The ℓ^p norm of the discrete Hilbert transform

Mateusz Kwaśnicki

Wrocław University of Science and Technology, Poland
mateusz.kwasnicki@pwr.edu.pl

Joint work with Rodrigo Bañuelos (Purdue University)

Vilnius, July 5, 2018
Hilbert transforms

Definition

The continuous Hilbert transform is defined by

\[
Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - z)}{z} \, dz
\]

for appropriate functions \(f : \mathbb{R} \to \mathbb{R} \).
Hilbert transforms

Definition

The **continuous Hilbert transform** is defined by

\[Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - z)}{z} \, dz \]

for appropriate functions \(f : \mathbb{R} \to \mathbb{R} \).

Definition

Similarly, the **discrete Hilbert transform** is given by

\[\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \]

for appropriate doubly infinite sequences \((a_n : n \in \mathbb{Z}) \).
Theorem (Rodrigo Bañuelos, MK)

For $p \in (1, \infty)$ we have

$$\|\mathcal{H}\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}.$$
Main theorem

Theorem (Rodrigo Bañuelos, MK)

For \(p \in (1, \infty) \) we have

\[
\| \mathcal{H} \|_{\ell^p \rightarrow \ell^p} = \| H \|_{L^p \rightarrow L^p}.
\]

- The operator was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.
Main theorem

Theorem (Rodrigo Bañuelos, MK)

For $p \in (1, \infty)$ we have

$$\|H\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}.$$

- The operator was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.
- $\|H\|_{L^p \to L^p} = \max\{\tan\left(\frac{\pi}{2p}\right), \cot\left(\frac{\pi}{2p}\right)\}$ (S. Pichorides, 1972).
Main theorem

Theorem (Rodrigo Bañuelos, MK)

For $p \in (1, \infty)$ we have

$$||\mathcal{H}||_{\ell^p \to \ell^p} = ||H||_{L^p \to L^p}.$$

- The operator was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.
- $||H||_{L^p \to L^p} = \max\{\tan\left(\frac{\pi}{2p}\right), \cot\left(\frac{\pi}{2p}\right)\}$ (S. Pichorides, 1972).
- The more challenging problem, which asks for the norm of

$$\mathcal{H}_{RT}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2},$$

remains open.
Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15–19, 2017).
Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15–19, 2017).
- As it is customary in Będlewo, a BBQ dinner was served on Thursday, with free beer and a bonfire.
Będlewo

- I learned about the problem at the *Probability and Analysis* conference in Będlewo, Poland (May 15–19, 2017).
- As it is customary in Będlewo, a BBQ dinner was served on Thursday, with free beer and a bonfire.
- Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about the problem.
Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15–19, 2017).
- As it is customary in Będlewo, a BBQ dinner was served on Thursday, with free beer and a bonfire.
- Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about the problem.
- Fortunately, they forgot to mention that some experts considered it to be rather difficult.
Continuous Hilbert transform

- The operator

\[Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - y)}{y} \, dy \]

is a Fourier multiplier: \(\hat{H}f = \hat{H} \cdot \hat{f} \), with symbol

\[\hat{H}(\xi) = -i \text{ sign } \xi. \]
Continuous Hilbert transform

- The operator

\[Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - y)}{y} \, dy \]

is a Fourier multiplier: \(\hat{H}f = \hat{H} \cdot \hat{f} \), with symbol

\[\hat{H}(\xi) = -i \text{ sign } \xi. \]

- \(H : L^2 \to L^2 \) is a unitary operator (D. Hilbert, 1905)
Continuous Hilbert transform

- The operator

\[Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - y)}{y} \, dy \]

is a Fourier multiplier: \(\hat{H}f = \hat{H} \cdot \hat{f} \), with symbol

\[\hat{H}(\xi) = -i \, \text{sign} \, \xi. \]

- \(H : L^2 \to L^2 \) is a unitary operator (D. Hilbert, 1905)

- \(\|H\|_{L^p \to L^p} < \infty \) for \(p \in (1, \infty) \) (M. Riesz, 1928)
Continuous Hilbert transform

- The operator

$$Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x-y)}{y} \, dy$$

is a Fourier multiplier: $$\hat{H}f = \hat{H} \cdot \hat{f}$$, with symbol

$$\hat{H}(\xi) = -i \text{sign} \, \xi.$$

- $$H : L^2 \to L^2$$ is a unitary operator (D. Hilbert, 1905)
- $$\|H\|_{L^p \to L^p} < \infty$$ for $$p \in (1, \infty)$$ (M. Riesz, 1928)
- $$\|H\|_{L^p \to L^p} = \max\{\tan\left(\frac{\pi}{2p}\right), \cot\left(\frac{\pi}{2p}\right)\}$$ (S. Pichorides, 1972)
Continuous Hilbert transform

- The operator

\[
Hf(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x - y)}{y} \, dy
\]

is a Fourier multiplier: \(\hat{H}f = \hat{H} \cdot \hat{f} \), with symbol

\[
\hat{H}(\xi) = -i \text{ sign } \xi.
\]

- \(H : L^2 \rightarrow L^2 \) is a unitary operator (D. Hilbert, 1905)
- \(\|H\|_{L^p \rightarrow L^p} < \infty \) for \(p \in (1, \infty) \) (M. Riesz, 1928)
- \(\|H\|_{L^p \rightarrow L^p} = \max\{\tan\left(\frac{\pi}{2p}\right), \cot\left(\frac{\pi}{2p}\right)\} \) (S. Pichorides, 1972)

Throughout the talk, we assume that \(p \in (1, \infty) \).
90 years of history in a nutshell

- \|H\|_{\ell^p \to \ell^p} \geq \|H\|_{L^p \to L^p} (E.C. Titchmarsh, 1926)
90 years of history in a nutshell

- $\|H\|_{\ell^p \rightarrow \ell^p} \geq \|H\|_{L^p \rightarrow L^p}$ (E.C. Titchmarsh, 1926)
- $\|H\|_{\ell^p \rightarrow \ell^p} < \infty$ (M. Riesz, 1927; E.C. Titchmarsh, 1926)
90 years of history in a nutshell

