Practice problems #6: double integrals

(1) Find double integrals:

(a)
$$\iint_{D} \frac{1}{(x+y+1)^3} dx dy$$
, where $D = [0,1] \times [1,2]$;
(b) $\iint_{D} x \sin(xy) dx dy$, where $D = [0,1] \times [\pi, 2\pi]$.

(2) Express the double integral $\iint_D f(x, y) dx dy$ as iterated integrals, if: (a) D is the region bounded by the survey $y = x^2$ and $x = x^2$:

- (a) D is the region bounded by the curves $y = x^2$ and $x = y^2$; (b) D is the region bounded by the curves $x^2 - y^2 = 1$ and $x = y^2$.
- (3) Interchange the order of integration in the iterated integrals:

(a)
$$\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy;$$

(b) $\int_{-1}^{1} dx \int_{0}^{1-x^{2}} f(x, y) dy;$
(c) $\int_{-2}^{2} dx \int_{-\sqrt{8-2x^{2}}}^{\sqrt{8-2x^{2}}} f(x, y) dy.$

(4) Interchange the order of integration and then evaluate $\int_{0}^{3} dy \int_{1}^{\sqrt{4-y}} (x+y) dx$.

- (5) Find double integrals:
 - (a) $\iint_D (xy+4x^2) \, dx \, dy$, where D is bounded by y = x+3 and $y = x^2+3x+3$; (b) $\iint_D \frac{x}{x^2+y^2} \, dx \, dy$, where D is bounded by x = 2, y = x and $y = \frac{1}{2}x$.
- (6) Use polar coordinates to find
 - (a) $\iint_{D} e^{-x^2 y^2} dx dy$, where D is a disk centred at (0, 0) with radius r; (b) $\iint_{D} (1 - \sqrt{x^2 + y^2}) dx dy$, where D is the unit disk; (c) $\iint_{D} (x^2 + y^2) dx dy$, where $D = \{(x, y) : 0 \le y \le x^2 + y^2 \le x\}$; (d) $\iint_{D} 1 dx dy$, where $D = \{x^2 + y^2 \le 2y, y \ge \sqrt{3}x\}$; (e) $\iint_{D} 1 dx dy$, where $D = \{(x, y) : x^2 + y^2 \le (\frac{\pi}{2})^2 - (\operatorname{arctg} \frac{y}{x})^2\}$.
- (7) Use Green's theorem to evaluate
 - (a) $\oint_{\gamma} 3xy(x+y)dx + (x^3+y^3)dy$, where γ is the unit circle; (b) $\oint_{D} \sin(x+y)dx + \cos(x-y)dy$, where D is the square with vertices at $(\pm \frac{\pi}{2}, \pm \frac{\pi}{2})$. Assume that γ is oriented counter-clockwise.
- (8) Use Green's theorem to argue that the area of the region bounded by a simple closed curve γ (oriented counter-clockwise) is equal to

$$\oint_{\gamma} 0dx + xdy = -\oint_{\gamma} ydx + 0dy.$$