}=v\left(B_{t}\right)$.
- Clearly, $M_{\tau}=f\left(B_{\tau}\right)$ and $N_{\tau}=H f\left(B_{\tau}\right)$.
- Burkholder's inequality implies that

$$
\mathbb{E}\left|H f\left(B_{\tau}\right)-v\left(0, y_{0}\right)\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|f\left(B_{\tau}\right)-u\left(0, y_{0}\right)\right|^{p} .
$$

Pichorides-Cole estimate

- Define two conjugate harmonic functions u and v, with boundary values f and $H f \ldots$
- ... and two martingales $M_{t}=u\left(B_{t}\right), N_{t}=v\left(B_{t}\right)$.
- Clearly, $M_{\tau}=f\left(B_{\tau}\right)$ and $N_{\tau}=H f\left(B_{\tau}\right)$.
- Burkholder's inequality implies that

$$
\mathbb{E}\left|H f\left(B_{\tau}\right)-v\left(0, y_{0}\right)\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|f\left(B_{\tau}\right)-u\left(0, y_{0}\right)\right|^{p} .
$$

- Pass to the limit as $y_{0} \rightarrow \infty$ to get

$$
\|H f\|_{p}^{p} \leqslant\left(C_{p}\right)^{p}\|f\|_{p}^{p} .
$$

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.
- Solution: Define it on the dual lattice!

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.
- Solution: Define it on the dual lattice!
- Problem: No way do define the martingale transform N_{t}.

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.
- Solution: Define it on the dual lattice!
- Problem: No way do define the martingale transform N_{t}.
- Solution: Work with particle systems.

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.
- Solution: Define it on the dual lattice!
- Problem: No way do define the martingale transform N_{t}.
- Solution: Work with particle systems.
- Problem: No orthogonality, suboptimal constant.

Discrete analogue?

Idea

Replace the Brownian motion by a simple random walk.

- Problem: No conjugate harmonic function v.
- Solution: Define it on the dual lattice!
- Problem: No way do define the martingale transform N_{t}.
- Solution: Work with particle systems.
- Problem: No orthogonality, suboptimal constant.
- No workaround, sorry!

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.
- Problem: No conjugate harmonic function v.

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.
- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform N_{t} as an Itô integral!

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.
- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform N_{t} as an Itô integral!
- Problem: No orthogonality, suboptimal constant.

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.
- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform N_{t} as an Itô integral!
- Problem: No orthogonality, suboptimal constant.
- No workaround, sorry!

Semi-discrete analogue?

Idea

Replace the 2-D Brownian motion by

- a continuous-time simple random walk on the x axis,
- the Brownian motion on the y axis.
- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform N_{t} as an Itô integral!
- Problem: No orthogonality, suboptimal constant.
- No workaround, sorry!
- Carried out by Arcozzi-Domelevo-Petermichl.

Conditioned process

- Problem: At time τ, the Brownian motion B_{t} hits the entire boundary.

Conditioned process

- Problem: At time τ, the Brownian motion B_{t} hits the entire boundary.
- Solution: Replace B_{t} by a diffusion Z_{t} which only hits lattice points!

Conditioned process

- Problem: At time τ, the Brownian motion B_{t} hits the entire boundary.
- Solution: Replace B_{t} by a diffusion Z_{t} which only hits lattice points!
- Construct Z_{t} by conditioning the Brownian motion so that

$$
B_{\tau} \in \bigcup_{k \in \mathbb{Z}}(k-\varepsilon, k+\varepsilon) \times\{0\},
$$

and passing to the limit as $\varepsilon \rightarrow 0^{+}$.

What changes?

- Problem: No conjugate harmonic function v.

What changes?

- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform by an Itô integral!

What changes?

- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform by an Itô integral!
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell^{\rho}} \leqslant C_{p}\left\|a_{n}\right\|_{\ell^{\rho}},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

What changes?

- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform by an Itô integral!
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell^{\rho}} \leqslant C_{\rho}\left\|a_{n}\right\|_{\ell^{\rho}},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

- Surprise: after lengthy calculations, we find that

$$
\tilde{\mathcal{H}} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\left(1+\int_{0}^{\infty} \frac{2 y^{3}}{\left(y^{2}+\pi^{2} k^{2}\right) \sinh ^{2} y} d y\right) .
$$

What changes?

- Problem: No conjugate harmonic function v.
- Solution: Define the martingale transform by an Itô integral!
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell^{\rho}} \leqslant C_{\rho}\left\|a_{n}\right\|_{\ell^{\rho}},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

- Surprise: after lengthy calculations, we find that

$$
\tilde{\mathcal{H}} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\left(1+\int_{0}^{\infty} \frac{2 y^{3}}{\left(y^{2}+\pi^{2} k^{2}\right) \sinh ^{2} y} d y\right) .
$$

(Initially \mid made a sign error and \mid got $\tilde{\mathcal{H}}=\mathcal{H} \ldots$)

Convolution trick

- Solution: Prove that

$$
\mathcal{H} a_{n}=\tilde{\mathcal{I}}\left[\tilde{\mathcal{H}} a_{n}\right],
$$

where $\tilde{\mathcal{J}}$ has norm 1 as a convolution with a probability kernel.

