The solution of M-D problem

Mateusz Kwaśnicki

July 2, 2008

1 Problem description

Let p, q be any integer numbers greater that 1. We define the *multiply-and-divide* (M-D) sequence (a_n) for the multiplier p and divisor q recursively as follows. Begin with $a_1 = 1$ and take a_{n+1} equal to either $\lfloor a_n/q \rfloor$ ($\lfloor x \rfloor$ denotes floor of x, the largest integer not exceeding x) if this number is positive and has not yet occured in the sequence or pa_n otherwise.

For instance, if p = 3 and q = 2, the corresponding M-D sequence is $1, 3, 9, 4, 2, 6, 18, 54, 27, 13, 39, 19, 57, 28, 14, 7, 21, \ldots$

Given p, q, the M-D problem is to determine whether every positive integer occurs exactly once in the M-D sequence. In this paper we prove that the answer is positive if and only if $\log_q p$ is irrational. This condition is equivalent to $p^n \neq q^m$ unless n = m = 0. In particular if p and q are relatively prime, every positive integer occurs exactly once in the M-D sequence.

The M-D problem originated in *Crux Mathematicorum*, volume 26 (2000), problem 2248.

Note that the 'only if' part is clear: if $\log_q p$ is rational, then $q^n = p^m$ for some relatively prime n, m > 0. Hence $q^{1/m} = p^{1/n}$ is integer greater than 1; denote it by d. Clearly if (a_n) is the M-D sequence for p and q, then $a_n = d^{k_n}$ for some nonnegative integer k_n . In particular there are positive integer numbers (such as d + 1) which do not occur in the M-D sequence. The rest of this article is dedicated to the 'if' part of the statement.

2 Notation

We denote sets of integer numbers, positive integer numbers and real numbers by \mathbb{Z} , \mathbb{Z}^+ , \mathbb{R} respectively. The quotient group of additive (topological) groups \mathbb{R} and \mathbb{Z} (which is isomorphic to [0, 1) with addition 'modulo 1') will be denoted by \mathbb{T} . Elements of \mathbb{T} are cosets $[a] = a + \mathbb{Z} = \{a + n : n \in \mathbb{Z}\}$, where $a \in \mathbb{R}$. Let $\kappa : \mathbb{R} \to \mathbb{T}$ be the canonical homomorphism defined by $\kappa(a) = [a]$. We recall that a subset U of \mathbb{T} is open if and only if $\kappa^{-1}(U)$ is an open subset of \mathbb{R} (with usual topology). Moreover, if V is any open subset of \mathbb{R} then $\kappa(V)$ is open in \mathbb{T} , that is κ is an open mapping. In fact, define $U = \kappa(V)$, $W = \kappa^{-1}(U)$. Then:

$$W = \{a : [a] \in U\} = \{a : \exists_{b \in U} \ a \in [b]\} = \\ = \{a : \exists_{b \in U} \exists_{n \in \mathbb{Z}} \ a = b + n\} = \{a : \exists_{n \in \mathbb{Z}} \ a \in V + n\} = \\ = \bigcup_{n \in \mathbb{Z}} (V + n)$$

is open since every $(V + n) = \{v + n : v \in V\}$ is open. Hence U is open.

We denote natural logarithm of x by $\ln x$ and logarithm of x in base y by $\log_y x$.

3 Formal definition of M-D sequence

Take any p, q > 1 such that $\log_q p$ is irrational and denote the corresponding M-D sequence (a_n) . Define:

$$A_n = \{0\} \cup \{a_m : m \le n\},\$$

$$A = \{a_m : m \in \mathbb{Z}^+\},\$$

$$B = \mathbb{Z}^+ \setminus A.$$

The M-D sequence (a_n) is thus defined by:

$$a_{1} = 1,$$

$$a_{n+1} = pa_{n} \qquad \text{if } \lfloor a_{n}/q \rfloor \in A_{n},$$

$$a_{n+1} = \lfloor a_{n}/q \rfloor \qquad \text{if } \lfloor a_{n}/q \rfloor \notin A_{n}.$$
(1)

We need to prove two statements:

$$a_n = a_m \text{ implies } n = m, \tag{2}$$

$$B = \emptyset. \tag{3}$$

4 Two properties of A_n , A and B

Fix any positive n and assume that $\lfloor a_n/q^k \rfloor \in A_n$ for some $k \in \mathbb{Z}^+$. If $\lfloor a_n/q^k \rfloor = 0$, then $\lfloor a_n/q^{k+1} \rfloor = 0 \in A_n$. If $\lfloor a_n/q^k \rfloor \neq 0$, then $\lfloor a_n/q^k \rfloor = a_m$ for some $m \leq n$; m cannot be equal to n, since $\lfloor a_n/q^k \rfloor < a_n$. Thus m < n. It follows that either $\lfloor a_m/q \rfloor \in A_m \subset A_n$ or $\lfloor a_m/q \rfloor = a_{m+1} \in A_n$. Hence $\lfloor a_n/q^{k+1} \rfloor = \lfloor a_m/q \rfloor \in A_n$. By an induction argument we get:

