The solution of M-D problem

Mateusz Kwaśnicki

July 2, 2008

1 Problem description

Let p, q be any integer numbers greater that 1 . We define the multiply-and-divide ($M-D$) sequence $\left(a_{n}\right)$ for the multiplier p and divisor q recursively as follows. Begin with $a_{1}=1$ and take a_{n+1} equal to either $\left\lfloor a_{n} / q\right\rfloor$ ($\lfloor x\rfloor$ denotes floor of x, the largest integer not exceeding x) if this number is positive and has not yet occured in the sequence or $p a_{n}$ otherwise.

For instance, if $p=3$ and $q=2$, the corresponding M-D sequence is $1,3,9,4,2,6,18,54,27,13,39,19,57,28,14,7,21, \ldots$.

Given p, q, the M-D problem is to determine whether every positive integer occurs exactly once in the M-D sequence. In this paper we prove that the answer is positive if and only if $\log _{q} p$ is irrational. This condition is equivalent to $p^{n} \neq q^{m}$ unless $n=m=0$. In particular if p and q are relatively prime, every positive integer occurs exactly once in the M-D sequence.

The M-D problem originated in Crux Mathematicorum, volume 26 (2000), problem 2248.

Note that the 'only if' part is clear: if $\log _{q} p$ is rational, then $q^{n}=p^{m}$ for some relatively prime $n, m>0$. Hence $q^{1 / m}=p^{1 / n}$ is integer greater than 1 ; denote it by d. Clearly if (a_{n}) is the M-D sequence for p and q, then $a_{n}=d^{k_{n}}$ for some nonnegative integer k_{n}. In particular there are positive integer numbers (such as $d+1$) which do not occur in the M-D sequence. The rest of this article is dedicated to the 'if' part of the statement.

2 Notation

We denote sets of integer numbers, positive integer numbers and real numbers by $\mathbb{Z}, \mathbb{Z}^{+}, \mathbb{R}$ respectively. The quotient group of additive (topological) groups \mathbb{R} and \mathbb{Z} (which is isomorphic to $[0,1$) with addition 'modulo 1 ') will be denoted by \mathbb{T}. Elements of \mathbb{T} are cosets $[a]=a+\mathbb{Z}=\{a+n: n \in \mathbb{Z}\}$, where $a \in \mathbb{R}$. Let $\kappa: \mathbb{R} \rightarrow \mathbb{T}$ be the canonical homomorphism defined by $\kappa(a)=[a]$. We recall that a subset U of \mathbb{T} is open if and only if $\kappa^{-1}(U)$ is an open subset of \mathbb{R} (with usual topology). Moreover, if V is any open subset of \mathbb{R} then $\kappa(V)$ is open in
\mathbb{T}, that is κ is an open mapping. In fact, define $U=\kappa(V), W=\kappa^{-1}(U)$. Then:

$$
\begin{aligned}
W & =\{a:[a] \in U\}=\left\{a: \exists_{b \in U} a \in[b]\right\}= \\
& =\left\{a: \exists_{b \in U} \exists_{n \in \mathbb{Z}} a=b+n\right\}=\left\{a: \exists_{n \in \mathbb{Z}} a \in V+n\right\}= \\
& =\bigcup_{n \in \mathbb{Z}}(V+n)
\end{aligned}
$$

is open since every $(V+n)=\{v+n: v \in V\}$ is open. Hence U is open.
We denote natural logarithm of x by $\ln x$ and logarithm of x in base y by $\log _{y} x$.

3 Formal definition of M-D sequence

Take any $p, q>1$ such that $\log _{q} p$ is irrational and denote the corresponding M-D sequence $\left(a_{n}\right)$. Define:

$$
\begin{aligned}
& A_{n}=\{0\} \cup\left\{a_{m}: m \leq n\right\}, \\
& A=\left\{a_{m}: m \in \mathbb{Z}^{+}\right\}, \\
& B=\mathbb{Z}^{+} \backslash A .
\end{aligned}
$$

The M-D sequence $\left(a_{n}\right)$ is thus defined by:

$$
\begin{array}{ll}
a_{1}=1, & \\
a_{n+1}=p a_{n} & \text { if }\left\lfloor a_{n} / q\right\rfloor \in A_{n}, \tag{1}\\
a_{n+1}=\left\lfloor a_{n} / q\right\rfloor & \text { if }\left\lfloor a_{n} / q\right\rfloor \notin A_{n} .
\end{array}
$$

We need to prove two statements:

$$
\begin{gather*}
a_{n}=a_{m} \text { implies } n=m, \tag{2}\\
B=\emptyset \tag{3}
\end{gather*}
$$

