Practice problems \#10: Difference equations

(1) Evaluate first few terms of the sequence $x(n)$, knowing that

$$
x(n+2) x(n)=\frac{n+2}{n}(x(n+1))^{2}
$$

and $x(1)=1, x(2)=2$. Next, guess the expression for $x(n)$ and show that your guess is indeed a solution.
(2) Does the difference equation
$x(n+2) x(n)=x(n+1)+2$
have a unique solution which satisfies $x(1)=x(2)=2$? What happens if $x(1)=$ -3 and $x(2)=4$? Hint: in each case evaluate $x(3), x(4)$ and $x(5)$ to see what is happening.
(3) Find $x(n)$, knowing that $x(1)=0$ and
$\Delta x(n)=4 n^{3}+4 n^{2}-1$.
(4) Solve homogeneous linear difference equations with constant coefficients:
(a) $x(n+2)-3 x(n+1)+2 x(n)=0$,
(b) $\Delta^{2} x(n)+x(n)=0$,
(c) $\Delta^{2} x(n)-x(n)=0$,
(d) $\Delta^{2} x(n)+2 \Delta x(n)=0$.
(5) Using Z-transforms, solve Volterra-type difference equations
(a) $x(n+1)=\sum_{k=0}^{n} \frac{x(n-k)}{2^{k}}$,
(b) $x(n+1)=1+\sum_{k=0}^{n} \frac{x(n-k)}{2^{k}}$,
(c) $x(n+1)=(-1)^{n}+\sum_{k=0}^{n} \frac{x(n-k)}{2^{k}}$.

Useful expressions:

$$
\begin{aligned}
& \mathcal{Z}\left[a^{n}\right]=\frac{z}{z-a}, \\
& \mathcal{Z}[x(n+1)]=z \mathcal{Z}[x(n)]-z x(0), \\
& \mathcal{Z}[x(n)+y(n)]=\mathcal{Z}[x(n)]+\mathcal{Z}[y(n)], \\
& \mathcal{Z}\left[\sum_{k=0}^{n} x(n-k) y(k)\right]=\mathcal{Z}[x(n)] \mathcal{Z}[y(n)] .
\end{aligned}
$$