Convolution trick

- Solution: Prove that

$$
\mathcal{H} a_{n}=\tilde{\mathcal{I}}\left[\tilde{\mathcal{H}} a_{n}\right],
$$

where $\tilde{\mathcal{J}}$ has norm 1 as a convolution with a probability kernel.

- We find the kernel of \tilde{J} explicitly (in terms of a rather complicated integral), after tedious calculations involving a number of miraculous explicit identities.

Convolution trick

- Solution: Prove that

$$
\mathcal{H} a_{n}=\tilde{J}\left[\tilde{\mathcal{H}} a_{n}\right],
$$

where $\tilde{\mathcal{J}}$ has norm 1 as a convolution with a probability kernel.

- We find the kernel of \tilde{J} explicitly (in terms of a rather complicated integral), after tedious calculations involving a number of miraculous explicit identities. (Had I not sent an enthusiastic email to Rodrigo before noticing the error, I would have never found enough motivation to do that.)

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathcal{H} is expressed as the composition of four operations:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
a_{n} \rightsquigarrow M_{t} ;
$$

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathscr{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ;
\end{aligned}
$$

(2) martingale transform:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathscr{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ;
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathscr{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ;
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:
(4) application of \tilde{J} :

$$
\tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H} a_{n} .
$$

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathscr{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ;
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:
(4) application of \tilde{J} :

$$
\tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H} a_{n} .
$$

- Steps (3) and (4) do not preserve the ℓ^{2} norm.

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ; \\
& \tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H} a_{n} .
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:
(4) application of \tilde{J} :

- Steps (3) and (4) do not preserve the ℓ^{2} norm.
- Therefore, no similar argument can be given for the unitary operator \mathcal{R}.

Factorization

- Replace \mathcal{H} by an equivalent operator, denoted again \mathcal{H}, analogous to \mathcal{K} :

$$
\begin{aligned}
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
& \mathcal{H} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
\end{aligned}
$$

Factorization

- Replace \mathcal{H} by an equivalent operator, denoted again \mathcal{H}, analogous to \mathcal{K} :

$$
\begin{array}{ll}
\mathcal{K} a_{n}= & \frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
\mathcal{H} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \quad \text { un } \\
\mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}} \quad \text { unt }
\end{array}
$$

Factorization

- Replace \mathcal{H} by an equivalent operator, denoted again \mathcal{H}, analogous to \mathcal{K} :

$$
\begin{aligned}
\mathcal{K} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
\mathcal{H} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \quad \text { uns } \\
\mathcal{J} a_{n} & =\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}}
\end{aligned}
$$

Factorization

- Replace \mathcal{H} by an equivalent operator, denoted again \mathcal{H}, analogous to \mathcal{K} :

$$
\begin{aligned}
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
& \mathcal{H} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}}
\end{aligned}
$$

- J is a convolution operator with a probability kernel.
- We have $\mathcal{H} a_{n}=\mathcal{J}\left[\mathcal{K} a_{n}\right]$.

Product rule

Lemma (Titchmarsh)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

Product rule

Lemma (Titchmarsh)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is the discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

Product rule

Lemma (Titchmarsh)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is the discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

- ... which is a consequence of

$$
(f+i H f) \cdot(g+i H g)=(f \cdot g-H f \cdot H g)+i(H f \cdot g+f \cdot H g)
$$

Product rule

Lemma (Titchmarsh)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is the discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

- ... which is a consequence of

$$
(f+i H f) \cdot(g+i H g)=(f \cdot g-H f \cdot H g)+i(H f \cdot g+f \cdot H g)
$$

- Compare with the cotangent of sum formula

$$
\cot \alpha \cot \beta=\cot (\alpha+\beta) \cot \alpha+\cot (\alpha+\beta) \cot \beta+1
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{\rho} / 2} \rightarrow \ell^{\rho / 2} /\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}+1 .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{\rho / 2} / 2 \rightarrow \ell^{\rho / 2}}\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell \rho \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
$p \rightsquigarrow 2 p$
- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{\rho / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- Assume that $\|\mathcal{K}\|_{\ell^{p} / 2 \rightarrow \rho^{p} / 2}=\cot \frac{\pi}{p}$ for some $p \geqslant 4$. Then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2} .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- Assume that $\|\mathcal{K}\|_{\ell^{p} / 2 \rightarrow \ell^{p} / 2}=\cot \frac{\pi}{p}$ for some $p \geqslant 4$. Then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2} .
$$

- $p=2 \rightsquigarrow p=4 \rightsquigarrow p=8 \rightsquigarrow \ldots$
$p \rightsquigarrow 2 p$
- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{p}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2} / 2}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- Assume that $\|\mathcal{K}\|_{\ell^{p} / 2 \rightarrow \rho^{p} / 2}=\cot \frac{\pi}{p}$ for some $p \geqslant 4$. Then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2} .
$$

- $p=2 \rightsquigarrow p=4 \rightsquigarrow p=8 \rightsquigarrow \ldots$
- Note: we can replace $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ by $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}$.

