Practice problems #7: first order ODEs

- (1) Half-life of polonium-210 (undergoing radioactive decay) is 140 days. Knowing that the initial amount of this radioactive isotope is y(0) = 1 unit and that y'(t)is proportional to y(t), find y(t).
- (2) Find general solutions of

(a) yy' + 4t = 0,

(b) $dy = 2ty^2 dt$, (c) $t(y^2 - 1)dt + y(t^2 - 1)dy = 0$,

(d) $2\sqrt{t}y' = \sqrt{1-y^2}$, (e) y' = 1+t+y+ty, (f) $y'+4y = y(e^{-t}+4)$.

(3) Solve initial problems

(a) $y' \sin t = y \ln y$,

 $y(\frac{\pi}{2}) = e$

(b) $t\sqrt{1-y^2}dt + y\sqrt{1-t^2}dy = 0$,

y(0) = 1,

(c) t(y+1)y' = y,

y(e) = 1,

(d) $y \cos t \, dt - (1 + y^2) dy = 0$,

y(0) = 1,

(e) $y' = y^2(1+t^2)$,

y(0) = -2,

 $(f) e^{y}(y'-1) = 1,$

y(0) = 0.

(4) Find general solutions of

(a) $y' + y = \sin t$, (b) $y' + 2ty = e^{-t^2}$, (c) $ty' - 2y = t^3 \cos t$, (d) $ty' - 2y = 4t^4$, (e) $ty + e^t - ty' = 0$, (f) (2t+1)y' = 4t + 2y.

(5) Solve initial problems

(a) y' - y = 1,

y(3) = 3,

(b) $y' = (y+1)\sin t$,

 $y(t_0) = y_0,$

(c) ty' + y = t + 1.

y(1) = 0,

(d) $y' \sin t \cos t = y + \sin^3 t$,

 $y(\frac{\pi}{4}) = 0.$

(6) Solve $t^2y' + y = (t^2 + 1)e^t$, knowing that $\lim_{t \to -\infty} y(t) = 1$.

You may use a computer for integration.