- \[\| \mathcal{H} \|_{\ell^p \to \ell^p} \geq \| H \|_{L^p \to L^p} \] (E.C. Titchmarsh, 1926)
- \[\| \mathcal{H} \|_{\ell^p \to \ell^p} < \infty \] (M. Riesz, 1927; E.C. Titchmarsh, 1926)
- \[\| \mathcal{H} \|_{\ell^p \to \ell^p} = \| H \|_{L^p \to L^p} \text{ when } p = 2^k \text{ or } p = \frac{2^k}{2^k - 1}, \]
 where \(k = 1, 2, \ldots \) (I.E. Verbitsky; E. Laeng, 2007)
90 years of history in a nutshell

- $\|H\|_{\ell^p \to \ell^p} \geq \|H\|_{L^p \to L^p}$ (E.C. Titchmarsh, 1926)
- $\|H\|_{\ell^p \to \ell^p} < \infty$ (M. Riesz, 1927; E.C. Titchmarsh, 1926)
- $\|H\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}$ when $p = 2^k$ or $p = \frac{2^k}{2^k - 1}$, where $k = 1, 2, \ldots$ (I.E. Verbitsky; E. Laeng, 2007)
- $\|H\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}$ for every p (R. Bañuelos, MK)
Discrete Hilbert transforms

- A number of discrete Hilbert transforms exist, each of them is a Fourier multiplier:

\[
\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}\setminus\{0\}} \frac{a_{n-k}}{k} \quad \leftrightarrow \quad \text{symbol}
\]
Discrete Hilbert transforms

- A number of discrete Hilbert transforms exist, each of them is a Fourier multiplier:

\[\mathcal{H}_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \]

\[\mathcal{H}_{RT} n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2} \]
Discrete Hilbert transforms

- A number of discrete Hilbert transforms exist, each of them is a Fourier multiplier:

\[
\mathcal{H} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \quad \longleftrightarrow \quad \begin{array}{c}
\text{operator} \\
\text{symbol}
\end{array}
\]

\[
\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2} \quad \longleftrightarrow \quad \begin{array}{c}
\text{operator} \\
\text{symbol}
\end{array}
\]

\[
\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \longleftrightarrow \quad \begin{array}{c}
\text{operator} \\
\text{symbol}
\end{array}
\]
Discrete Hilbert transforms

- A number of discrete Hilbert transforms exist, each of them is a Fourier multiplier:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{H} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus {0}} \frac{a_{n-k}}{k}$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{H}{RT} a_n = \frac{1}{\pi} \sum{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2}$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{H}K a_n = \frac{2}{\pi} \sum{k \in 2\mathbb{Z} + 1} \frac{a_{n-k}}{k}$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{H}{ADP} a_n = \frac{1}{\pi} \sum{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^2 - 1/4}$</td>
<td></td>
</tr>
</tbody>
</table>
Discrete Hilbert transforms

- A number of discrete Hilbert transforms exist, each of them is a Fourier multiplier:

\[
\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \quad \leftrightarrow \quad -i(1 - |t|/\pi) \text{sign } t;
\]

\[
\mathcal{H}_{RT}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2} \quad \leftrightarrow \quad -ie^{it/2} \text{sign } t;
\]

\[
\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \leftrightarrow \quad -i \text{sign } t;
\]

\[
\mathcal{H}_{ADP} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^2 - 1/4} \quad \leftrightarrow \quad -i \cos(t/2) \text{sign } t.
\]
Approximation of the continuous Hilbert transform

- The continuous transform H can be approximated by the discrete transform \mathcal{H}.

This was first observed by E.C. Titchmarsh in 1926, as a part of his erroneous proof of equality of norms.
Approximation of the continuous Hilbert transform

- The continuous transform H can be approximated by the discrete transform \mathcal{H}.
- More precisely, for a sufficiently regular f, we have
 \[
 \delta^{-1} \mathcal{H}[f(\delta n)] - [Hf(n\delta)] \to 0 \quad \text{as } \delta \to 0^+
 \]
 in an appropriate norm.
Approximation of the continuous Hilbert transform

- The continuous transform H can be approximated by the discrete transform \mathcal{H}.
- More precisely, for a sufficiently regular f, we have
 \[
 \delta^{-1} \mathcal{H}[f(\delta n)] - [Hf(n\delta)] \to 0 \quad \text{as } \delta \to 0^+
 \]
 in an appropriate norm.
- In particular, $\|\mathcal{H}\|_{\ell^p \to \ell^p} \geq \|H\|_{L^p \to L^p}$.
Approximation of the continuous Hilbert transform

- The continuous transform H can be approximated by the discrete transform \mathcal{H}.
- More precisely, for a sufficiently regular f, we have
 \[
 \delta^{-1}\mathcal{H}[f(\delta n)] - [Hf(n\delta)] \to 0 \quad \text{as } \delta \to 0^+
 \]
in an appropriate norm.
- In particular, $\|\mathcal{H}\|_{\ell^p \to \ell^p} \geq \|H\|_{L^p \to L^p}$.
- A similar argument applies to \mathcal{H}_{RT}, \mathcal{H}_K and \mathcal{H}_{ADP}.
Approximation of the continuous Hilbert transform

- The continuous transform H can be approximated by the discrete transform \mathcal{H}.
- More precisely, for a sufficiently regular f, we have
 \[
 \delta^{-1} \mathcal{H}[f(\delta n)] - [Hf(n\delta)] \to 0 \quad \text{as } \delta \to 0^+
 \]
 in an appropriate norm.
- In particular, $\|\mathcal{H}\|_{\ell^p \to \ell^p} \geq \|H\|_{L^p \to L^p}$.
- A similar argument applies to \mathcal{H}_{RT}, \mathcal{H}_K and \mathcal{H}_{ADP}.
- This was first observed by E.C. Titchmarsh in 1926, as a part of his erroneous proof of equality of norms.
Riesz–Titchmarsh \leftrightarrow Kak–Hilbert

$$\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2}$$

$$\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k}$$
Riesz–Titchmarsh \iff Kak–Hilbert

$$\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2} \iff$$

$$\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k} \iff$$

- The operators \mathcal{H}_{RT} and \mathcal{H}_K are equivalent:

$$\mathcal{H}_K a_n = b_n \iff \begin{cases} \mathcal{H}_{RT} [a_{2n}] = [b_{2n+1}], \\ \mathcal{H}_{RT} [a_{2n-1}] = [b_{2n}]. \end{cases}$$
Riesz–Titchmarsh \leftrightarrow Kak–Hilbert