$p \rightsquigarrow 3 p(1 / 2)$

- By the product rule:

$$
\begin{aligned}
\left(\mathcal{K} a_{n}\right)^{3}= & 2 \mathcal{K} a_{n} \cdot \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] \\
= & 2 \mathcal{K}\left[\left(\mathcal{H} a_{n}\right)^{2} \cdot a_{n}\right]+2 \mathcal{K}\left[a_{n} \cdot \mathcal{H}\left[\mathcal{H} a_{n} \cdot a_{n}\right]\right] \\
& \quad+2 \mathcal{J}\left[\mathcal{H} a_{n} \cdot a_{n}^{2}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] .
\end{aligned}
$$

```
p\rightsquigarrow3p(1/2)
```

- By the product rule:

$$
\begin{aligned}
\left(\mathcal{K} a_{n}\right)^{3}= & 2 \mathcal{K} a_{n} \cdot \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] \\
= & 2 \mathcal{K}\left[\left(\mathcal{H} a_{n}\right)^{2} \cdot a_{n}\right]+2 \mathcal{K}\left[a_{n} \cdot \mathcal{H}\left[\mathcal{H} a_{n} \cdot a_{n}\right]\right] \\
& \quad+2 \mathcal{J}\left[\mathcal{H} a_{n} \cdot a_{n}^{2}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] .
\end{aligned}
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\begin{aligned}
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{3}=\left\|\left(\mathcal{K} a_{n}\right)^{3}\right\|_{\rho / 3} \leqslant 2 \| & \left\|\|_{\ell^{\rho} / 3} \rightarrow \ell^{\rho / 3} / 3\right. \\
& \left.+2\|\mathcal{H}\|_{\ell^{\rho / 2 / 2} \rightarrow \ell^{\rho / 2 / 2}}\right)^{2} \\
& +2\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}+\|\mathcal{C}\| \|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
\end{aligned}
$$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.

```
p\rightsquigarrow3p(2/2)
```

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho} / 2}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.
- Assume that $\|\mathcal{H}\|_{\ell^{p / 3} \rightarrow \ell^{\rho / 3}}=\cot \frac{3 \pi}{2 p}$ for some $p \geqslant 6$. Then

$$
\left(\|\mathcal{K}\|_{\ell \rho \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 \rho} \cot ^{2} \frac{\pi}{\rho}+2 \cot \frac{3 \pi}{2 \rho} \cot \frac{\pi}{\rho} \cot \frac{\pi}{2 \rho}+2 \cot \frac{\pi}{2 \rho}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

```
p\rightsquigarrow3p(2/2)
```

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{\rho / 2} \rightarrow \ell^{\rho} / 2}=\cot \frac{\pi}{\rho}$ when $p \geqslant 4$.
- Assume that $\|\mathcal{H}\|_{\ell^{\rho / 3} \rightarrow \ell^{\rho / 3}}=\cot \frac{3 \pi}{2 p}$ for some $p \geqslant 6$. Then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 p} \cot ^{2} \frac{\pi}{\rho}+2 \cot \frac{3 \pi}{2 \rho} \cot \frac{\pi}{\rho} \cot \frac{\pi}{2 p}+2 \cot \frac{\pi}{2 p}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- After a short calculation, this implies that $\|\mathcal{K}\|_{\rho_{\rho \rightarrow \rho \rho}} \leqslant \cot \frac{\pi}{2 p}$.

```
p\rightsquigarrow3p(2/2)
```

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho} / 2}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.
- Assume that $\|\mathcal{H}\|_{\ell^{\rho} / 3 \rightarrow \rho^{\rho} / 3}=\cot \frac{3 \pi}{2 p}$ for some $p \geqslant 6$. Then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 p} \cot ^{2} \frac{\pi}{\rho}+2 \cot \frac{3 \pi}{2 \rho} \cot \frac{\pi}{\rho} \cot \frac{\pi}{2 p}+2 \cot \frac{\pi}{2 p}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- After a short calculation, this implies that $\|\mathcal{K}\|_{\rho_{\rho} \rightarrow \ell_{\rho}} \leqslant \cot \frac{\pi}{2 p}$.
- Note: we use $\|\mathcal{H}\|_{e^{\rho / 2} \rightarrow e^{\rho / 2}}=\cot \frac{\pi}{\rho}$ in an essential way.
$p \rightsquigarrow n p$
- We apply the same strategy:
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell \rho / k \rightarrow \ell^{\rho} / k}$.
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell_{\rho / K} \rightarrow \ell^{\rho} / k}$.
- Use the cotangent of sum formula.
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell_{P / K} \rightarrow \ell^{P} / k}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n}} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell_{P / / k} \rightarrow \ell^{P} / k}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n} / n} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
- Enumeration of all intermediate terms is a non-obvious task.
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression $]$.
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell_{P / / k} \rightarrow \ell^{P} / k}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n} / n} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
- Enumeration of all intermediate terms is a non-obvious task.
- To get things under control, we introduce frames, skeletons and buildings.

