(1) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
F(x, y, z)=x y z-(x+y) e^{z}=0
$$

(2) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
F(x, y, z)=\sin (x y)+\sin (x z)+\sin (y z)=0 .
$$

(3) Argue that for every x and y there is a unique z such that

$$
F(x, y, z)=\arctan (x+z)+e^{y+z}-x y=1 .
$$

Note that $F(0,0,0)=1$, so that $z=0$ if $x=y=0$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $x=y=0$.
(4) If $u(x, y, z), v(x, y, z)$ and $w(x, y, z)$ satisfy $x=u+v+w, y=u^{2}+v^{2}+w^{2}$, $z=u^{3}+v^{3}+w^{3}$, show that

$$
\frac{\partial u}{\partial x}=\frac{v w}{(u-v)(u-w)} .
$$

(5) Find the maximum and the minimum of the function $f(x, y)=x^{2} y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-3=0$
(6) Find the maximum and the mimimum value of the function $f(x, y)=x y$ on the curve $3 x^{2}+y^{2}=6$.
(7) Find the maximum and the mimimum value of the function $f(x, y, z)=x^{2}-y^{2}$ on the surface $x^{2}+2 y^{2}+3 z^{2}=1$.
(8) Find the maximum and the mimimum value of the function $f(x, y)=x^{3}-3 x y^{2}+$ $4 x^{2}+4 y^{2}-3 x$ in the unit circle $x^{2}+y^{2} \leqslant 1$.
(9) Find the maximum value of $f(x, y)=-x \log x-y \log y$ subject to the constraint $g(x, y)=x+y-1=0$. Note that here $x, y>0$. How would you show that the value that you found is indeed the maximum?
(10) Find the maximum value of $f(x, y, z)=-x \log x-y \log y-z \log z$ subject to the constraint $g(x, y, z)=x+y+z-1=0$. Note that here $x, y, z>0$. How would you show that the value that you found is indeed the maximum?