$\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2}$

$\mathcal{H}_{K} a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k}$

- The operators \mathcal{H}_{RT} and \mathcal{H}_{K} are equivalent:

 $\mathcal{H}_{K} a_n = b_n \iff \begin{cases}
 \mathcal{H}_{RT} [a_{2n}] = [b_{2n+1}], \\
 \mathcal{H}_{RT} [a_{2n-1}] = [b_{2n}].
 \end{cases}$

- In particular, $\| \mathcal{H}_{RT} \|_{\ell^p \rightarrow \ell^p} = \| \mathcal{H}_{K} \|_{\ell^p \rightarrow \ell^p}$.
Riesz–Titchmarsh \rightsquigarrow Arcozzi–Domelevo–Petermichl

$$\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2}$$

$$\mathcal{H}_{ADP} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^2 - 1/4}$$
Riesz–Titchmarsh \Rightarrow Arcozzi–Domelevo–Petermichl

\[\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+1/2} \]

\[\mathcal{H}_{ADP} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^2 - 1/4} \]

- The operator \mathcal{H}_{ADP} can be expressed in terms of \mathcal{H}_{RT}:

\[\mathcal{H}_{ADP} a_n = \frac{1}{2} (\mathcal{H}_{RT} a_n + \mathcal{H}_{RT} a_{n-1}) \].
Riesz–Titchmarsh \mapsto Arcozzi–Domelevo–Petermichl

$$\mathcal{H}_{RT} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k + 1/2}$$

$$\mathcal{H}_{ADP} a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^2 - 1/4}$$

- The operator \mathcal{H}_{ADP} can be expressed in terms of \mathcal{H}_{RT}:
 $$\mathcal{H}_{ADP} a_n = \frac{1}{2}(\mathcal{H}_{RT} a_n + \mathcal{H}_{RT} a_{n-1}).$$
- In particular, $\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p} \leq \|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p}$.
Kak–Hilbert $\sim\rightarrow$ Hilbert

$$\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash \{0\}} \frac{a_{n-k}}{k}$$

$$\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k}$$
Kak–Hilbert \mapsto Hilbert

\[
\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k}
\]

\[
\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z}+1} \frac{a_{n-k}}{k}
\]

- The operator \mathcal{H} can be expressed in terms of \mathcal{H}_K:

\[
\mathcal{H}a_n = \frac{1}{2} \mathcal{H}_K a_n + \frac{4}{\pi^2} \sum_{k \in 2\mathbb{Z}+1} \frac{1}{k^2} \mathcal{H}_K a_{n-k}.
\]
Kak–Hilbert \mapsto Hilbert

\[
\mathcal{H}a_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \quad \leftarrow \quad \downarrow
\]

\[
\mathcal{H}_K a_n = \frac{2}{\pi} \sum_{k \in 2\mathbb{Z} + 1} \frac{a_{n-k}}{k} \quad \leftarrow \quad \uparrow
\]

- The operator \mathcal{H} can be expressed in terms of \mathcal{H}_K:

\[
\mathcal{H}a_n = \frac{1}{2} \mathcal{H}_K a_n + \frac{4}{\pi^2} \sum_{k \in 2\mathbb{Z} + 1} \frac{1}{k^2} \mathcal{H}_K a_{n-k}.
\]

- In particular, $\|\mathcal{H}\|_{\ell^p \to \ell^p} \leq \|\mathcal{H}_K\|_{\ell^p \to \ell^p}$.
Which discretisation is the right one?

\[
\|H\|_{L^p \to L^p} \leq \begin{cases}
\|\mathcal{H}\|_{\ell^p \to \ell^p} \\
\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p}
\end{cases} \leq \|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|\mathcal{H}_K\|_{\ell^p \to \ell^p}.
\]
Which discretisation is the right one?

\[
\|H\|_{L^p \to L^p} \leq \left\{ \begin{array}{c} \|\mathcal{H}\|_{\ell^p \to \ell^p} \\ \|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p} \end{array} \right\} \leq \|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|\mathcal{H}_K\|_{\ell^p \to \ell^p}.
\]

- \mathcal{H}, \mathcal{H}_{RT}, \mathcal{H}_K and \mathcal{H}_{ADP} are contractions on ℓ^2.
Which discretisation is the right one?

\[\|H\|_{L^p \to L^p} \leq \left\{ \begin{array}{c} \|H\|_{\ell^p \to \ell^p} \\ \|H_{\text{ADP}}\|_{\ell^p \to \ell^p} \end{array} \right\} \leq \|H_{\text{RT}}\|_{\ell^p \to \ell^p} = \|H_K\|_{\ell^p \to \ell^p}. \]

- H, H_{RT}, H_K and H_{ADP} are contractions on ℓ^2.
- Only H_{RT} and H_K are unitary on ℓ^2.
Which discretisation is the right one?

\[
\|H\|_{L^p \to L^p} \leq \left\{ \begin{array}{c}
\|\mathcal{H}\|_{\ell^p \to \ell^p} \\
\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p}
\end{array} \right\} \leq \|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|\mathcal{H}_K\|_{\ell^p \to \ell^p}.
\]

- \mathcal{H}, \mathcal{H}_{RT}, \mathcal{H}_K and \mathcal{H}_{ADP} are contractions on ℓ^2.
- Only \mathcal{H}_{RT} and \mathcal{H}_K are unitary on ℓ^2.
- The conjecture $\|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}$ is stronger and more interesting than $\|\mathcal{H}\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p}$.

