Practice problems \#6: double integrals

(1) Find double integrals:
(a) $\iint_{D} \frac{1}{(x+y+1)^{3}} d x d y$, where $D=[0,1] \times[1,2]$;
(b) $\iint_{D} x \sin (x y) d x d y$, where $D=[0,1] \times[\pi, 2 \pi]$.
(2) Express the double integral $\iint_{D} f(x, y) d x d y$ as iterated integrals, if:
(a) D is the region bounded by the curves $y=x^{2}$ and $x=y^{2}$;
(b) D is the region bounded by the curves $x^{2}-y^{2}=1$ and $x=y^{2}$.
(3) Interchange the order of integration in the iterated integrals:
(a) $\int_{0}^{1} d x \int_{0}^{x} f(x, y) d y$;
(b) $\int_{-1}^{1} d x \int_{0}^{1-x^{2}} f(x, y) d y$;
(c) $\int_{-2}^{2} d x \int_{-\sqrt{8-2 x^{2}}}^{\sqrt{8-2 x^{2}}} f(x, y) d y$.
(4) Interchange the order of integration and then evaluate $\int_{0}^{3} d y \int_{1}^{\sqrt{4-y}}(x+y) d x$.
(5) Find double integrals:
(a) $\iint_{D}\left(x y+4 x^{2}\right) d x d y$, where D is bounded by $y=x+3$ and $y=x^{2}+3 x+3$;
(b) $\iint_{D} \frac{x}{x^{2}+y^{2}} d x d y$, where D is bounded by $x=2, y=x$ and $y=\frac{1}{2} x$.
(6) Use polar coordinates to find
(a) $\iint_{D} e^{-x^{2}-y^{2}} d x d y$, where D is a disk centred at $(0,0)$ with radius r;
(b) $\iint_{D}\left(1-\sqrt{x^{2}+y^{2}}\right) d x d y$, where D is the unit disk;
(c) $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$, where $D=\left\{(x, y): 0 \leqslant y \leqslant x^{2}+y^{2} \leqslant x\right\}$;
(d) $\iint_{D} 1 d x d y$, where $D=\left\{x^{2}+y^{2} \leqslant 2 y, y \geqslant \sqrt{3} x\right\}$;
(e) $\iint_{D}^{D} 1 d x d y$, where $D=\left\{(x, y): x^{2}+y^{2} \leqslant\left(\frac{\pi}{2}\right)^{2}-\left(\operatorname{arctg} \frac{y}{x}\right)^{2}\right\}$.
(7) Use Green's theorem to evaluate
(a) $\oint_{\gamma} 3 x y(x+y) d x+\left(x^{3}+y^{3}\right) d y$, where γ is the unit circle;
(b) $\oint_{D} \sin (x+y) d x+\cos (x-y) d y$, where D is the square with vertices at $\left(\pm \frac{\pi}{2}, \pm \frac{\pi}{2}\right)$.

Assume that γ is oriented counter-clockwise.
(8) Use Green's theorem to argue that the area of the region bounded by a simple closed curve γ (oriented counter-clockwise) is equal to
$\oint_{\gamma} 0 d x+x d y=-\oint_{\gamma} y d x+0 d y$.