If
$$\lfloor a_n/q \rfloor \in A_n$$
, then $\lfloor a_n/q^k \rfloor \in A_n$ for any $k \in \mathbb{Z}^+$. (4)

Now take any $a \in A$. Then $a = a_n$ for some n. Either $\lfloor a_n/q \rfloor = a_{n+1} \in A$ or $\lfloor a_n/q \rfloor \in A_n \subset A \cup \{0\}$. Hence $\lfloor a/q \rfloor \in A$ or $\lfloor a/q \rfloor = 0$. By induction we get $\lfloor a/q^k \rfloor \in A$ or $\lfloor a/q^k \rfloor = 0$. Writing $b = \lfloor a/q^k \rfloor$ we get:

If
$$b \in B$$
, then $q^k b + l \in B$ for any $k \in \mathbb{Z}^+, 0 \le l < q^k$. (5)

5 Simple floor law

Let pa = |px|, where $x \in \mathbb{R}$, $a \in \mathbb{Z}$ and $p \in \mathbb{Z}^+$. Then:

$$a = \lfloor a \rfloor = \left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor = \left\lfloor \frac{px}{p} \right\rfloor = \lfloor x \rfloor.$$

Hence:

$$pa = \lfloor px \rfloor$$
 implies $a = \lfloor x \rfloor$, (6)

 $x \in \mathbb{R}, a \in \mathbb{Z}, p \in \mathbb{Z}^+.$

6 Topological dynamics lemma

The following is a simple version of a general topological dynamics result on rotations on compact topological groups:

Let a be an irrational number, $U \subset \mathbb{T}$ a nonempty open set. Then there exists $N \in \mathbb{Z}^+$ such that for every $x \in \mathbb{R}$ there exists n, $0 \leq n \leq N$, such that $[x + na] \in U$.

Fix $x \in \mathbb{R}$ and let $A = \{[x+na] : n \ge 0\}$. Then A is dense in \mathbb{T} (see any book on topological dynamics). Hence $[x+na] \in U$ for some n and so $[x] \in \bigcup_{n=0}^{\infty} (U - [na])$. Since x was arbitrary, $\bigcup_{n=0}^{\infty} (U - [na]) = \mathbb{T}$. By compactness of \mathbb{T} there exist $N \in \mathbb{Z}^+$ such that $\bigcup_{n=0}^{N} (U - [na]) = \mathbb{T}$. Take any $x \in \mathbb{R}$. Then, for some $n, 0 \le n \le N$, we have $[x+na] \in U$.

7 **Proof of** (2)

Assume on the contrary that $a_i = a_j$ for some $i \neq j$. Let n be the smallest number such that $a_n = a_m$ for some m, 0 < m < n. Clearly $a_n \in A_{n-1}$. Hence $a_n = pa_{n-1}$ $(a_n = \lfloor a_{n-1}/q \rfloor$ if and only if $\lfloor a_{n-1}/q \rfloor \notin A_{n-1}$). Let $i \leq m$ be such that:

$$a_m = \lfloor a_{m-1}/q \rfloor, a_{m-1} = \lfloor a_{m-2}/q \rfloor, \dots, a_{i+1} = \lfloor a_i/q \rfloor, a_i = pa_{i-1}.$$

(Note that such *i* exists, since $a_2 = pa_1$.) Take k = m - i. Then:

$$pa_{n-1} = a_n = a_m = \lfloor a_i/q^k \rfloor = \lfloor pa_{i-1}/q^k \rfloor.$$

Hence, by (6), $a_{n-1} = \lfloor a_{i-1}/q^k \rfloor$. Now $a_i = pa_{i-1}$ implies $\lfloor a_{i-1}/q \rfloor \in A_{i-1}$. From property (4) it follows that:

$$a_{n-1} = \left\lfloor a_{i-1}/q^k \right\rfloor \in A_{i-1}.$$

In other words, $a_{n-1} = a_j$ for some $j \le i - 1 < n - 1$. This contradicts the choice of n. Hence our assumption was false and so we proved (2). Note that we did not use irrationality of $\log_q p$.

8 Proof of (3)

Again, assume contrary to (3) that B is nonempty. Let a be any element of B. We will show that $q^t a + s \notin B$ for some $t, s \in \mathbb{Z}^+$, $0 \leq s < q^t$, which contradicts property (5). The key observation is that $b = q^t a + s$ if and only if $\log_q a - \log_q b$ is nearly an integer or, in other words, the distance between $\lfloor \log_q a \rfloor$ and $\lfloor \log_q b \rfloor$ in \mathbb{T} is very small. Hence it is sufficient to show that the set of cosets $\lfloor \log_q a_n \rfloor$ may not be separated from $\lfloor \log_q a \rfloor$ for all n. It will turn out that the sequence $\lfloor \log_q a_n \rfloor$ has much in common with irrational rotations, well studied transformations on \mathbb{T} .