Our method completely fails for \mathcal{H}_{RT}.

Our result is likely the second one of its kind, where the L^p norms of a singular integral operator and its ℓ^p discretisation are proved to be equal. A similar statement for second-order Riesz transforms was proved by K. Domolevo and S. Petermichl in 2014.
Which discretisation is the right one?

\[\| H \|_{L^p \to L^p} \leq \left\{ \| \mathcal{H} \|_{L^p \to L^p}, \| \mathcal{H}_{ADP} \|_{L^p \to L^p} \right\} \leq \| \mathcal{H}_{RT} \|_{L^p \to L^p} = \| \mathcal{H}_K \|_{L^p \to L^p}. \]

- \(\mathcal{H}, \mathcal{H}_{RT}, \mathcal{H}_K \) and \(\mathcal{H}_{ADP} \) are contractions on \(\ell^2 \).
- Only \(\mathcal{H}_{RT} \) and \(\mathcal{H}_K \) are unitary on \(\ell^2 \).
- The conjecture \(\| \mathcal{H}_{RT} \|_{L^p \to L^p} = \| H \|_{L^p \to L^p} \) is stronger and more interesting than \(\| \mathcal{H} \|_{L^p \to L^p} = \| H \|_{L^p \to L^p} \).
- Our method completely fails for \(\mathcal{H}_{RT} \).
Which discretisation is the right one?

\[\|H\|_{L^p \to L^p} \leq \left\{ \|\mathcal{H}\|_{\ell^p \to \ell^p} \right\} \leq \|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|\mathcal{H}_K\|_{\ell^p \to \ell^p}. \]

- \(\mathcal{H} \), \(\mathcal{H}_{RT} \), \(\mathcal{H}_K \) and \(\mathcal{H}_{ADP} \) are contractions on \(\ell^2 \).
- Only \(\mathcal{H}_{RT} \) and \(\mathcal{H}_K \) are unitary on \(\ell^2 \).
- The conjecture \(\|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p} \) is stronger and more interesting than \(\|\mathcal{H}\|_{\ell^p \to \ell^p} = \|H\|_{L^p \to L^p} \).
- Our method completely fails for \(\mathcal{H}_{RT} \).
- Our result is likely the second one of its kind, where the \(L^p \) norms of a singular integral operator and its \(\ell^p \) discretisation are proved to be equal. A similar statement for second-order Riesz transforms was proved by K. Domolevo and S. Petermichl in 2014.
Hilbert transform and harmonic functions

- Let $f \in L^p$. For $y > 0$ we define the Poisson integrals

$$u(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{y}{z^2 + y^2} \, dz,$$

$$v(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{z}{z^2 + y^2} \, dz.$$
Hilbert transform and harmonic functions

- Let $f \in L^p$. For $y > 0$ we define the Poisson integrals
 \[u(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{y}{z^2 + y^2} \, dz, \]
 \[v(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{z}{z^2 + y^2} \, dz. \]

- Then u and v are conjugate harmonic functions:
 \[\Delta u = \Delta v = 0, \quad \nabla v = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u. \]
Hilbert transform and harmonic functions

- Let \(f \in L^p \). For \(y > 0 \) we define the Poisson integrals

\[
\begin{align*}
 u(x, y) &= \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{y}{z^2 + y^2} \, dz, \\
 v(x, y) &= \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{z}{z^2 + y^2} \, dz.
\end{align*}
\]

- Then \(u \) and \(v \) are conjugate harmonic functions:

\[
\Delta u = \Delta v = 0, \quad \nabla v = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u.
\]

- The boundary values of \(u \) and \(v \) are given by

\[
\begin{align*}
 f(x) &= \lim_{y \to 0^+} u(x, y), \\
 Hf(x) &= \lim_{y \to 0^+} v(x, y)
\end{align*}
\]

(the limits exist in \(L^p \) and almost everywhere).
Hilbert transform and harmonic functions

• Let $f \in L^p$. For $y > 0$ we define the Poisson integrals

$$u(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{y}{z^2 + y^2} \, dz,$$

$$v(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x - z) \frac{z}{z^2 + y^2} \, dz.$$

• Then u and v are conjugate harmonic functions:

$$\Delta u = \Delta v = 0, \quad \nabla v = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u.$$

• The boundary values of u and v are given by

$$f(x) = \lim_{y \to 0^+} u(x, y), \quad Hf(x) = \lim_{y \to 0^+} v(x, y)$$

(the limits exist in L^p and almost everywhere).

• Define $u(x, 0) = f(x), \ v(x, 0) = Hf(x)$.
Harmonic functions and martingales

- Let B_t be the 2-D standard Brownian motion.
Harmonic functions and martingales

- Let B_t be the 2-D standard Brownian motion.
- We suppose that $B_0 = (0, y_0)$, where $y_0 \gg 0$.
Harmonic functions and martingales

- Let B_t be the 2-D standard Brownian motion.
- We suppose that $B_0 = (0, y_0)$, where $y_0 \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times \{0\}$ for B_t.
Harmonic functions and martingales

• Let B_t be the 2-D standard Brownian motion.
• We suppose that $B_0 = (0, y_0)$, where $y_0 \gg 0$.
• Let τ be the hitting time of $\mathbb{R} \times \{0\}$ for B_t.
• Since u is a harmonic function in $\mathbb{R} \times (0, \infty)$, the process
 \[M_t = u(B_{\min\{t, \tau\}}) \]
 is a martingale.
Harmonic functions and martingales

