Practice problems \#5: line integrals

(1) Find the arc length of (one segment of) the helix

$$
\left\{\begin{array}{l}
x(t)=r \cos t \\
y(t)=r \sin t \\
z(t)=a t
\end{array}\right.
$$

where $t \in[0,2 \pi]$.
(2) Find the arc length of (one segment of) the cycloid

$$
\left\{\begin{array}{l}
x(t)=a(t-\sin t) \\
y(t)=a(1-\cos t)
\end{array}\right.
$$

where $t \in[0,2 \pi]$.
(3) Find the arc length of the cardioid

$$
\left\{\begin{array}{l}
x(t)=2(1-\cos t) \cos t \\
y(t)=2(1-\cos t) \sin t
\end{array}\right.
$$

where $t \in[0,2 \pi]$.
(4) Evaluate $\int_{\gamma} f(x, y) d l$ if
(a) $f(x, y)=x y^{2}, \gamma$ is a line segment that connects $(-1,-1)$ and $(1,2)$;
(b) $f(x, y)=x y, \gamma$ is a circle of radius 2 with center at $(1,2)$.
(5) The center of mass of a curve γ has coordinates $\left(x_{0}, y_{0}\right)$, where

$$
x_{0}=\frac{1}{L} \int_{\gamma} x d l, \quad y_{0}=\frac{1}{L} \int_{\gamma} y d l, \quad \text { with } L=\int_{\gamma} 1 d l .
$$

Find the center of mass of:
(a) one segment of the cycloid;
(b) semi-cicle $x(t)=\cos t, y(t)=\sin t, t \in[0, \pi]$.
(6) Evaluate $\int_{\gamma} P(x, y) d x+Q(x, y) d y$ if
(a) $P(x, y)=x^{2}+y^{2}, Q(x, y)=x y$ and γ is a line segment from $(-1,1)$ to $(1,0)$;
(b) $P(x, y)=-y, Q(x, y)=x$ and γ is the unit circle, oriented counter-clockwise;
(7) Evaluate $\int_{\gamma} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z$ if
(a) $P(x, y, z)=y, Q(x, y, z)=z, R(x, y, z)=x$ and γ is a segment of the helix $x(t)=\cos t, y(t)=\sin t, z(t)=t, t \in[0,2 \pi]$;
(b) $P(x, y, z)=z, Q(x, y, z)=y, R(x, y, z)=x$ and γ is given by $x(t)=t+e^{t}$, $y(t)=t-e^{t}, z(t)=t e^{t}, t \in[0,1]$.