Relation (2) implies that $\lim_{n\to\infty} a_n = \infty$. It follows that there are infinitely many n such that $a_{n+1} = pa_n$; let k_1, k_2, \ldots be increasing sequence of all those n. Hence:

$$a_{k_{n+1}} = \left\lfloor \frac{a_{k_n+1}}{q^{k_{n+1}-k_n-1}} \right\rfloor, \quad a_{k_n+1} = pa_{k_n}.$$
 (7)

Let $b_n = \log_q a_n$, $\alpha = \log_q p$; α is irrational. Define:

$$\epsilon_n = \log_q \frac{a_{k_n+1}}{q^{k_{n+1}-k_n-1}} - \log_q a_{k_{n+1}} = b_{k_n+1} - b_{k_{n+1}} - k_{n+1} + k_n + 1.$$

Relations (7) and $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ for $x \in \mathbb{R}$ imply that:

$$0 \le \epsilon_n < \log_q(a_{k_{n+1}} + 1) - \log_q a_{k_{n+1}} = \\ = \log_q\left(\frac{a_{k_{n+1}} + 1}{a_{k_{n+1}}}\right) < \frac{1}{a_{k_{n+1}}\ln q}.$$
(8)

By definition of ϵ_n and (7):

$$\begin{bmatrix} b_{k_{n+1}} \end{bmatrix} = \begin{bmatrix} b_{k_n+1} - \epsilon_n \end{bmatrix}, \begin{bmatrix} b_{k_n+1} \end{bmatrix} = \begin{bmatrix} \log_q(pa_{k_n}) \end{bmatrix} = \begin{bmatrix} b_{k_n} + \alpha \end{bmatrix}.$$
(9)

This is exactly what we needed: $[b_{k_{n+1}}]$ is very close to $[b_{k_n+1}]$, which is an irrational rotation of b_{k_n} . Hence we can apply topological dynamics methods. Before we proceed with some technical details, let us recall that we are looking for a_m such that $a_m = q^t a + s$ for some $t, s \in \mathbb{Z}^+$, $0 \le s < q^t$, which is equivalent to $\log_q a_m \in (\log_q a + t, \log_q (a + 1) + t)$.

Define:

$$\begin{split} \delta &= \log_q(a + \frac{1}{2}) - \log_q a, \\ V &= \left(\log_q(a + \frac{1}{2}), \log_q(a + 1)\right), \\ U &= \kappa(V). \end{split}$$

Since U is a nonempty open subset of \mathbb{T} and α is irrational, a topogical dynamics lemma implies that there exists $L \in \mathbb{Z}^+$ such that for every $x \in \mathbb{R}$ we have $[x + l\alpha] \in U$ for some $l, 0 \leq l \leq L$. Let M be large enough so that $L < M\delta \ln q$. Since $\lim_{n\to\infty} a_n = \infty$, there exists N such that $a_n > M$ for $n \ge N$. Fix any n such that $k_n \ge N$. For some $l, 0 \le l \le L$, we have $[b_{k_n} + l\alpha] \in U$. Equivalently, for some $i \in \mathbb{Z}$:

$$b_{k_n} + l\alpha + i \in V.$$

By definition of V:

$$\log_q(a + \frac{1}{2}) < b_{k_n} + l\alpha + i < \log_q(a + 1)$$
(10)

Let m = n + l. Using (9) and simple induction argument we get:

$$[b_{k_m}] = [b_{k_n} + l\alpha - \epsilon_n - \epsilon_{n+1} - \dots - \epsilon_{m-1}].$$

Again this is equivalent to:

$$b_{k_m} = b_{k_n} + l\alpha - \epsilon_n - \epsilon_{n+1} - \dots - \epsilon_{m-1} + j$$

for some $j \in \mathbb{Z}$. Recall that if $n \leq \nu < m$, then $k_{\nu+1} > k_n \geq N$ and so $a_{k_{\nu+1}} > M$. According to (8) we get $0 \leq \epsilon_{\nu} < (a_{k_{\nu+1}} \ln q)^{-1} < (M \ln q)^{-1}$, so that:

$$b_{k_n} + l\alpha + j - \frac{l}{M \ln q} < b_{k_m} \le b_{k_n} + l\alpha + j.$$

But M was defined so that $l/(M \ln q) \leq L/(M \ln q) < \delta$. Hence:

$$b_{k_n} + l\alpha + j - \delta < b_{k_m} \le b_{k_n} + l\alpha + j.$$

Together with (10) and the definition of δ this leads us to:

$$\log_q(a + \frac{1}{2}) + j - i - (\log_q(a + \frac{1}{2}) - \log_q a) < b_{k_m} < \log_q(a + 1) + j - i.$$

Finally we get:

$$\log_q a + j - i < b_{k_m} < \log_q (a+1) + j - i.$$

In terms of a_{ν} this means:

$$q^{j-i}a < a_{k_m} < q^{j-i}(a+1).$$

It follows that j - i > 0 and $a_{k_m} = q^t a + s$ for t = i - j and some s such that $0 < s < q^t$. Contradiction with (5).

This proves that B is empty and completes our solution.