- Let B_t be the 2-D standard Brownian motion.
- We suppose that $B_0 = (0, y_0)$, where $y_0 \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times \{0\}$ for B_t.
- Since u is a harmonic function in $\mathbb{R} \times (0, \infty)$, the process
 \[M_t = u(B_{\min\{t, \tau\}}) \]
 is a martingale.
- Indeed: by the Itô formula, for $t < \tau$ we have
 \[dM_t = \nabla u(B_t) \cdot dB_t, \]
 \[d[M]_t = |\nabla u(B_t)|^2 dt. \]
Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $Hf(x)$, respectively.
Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $Hf(x)$, respectively.
- The corresponding martingales are

$$M_t = u(B_{\text{min}\{t, \tau\}}), \quad N_t = v(B_{\text{min}\{t, \tau\}}).$$
Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $Hf(x)$, respectively.
- The corresponding martingales are
 $$M_t = u(B_{\min\{t, \tau\}}), \quad N_t = v(B_{\min\{t, \tau\}}).$$
- Quadratic variations of these martingales satisfy
 $$d[M]_t = |\nabla u(B_t)|^2 dt = |\nabla v(B_t)|^2 dt = d[N]_t$$
Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $Hf(x)$, respectively.
- The corresponding martingales are
 $$M_t = u(B_{\min\{t, \tau\}}), \quad N_t = v(B_{\min\{t, \tau\}}).$$
- Quadratic variations of these martingales satisfy
 $$d[M]_t = |\nabla u(B_t)|^2 dt = |\nabla v(B_t)|^2 dt = d[N]_t$$
 and
 $$d[M, N]_t = \nabla u(B_t) \cdot \nabla v(B_t) dt = 0 dt$$
 for $t < \tau$.
Burkholder’s inequality

Theorem (R. Bañuelos, G. Wang, 1995)

If M_t and N_t are martingales and

- N_t is differentially subordinate to M_t:
 \[d[N]_t \leq d[M]_t; \]

- M_t and N_t are orthogonal:
 \[d[M, N]_t = 0dt, \]

then

\[\mathbb{E}|N_\infty - N_0|^p \leq (C_p)^p \mathbb{E}|M_\infty - M_0|^p, \]

with $C_p = \max\{\tan\left(\frac{\pi}{2p}\right), \cot\left(\frac{\pi}{2p}\right)\}$.
Summary

- We begin with $f \in L^p$.

- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf.

- The corresponding martingales $M_t = u(B_{\min\{t, \tau\}})$ and $N_t = v(B_{\min\{t, \tau\}})$.

- Since $M_{\infty} = u(B_{\tau}) = f(B_{\tau})$ and $N_{\infty} = v(B_{\tau}) = Hf(B_{\tau})$,

 Burkholder's inequality implies that $E |Hf(B_{\tau}) - v(0, y_0)|^p \leq (Cp)^PE |f(B_{\tau}) - u(0, y_0)|^p$.

- We now pass to the limit as $y_0 \to \infty$.

Summary

- We begin with \(f \in L^p \).
- Then we define two conjugate harmonic functions \(u \) and \(v \), with boundary values \(f \) and \(Hf \)
Summary

- We begin with $f \in L^p$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf.
- ...and the corresponding martingales $M_t = u(B_{\min\{t,\tau\}})$ and $N_t = v(B_{\min\{t,\tau\}})$.

Summary

- We begin with $f \in L^p$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf...
- ...and the corresponding martingales $M_t = u(B_{\min\{t, \tau\}})$ and $N_t = v(B_{\min\{t, \tau\}})$.
- Since $M_\infty = u(B_\tau) = f(B_\tau)$ and $N_\infty = v(B_\tau) = Hf(B_\tau)$, Burkholder's inequality implies that
 \[\mathbb{E}|Hf(B_\tau) - v(0, y_0)|^p \leq (C_p)^p \mathbb{E}|f(B_\tau) - u(0, y_0)|^p. \]
Summary

- We begin with $f \in L^p$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf ...
- ... and the corresponding martingales $M_t = u(B_{\min\{t,\tau\}})$ and $N_t = v(B_{\min\{t,\tau\}})$.
- Since $M_\infty = u(B_\tau) = f(B_\tau)$ and $N_\infty = v(B_\tau) = Hf(B_\tau)$, Burkholder's inequality implies that
 \[
 \mathbb{E}|Hf(B_\tau) - v(0, y_0)|^p \leq (C_p)^p \mathbb{E}|f(B_\tau) - u(0, y_0)|^p.
 \]
- We now pass to the limit as $y_0 \to \infty$.

Since B_{τ} has a Cauchy distribution on $\mathbb{R} \times \{0\}$, we have

\[
\int_{-\infty}^{\infty} |Hf(x) - v(0, y_0)|^p \frac{y_0}{x^2 + y_0^2} \, dx
\]

\[
\leq (C_p)^p \int_{-\infty}^{\infty} |f(x) - u(0, y_0)|^p \frac{y_0}{x^2 + y_0^2} \, dx.
\]
Pichorides estimate

- Since B_τ has a Cauchy distribution on $\mathbb{R} \times \{0\}$, we have

$$
\int_{-\infty}^\infty |Hf(x) - \nu(0, y_0)|^p \frac{y_0^2}{x^2 + y_0^2} \, dx \\
\leq (C_p)^p \int_{-\infty}^\infty |f(x) - u(0, y_0)|^p \frac{y_0^2}{x^2 + y_0^2} \, dx.
$$

- We multiply both sides by y_0 and pass to the limit as $y_0 \to \infty$ to get the Pichorides bound

$$
\|Hf\|_{L^p}^p \leq (C_p)^p \|f\|_{L^p}^p.
$$
Conditioned process

- The Brownian motion B_t hits the entire boundary $\mathbb{R} \times \{0\}$ as it exists the half-plane $\mathbb{R} \times (0, \infty)$.
Conditioned process

- The Brownian motion B_t hits the entire boundary $\mathbb{R} \times \{0\}$ as it exists the half-plane $\mathbb{R} \times (0, \infty)$.
- We need a diffusion X_t which only hits the discrete subset of the boundary: $\mathbb{Z} \times \{0\}$.
Conditioned process

- The Brownian motion B_t hits the entire boundary $\mathbb{R} \times \{0\}$ as it exists the half-plane $\mathbb{R} \times (0, \infty)$.
- We need a diffusion X_t which only hits the discrete subset of the boundary: $\mathbb{Z} \times \{0\}$.
- The process X_t can be defined as the limit as $\varepsilon \to 0^+$ of the Brownian motion B_t conditioned on the event

$$B_\tau \in \left(\bigcup_{k \in \mathbb{Z}} (k - \varepsilon, k + \varepsilon) \right) \times \{0\}.$$
Stochastic differential equation

