Practice problems \#1: partial derivatives

(1) Find first partial derivatives of f if: $f(x, y)=x^{3}-2 x y^{2}+4 y+1, \quad f(x, y)=\frac{x}{y^{2}}-\frac{y}{x^{2}}, \quad f(x, y)=\sin (x y) \cos (x+y)$, $f(x, y)=\arctan \frac{y}{x}, \quad f(x, y)=x^{y}, \quad f(x, y)=\ln \left(x^{2}+y^{2}\right)$.
(2) Find second partial derivatives of f if:

$$
f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}, \quad \quad f(x, y)=\frac{x e^{x y}}{y}
$$

(3) Let $f(x, y)=e^{x / y} \sin (x / y)+e^{y / x} \cos (y / x)$. Show that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0$.
(4) Show that the following functions satisfy the Laplace's equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$:

$$
f(x, y)=\arctan \frac{y}{x}, \quad f(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

(5) Find the first partial differentials of $z(x, y)$ given implicitly by the equation

$$
F(x, y, z(x, y))=0
$$

if F is defined by:

$$
F(x, y, z)=z^{3}-3 x^{2} y+6 x y z, \quad F(x, y, z)=x^{z}+y^{z}-(x+y)^{z}
$$

(6) Find the equation of the plane tangent to

$$
\begin{array}{ll}
z=x^{2} \sqrt{1+2 y^{2}} & \text { at }\left(x_{0}, y_{0}\right)=(3,2) \\
z=\arctan (y / x) & \text { at }\left(x_{0}, y_{0}\right)=(2, \sqrt{3}) .
\end{array}
$$

(7) Find all points $\left(x_{0}, y_{0}, z_{0}\right)$ such that the plane tangent to $z=2 x^{2} y+3 y^{2}$ at $\left(x_{0}, y_{0}, z_{0}\right)$ contains $(0,0,0)$.
(8) For functions f given in problem (1), write exact differentials $d f$.
(9) Use differentials to approximately compute the volume and surface area of a cylinder with base of radius 2.003 and height 2.991.
(10) Approximate the maximum possible error and the percent error (or relative error) when z is computed by the formula:
$z=\frac{\sqrt[3]{x}}{y}, \quad$ if $x=8 \pm 0.125$ and $y=2 \pm 0.1 ;$
$z=\arctan \frac{y}{x}$, if $x=2, y=\sqrt{3}$, both measured with maximal percent error 1%.

