Practice problems #5: line integrals

(1) Find the arc length of (one segment of) the helix

$$\begin{cases} x(t) = r \cos t, \\ y(t) = r \sin t, \\ z(t) = at, \end{cases}$$

where $t \in [0, 2\pi]$.

(2) Find the arc length of (one segment of) the cycloid

$$\begin{cases} x(t) = a(t - \sin t), \\ y(t) = a(1 - \cos t), \end{cases}$$

where $t \in [0, 2\pi]$.

(3) Find the arc length of the cardioid

$$\begin{cases} x(t) = 2(1 - \cos t) \cos t, \\ y(t) = 2(1 - \cos t) \sin t, \end{cases}$$

where $t \in [0, 2\pi]$.

- (4) Evaluate ∫_γ f(x, y)dl if
 (a) f(x, y) = xy², γ is a line segment that connects (-1, -1) and (1, 2);
 (b) f(x, y) = xy, γ is a circle of radius 2 with center at (1, 2).
- (5) The center of mass of a curve γ has coordinates (x_0, y_0) , where

$$x_0 = \frac{1}{L} \int_{\gamma} x \, dl,$$
 $y_0 = \frac{1}{L} \int_{\gamma} y \, dl,$ with $L = \int_{\gamma} 1 \, dl.$

Find the center of mass of:

- (a) one segment of the cycloid;
- (b) semi-cicle $x(t) = \cos t$, $y(t) = \sin t$, $t \in [0, \pi]$.
- (6) Evaluate ∫_γ P(x, y)dx + Q(x, y)dy if
 (a) P(x, y) = x² + y², Q(x, y) = xy and γ is a line segment from (-1, 1) to (1, 0);
 (b) P(x, y) = -y, Q(x, y) = x and γ is the unit circle, oriented counter-clockwise;
- (7) Evaluate $\int_{\gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ if
 - (a) P(x, y, z) = y, Q(x, y, z) = z, R(x, y, z) = x and γ is a segment of the helix $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t, $t \in [0, 2\pi]$;
 - (b) P(x, y, z) = z, Q(x, y, z) = y, R(x, y, z) = x and γ is given by $x(t) = t + e^t$, $y(t) = t e^t$, $z(t) = te^t$, $t \in [0, 1]$.