- More rigorously: X_t is defined as the Brownian motion B_t conditioned in the sense of Doob by the harmonic function

\[
h(x, y) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{y}{(x - k)^2 + y^2} = \frac{\sinh(2\pi y)}{\cosh(2\pi y) - \cos(2\pi x)}.
\]
Stochastic differential equation

- More rigorously: X_t is defined as the Brownian motion B_t conditioned in the sense of Doob by the harmonic function

$$h(x, y) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{y}{(x - k)^2 + y^2} = \frac{\sinh(2\pi y)}{\cosh(2\pi y) - \cos(2\pi x)}.$$

- The corresponding generator is

$$\frac{1}{2} h^{-1} \Delta (hu) = \frac{1}{2} \Delta u + \frac{\nabla h \cdot \nabla u}{h}.$$
Stochastic differential equation

- More rigorously: \(X_t \) is defined as the Brownian motion \(B_t \) conditioned in the sense of Doob by the harmonic function

\[
h(x, y) = \frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{y}{(x - k)^2 + y^2} = \frac{\sinh(2\pi y)}{\cosh(2\pi y) - \cos(2\pi x)}.
\]

- The corresponding generator is

\[
\frac{1}{2} h^{-1} \Delta(hu) = \frac{1}{2} \Delta u + \frac{\nabla h \cdot \nabla u}{h}.
\]

- Equivalently: \(X_t \) is a solution of the SDE

\[
dX_t = dB_t + \frac{\nabla h(X_t)}{h(X_t)} \, dt.
\]
Martingale

- Consider a sequence a_n in ℓ^p.
Martingale

- Consider a sequence a_n in ℓ^p.
- The X_t-harmonic extension of this sequence is defined by

$$u(x, y) = \frac{1}{h(x, y)} \frac{1}{\pi} \sum_{k \in \mathbb{Z}} a_k \frac{y}{(x - k)^2 + y^2}.$$
Martingale

- Consider a sequence a_n in ℓ^p.
- The X_t-harmonic extension of this sequence is defined by
 \[u(x, y) = \frac{1}{h(x, y)} \frac{1}{\pi} \sum_{k \in \mathbb{Z}} a_k \frac{y}{(x - k)^2 + y^2}. \]
- We extend u to a continuous function on $\mathbb{R} \times [0, \infty)$ so that $u(n, 0) = a_n$.

\[\text{Main result} \quad \text{Some history} \quad \text{Continuous transform} \quad \text{Discrete transform} \quad \text{Comments} \]
Martingale

- Consider a sequence a_n in ℓ^p.
- The X_t-harmonic extension of this sequence is defined by

$$u(x, y) = \frac{1}{h(x, y)} \frac{1}{\pi} \sum_{k \in \mathbb{Z}} a_k \frac{y}{(x - k)^2 + y^2}.$$

- We extend u to a continuous function on $\mathbb{R} \times [0, \infty)$ so that $u(n, 0) = a_n$.
- The formula $M_t = u(X_{\text{min}\{t, \tau\}})$ defines a martingale.
Martingale

- Consider a sequence a_n in ℓ^p.
- The X_t-harmonic extension of this sequence is defined by

 \[u(x, y) = \frac{1}{h(x, y)} \frac{1}{\pi} \sum_{k \in \mathbb{Z}} a_k \frac{y}{(x - k)^2 + y^2}. \]

- We extend u to a continuous function on $\mathbb{R} \times [0, \infty)$ so that $u(n, 0) = a_n$.
- The formula $M_t = u(X_{\min\{t, \tau\}})$ defines a martingale.
- There is no notion of a conjugate X_t-harmonic function!
Martingale transform

- Since $M_t = u(X_{\min\{t, \tau\}})$ and

\[
dX_t = dB_t + \frac{\nabla h(X_t)}{h(X_t)} dt,
\]

\[
d[X]_t = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) dt,
\]

\[
\nabla u \cdot \frac{\nabla h}{h} + \frac{1}{2} \Delta u = 0,
\]
Martingale transform

- Since $M_t = u(X_{\min\{t,\tau\}})$ and

$$dX_t = dB_t + \frac{\nabla h(X_t)}{h(X_t)} \, dt,$$

$$d[X]_t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} dt,$$

$$\nabla u \cdot \frac{\nabla h}{h} + \frac{1}{2} \Delta u = 0,$$

by the Itô formula, for $t < \tau$ we have

$$dM_t = \nabla u(X_t) \cdot dX_t + \frac{1}{2} \Delta u(X_t) dt$$

$$= \nabla u(X_t) \cdot dB_t.$$
Martingale transform

- Since $M_t = u(X_{\min\{t, \tau\}})$ and

$$dX_t = dB_t + \frac{\nabla h(X_t)}{h(X_t)} \, dt,$$

$$d[X]_t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} dt,$$

$$\nabla u \cdot \frac{\nabla h}{h} + \frac{1}{2} \Delta u = 0,$$

by the Itô formula, for $t < \tau$ we have

$$dM_t = \nabla u(X_t) \cdot dX_t + \frac{1}{2} \Delta u(X_t) \, dt$$

$$= \nabla u(X_t) \cdot dB_t.$$

- For $t < \tau$ we define

$$dN_t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u(X_t) \cdot dB_t.$$
<table>
<thead>
<tr>
<th>Main result</th>
<th>Some history</th>
<th>Continuous transform</th>
<th>Discrete transform</th>
<th>Comments</th>
</tr>
</thead>
</table>

Summary — changes!

- We begin with $f \in L^p$, $a_n \in \ell^p$
Summary — changes!

- We begin with $f \in L^p$, a_n in ℓ^p.
- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf, an X_t-harmonic function u.
Summary — changes!

- We begin with $f \in L^p$ and a_n in ℓ^p.

- Then we define two conjugate harmonic functions u and v, with boundary values f and Hf...

- ...and two martingales $M_t = u(B_{\min\{t,\tau\}})$ and $N_t = v(B_{\min\{t,\tau\}})$.

$$dN_t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u(X_t) \cdot dB_t$$
Summary — changes!

• We begin with \(f \in L^p \). \(a_n \) in \(\ell^p \)

• Then we define two conjugate harmonic functions \(u \) and \(v \), with boundary values \(f \) and \(Hf \)...

• And two martingales \(M_t = u(B_{\min\{t,\tau\}}) \) and \(N_t = v(B_{\min\{t,\tau\}}) \).
 \[dN_t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u(X_t) \cdot dB_t \]

• Since \(M_\infty = u(B_\tau) = f(B_\tau) \) and \(N_\infty = v(B_\tau) \),
Burkholder’s inequality implies that

\[
E|Hf(B_\tau) - \nu(0, y_0)|^p \leq (C_p)^p E|f(B_\tau) - u(0, y_0)|^p.
\]
Summary — changes!

- We begin with a_n in ℓ^p

- Then we define u as an X_t-harmonic function

- ...and two martingales $M_t = u(\chi_{\min\{t, \tau\}})$ and

$$dN_t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla u(X_t) \cdot dB_t$$

- Since $M_\infty = u(\chi_{\tau}) = a_{X_\tau}$, Burkholder's inequality implies that

$$\mathbb{E}|N_\tau - N_0|^p \leq (C_p)^p \mathbb{E}|a_{X_\tau} - u(0, y_0)|^p.$$
Summary — changes!

- We begin with a_n in ℓ^p.
- Then we define an X_t-harmonic function u.
- ... and two martingales $M_t = u(X_{\min\{t,\tau\}})$ and $dN_t = (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}) \nabla u(X_t) \cdot dB_t$.
- Since $M_\infty = u(X_\tau) = aX_\tau$, Burkholder’s inequality implies that
 $\mathbb{E}|N_\tau - N_0|^p \leq (C_p)^p \mathbb{E}|aX_\tau - u(0, y_0)|^p.$
We begin with a_n in ℓ^p.

Then we define an X_t-harmonic function u...

...and two martingales $M_t = u(X_{\min\{t,\tau\}})$ and $dN_t = (0 1 -1 0) \nabla u(X_t) \cdot dB_t$.

Since $M_\infty = u(X_\tau) = aX_\tau$, Burkholder’s inequality implies that

$$\mathbb{E}|N_\tau - N_0|^p \leq (C_p)^p \mathbb{E}|aX_\tau - u(0, y_0)|^p.$$

By Jensen’s inequality,

$$\mathbb{E}|\mathbb{E}(N_\tau - N_0 | X_\tau)|^p \leq (C_p)^p \mathbb{E}|aX_\tau - u(0, y_0)|^p.$$
Estimate of the ℓ^p norm of some transform

- As in the continuous case, by passing to the limit as $y_0 \to \infty$, we find that

$$
\| b_n \|_{\ell^p}^p \leq (C_p)^p \| a_n \|_{\ell^p}^p,
$$

where

$$
b_n = \lim_{y_0 \to \infty} \mathbb{E}(N_\tau - N_0 | X_\tau = (n, 0)).
$$
Estimate of the ℓ^p norm of some transform

- As in the continuous case, by passing to the limit as $y_0 \to \infty$, we find that
 \[
 \|b_n\|_{\ell^p}^p \leq (C_p)^p \|a_n\|_{\ell^p}^p,
 \]
 where
 \[
 b_n = \lim_{y_0 \to \infty} \mathbb{E}(N_T - N_0 | X_T = (n, 0)).
 \]

- Surprise: after tedious calculations, we obtain
 \[
 b_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 k^2) \sinh^2 y} \, dy\right).
 \]
Estimate of the ℓ^p norm of some transform

- As in the continuous case, by passing to the limit as $y_0 \to \infty$, we find that
 \[\| b_n \|_{\ell^p}^p \leq (C_p)^p \| a_n \|_{\ell^p}^p, \]
 where
 \[b_n = \lim_{y_0 \to \infty} \mathbb{E}(N_\tau - N_0 | X_\tau = (n, 0)). \]

- Surprise: after tedious calculations, we obtain
 \[b_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 k^2) \sinh^2 y} \, dy \right). \]
 (It is easy to err and drop a minus sign, and get $b_n = \mathcal{H}a_n$).
Estimate of the ℓ^p norm of some transform

- As in the continuous case, by passing to the limit as $y_0 \to \infty$, we find that
 $$\|b_n\|_{\ell^p}^p \leq (C_p)^p \|a_n\|_{\ell^p}^p,$$
 where
 $$b_n = \lim_{y_0 \to \infty} \mathbb{E}(N_T - N_0 | X_T = (n, 0)).$$

- Surprise: after tedious calculations, we obtain
 $$b_n = \frac{1}{\pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{a_{n-k}}{k} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 k^2) \sinh^2 y} \, dy \right).$$
 (It is easy to err and drop a minus sign, and get $b_n = \mathcal{H}a_n$).

- If we write $b_n = \tilde{\mathcal{H}}a_n$, then we have $\|\tilde{\mathcal{H}}\|_{\ell^p \to \ell^p} \leq C_p$.
Convolution

- The operator \tilde{H} is a convolution operator with kernel

$$\tilde{h}_n = \frac{1}{\pi n} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 n^2) \sinh^2 y} \, dy \right) 1_{\mathbb{Z}\backslash\{0\}}(n).$$
Convolution

- The operator $\tilde{\mathcal{H}}$ is a convolution operator with kernel

$$\tilde{h}_n = \frac{1}{\pi n} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 n^2) \sinh^2 y} \, dy \right) 1_{\mathbb{Z}\setminus\{0\}}(n).$$

- To complete the proof, it suffices to give a probability sequence ϱ_n such that

$$\mathcal{H}a_n = \sum_{k \in \mathbb{Z}} \varrho_k \tilde{\mathcal{H}}a_{n-k}.$$
Convolution

- The operator $\tilde{\mathcal{H}}$ is a convolution operator with kernel
 \[\tilde{h}_n = \frac{1}{\pi n} \left(1 + \int_0^\infty \frac{2y^3}{(y^2 + \pi^2 n^2) \sinh^2 y} \, dy \right) 1_{\mathbb{Z} \setminus \{0\}}(n). \]

- To complete the proof, it suffices to give a probability sequence ϱ_n such that
 \[\mathcal{H} a_n = \sum_{k \in \mathbb{Z}} \varrho_k \tilde{\mathcal{H}} a_{n-k}. \]

- Equivalently:
 \[\frac{1}{\pi n} 1_{\mathbb{Z} \setminus \{0\}}(n) = \sum_{k \in \mathbb{Z}} \varrho_k \tilde{h}_{n-k}. \]
Convolution

- The operator $\tilde{\mathcal{H}}$ is a convolution operator with kernel
 \[
 \tilde{h}_n = \frac{1}{\pi n} \left(1 + \int_{0}^{\infty} \frac{2y^3}{(y^2 + \pi^2 n^2) \sinh^2 y} \, dy \right) 1_{\mathbb{Z}\setminus\{0\}}(n).
 \]

- To complete the proof, it suffices to give a probability sequence ϱ_n such that
 \[
 \mathcal{H} a_n = \sum_{k \in \mathbb{Z}} \varrho_k \tilde{\mathcal{H}} a_{n-k}.
 \]

- Equivalently:
 \[
 \frac{1}{\pi n} 1_{\mathbb{Z}\setminus\{0\}}(n) = \sum_{k \in \mathbb{Z}} \varrho_k \tilde{h}_{n-k}.
 \]

- The sequence ϱ_n is found explicitly (in an integral form), after lengthy calculations.
Remarks about the proof

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
Remarks about the proof

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

 1. definition of the martingale: $a_n \leadsto M_t$;
Remarks about the proof

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

 1. definition of the martingale: $a_n \Rightarrow M_t$;
 2. martingale transform: $M_t \Rightarrow N_t$;
Remarks about the proof

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

 1. definition of the martingale: $a_n \leadsto M_t$;
 2. martingale transform: $M_t \leadsto N_t$;
 3. conditional expectation: $N_t \leadsto \tilde{\mathcal{H}}a_n$;

- Items (3) and (4) do not preserve the ℓ^2 norm, and therefore no similar argument can be given for the unitary operators H_{RT} and H_{KT}.

- The sequence $H_{ADP}a_n$ can be expressed as a convolution of $\tilde{\mathcal{H}}a_n$ with some sequence ϱ_n, but ϱ_n contains negative entries. For this reason a similar argument leads to a weaker estimate of $\|H_{ADP}\|_{\ell^p} \rightarrow \ell^p$ than conjectured.
Remarks about the proof

• In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

1. definition of the martingale: $a_n \rightsquigarrow M_t$;
2. martingale transform: $M_t \rightsquigarrow N_t$;
3. conditional expectation: $N_t \rightsquigarrow \tilde{\mathcal{H}} a_n$;
4. convolution with ϱ_n: $\tilde{\mathcal{H}} a_n \rightsquigarrow \mathcal{H} a_n$.
Remarks about the proof

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
 (1) definition of the martingale: $a_n \leadsto M_t$;
 (2) martingale transform: $M_t \leadsto N_t$;
 (3) conditional expectation: $N_t \leadsto \tilde{\mathcal{H}}a_n$;
 (4) convolution with ϱ_n: $\tilde{\mathcal{H}}a_n \leadsto \mathcal{H}a_n$.

- Items (3) and (4) do not preserve the ℓ^2 norm, and therefore no similar argument can be given for the unitary operators \mathcal{H}_{RT} and \mathcal{H}_K.
• In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

 1. definition of the martingale: $a_n \leadsto M_t$;
 2. martingale transform: $M_t \leadsto N_t$;
 3. conditional expectation: $N_t \leadsto \tilde{\mathcal{H}}a_n$;
 4. convolution with ϱ_n: $\tilde{\mathcal{H}}a_n \leadsto \mathcal{H}a_n$.

• Items (3) and (4) do not preserve the ℓ^2 norm, and therefore no similar argument can be given for the unitary operators \mathcal{H}_{RT} and \mathcal{H}_K.

• The sequence $\mathcal{H}_{ADP}a_n$ can be expressed as a convolution of $\tilde{\mathcal{H}}a_n$ with some sequence ϱ_n, but ϱ_n contains negative entries. For this reason a similar argument leads to a weaker estimate of $\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p}$ than conjectured.
Open problems

Conjecture 1

We have \(\| \mathcal{H}_{RT} \|_{\ell^p \to \ell^p} = C_p \)
Open problems

Conjecture 1

We have $\|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = C_p$ or at least $\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p} = C_p$.
Open problems

Conjecture 1

We have $\|\mathcal{H}_{RT}\|_{\ell^p \to \ell^p} = C_p$ or at least $\|\mathcal{H}_{ADP}\|_{\ell^p \to \ell^p} = C_p$.

Conjecture 2

We have $\|\mathcal{H}_{RT}\|_{\ell^1 \to \ell^1,w} = \|H\|_{L^1 \to L^1,w}$.
Open problems

Conjecture 1

We have \(\| \mathcal{H}_{RT} \|_{\ell^p \to \ell^p} = C_p \) or at least \(\| \mathcal{H}_{ADP} \|_{\ell^p \to \ell^p} = C_p \).

Conjecture 2

We have \(\| \mathcal{H}_{RT} \|_{\ell^1 \to \ell^1,w} = \| H \|_{L^1 \to L^1,w} \).

Conjecture 3

The discrete Riesz transform

\[
\mathcal{R}_j a_n = c_d \sum_{k \in \mathbb{Z}^d \setminus \{(0,0,\ldots,0)\}} a_{n-k} \frac{k_j}{|k|^{d+1}}
\]

satisfies \(\| \mathcal{R}_j \|_{\ell^p \to \ell^p} = C_p \).