4 Two properties of A_{n}, A and B

Fix any positive n and assume that $\left\lfloor a_{n} / q^{k}\right\rfloor \in A_{n}$ for some $k \in \mathbb{Z}^{+}$. If $\left\lfloor a_{n} / q^{k}\right\rfloor=$ 0 , then $\left\lfloor a_{n} / q^{k+1}\right\rfloor=0 \in A_{n}$. If $\left\lfloor a_{n} / q^{k}\right\rfloor \neq 0$, then $\left\lfloor a_{n} / q^{k}\right\rfloor=a_{m}$ for some $m \leq n ; m$ cannot be equal to n, since $\left\lfloor a_{n} / q^{k}\right\rfloor<a_{n}$. Thus $m<n$. It follows that either $\left\lfloor a_{m} / q\right\rfloor \in A_{m} \subset A_{n}$ or $\left\lfloor a_{m} / q\right\rfloor=a_{m+1} \in A_{n}$. Hence $\left\lfloor a_{n} / q^{k+1}\right\rfloor=\left\lfloor a_{m} / q\right\rfloor \in A_{n}$. By an induction argument we get:

$$
\begin{equation*}
\text { If }\left\lfloor a_{n} / q\right\rfloor \in A_{n} \text {, then }\left\lfloor a_{n} / q^{k}\right\rfloor \in A_{n} \text { for any } k \in \mathbb{Z}^{+} \text {. } \tag{4}
\end{equation*}
$$

Now take any $a \in A$. Then $a=a_{n}$ for some n. Either $\left\lfloor a_{n} / q\right\rfloor=a_{n+1} \in A$ or $\left\lfloor a_{n} / q\right\rfloor \in A_{n} \subset A \cup\{0\}$. Hence $\lfloor a / q\rfloor \in A$ or $\lfloor a / q\rfloor=0$. By induction we get $\left[a / q^{k}\right\rfloor \in A$ or $\left\lfloor a / q^{k}\right\rfloor=0$. Writing $b=\left\lfloor a / q^{k}\right\rfloor$ we get:

If $b \in B$, then $q^{k} b+l \in B$ for any $k \in \mathbb{Z}^{+}, 0 \leq l<q^{k}$.

5 Simple floor law

Let $p a=\lfloor p x\rfloor$, where $x \in \mathbb{R}, a \in \mathbb{Z}$ and $p \in \mathbb{Z}^{+}$. Then:

$$
a=\lfloor a\rfloor=\left\lfloor\frac{\lfloor p x\rfloor}{p}\right\rfloor=\left\lfloor\frac{p x}{p}\right\rfloor=\lfloor x\rfloor .
$$

Hence:

$$
\begin{equation*}
p a=\lfloor p x\rfloor \text { implies } a=\lfloor x\rfloor, \tag{6}
\end{equation*}
$$

$x \in \mathbb{R}, a \in \mathbb{Z}, p \in \mathbb{Z}^{+}$.

6 Topological dynamics lemma

The following is a simple version of a general topological dynamics result on rotations on compact topological groups:

Let a be an irrational number, $U \subset \mathbb{T}$ a nonempty open set.
Then there exists $N \in \mathbb{Z}^{+}$such that for every $x \in \mathbb{R}$ there exists n, $0 \leq n \leq N$, such that $[x+n a] \in U$.

Fix $x \in \mathbb{R}$ and let $A=\{[x+n a]: n \geq 0\}$. Then A is dense in \mathbb{T} (see any book on topological dynamics). Hence $[x+n a] \in U$ for some n and so $[x] \in$ $\bigcup_{n=0}^{\infty}(U-[n a])$. Since x was arbitrary, $\bigcup_{n=0}^{\infty}(U-[n a])=\mathbb{T}$. By compactness of \mathbb{T} there exist $N \in \mathbb{Z}^{+}$such that $\bigcup_{n=0}^{N}(U-[n a])=\mathbb{T}$. Take any $x \in \mathbb{R}$. Then, for some $n, 0 \leq n \leq N$, we have $[x+n a] \in U$.

7 Proof of (2)

Assume on the contrary that $a_{i}=a_{j}$ for some $i \neq j$. Let n be the smallest number such that $a_{n}=a_{m}$ for some $m, 0<m<n$. Clearly $a_{n} \in A_{n-1}$. Hence $a_{n}=p a_{n-1}\left(a_{n}=\left\lfloor a_{n-1} / q\right\rfloor\right.$ if and only if $\left.\left\lfloor a_{n-1} / q\right\rfloor \notin A_{n-1}\right)$. Let $i \leq m$ be such that:

$$
a_{m}=\left\lfloor a_{m-1} / q\right\rfloor, a_{m-1}=\left\lfloor a_{m-2} / q\right\rfloor, \ldots, a_{i+1}=\left\lfloor a_{i} / q\right\rfloor, a_{i}=p a_{i-1}
$$

(Note that such i exists, since $a_{2}=p a_{1}$.) Take $k=m-i$. Then:

$$
p a_{n-1}=a_{n}=a_{m}=\left\lfloor a_{i} / q^{k}\right\rfloor=\left\lfloor p a_{i-1} / q^{k}\right\rfloor .
$$

Hence, by (6), $a_{n-1}=\left\lfloor a_{i-1} / q^{k}\right\rfloor$. Now $a_{i}=p a_{i-1}$ implies $\left\lfloor a_{i-1} / q\right\rfloor \in A_{i-1}$. From property (4) it follows that:

$$
a_{n-1}=\left\lfloor a_{i-1} / q^{k}\right\rfloor \in A_{i-1} .
$$

In other words, $a_{n-1}=a_{j}$ for some $j \leq i-1<n-1$. This contradicts the choice of n. Hence our assumption was false and so we proved (2). Note that we did not use irrationality of $\log _{q} p$.

8 Proof of (3)

Again, assume contrary to (3) that B is nonempty. Let a be any element of B. We will show that $q^{t} a+s \notin B$ for some $t, s \in \mathbb{Z}^{+}, 0 \leq s<q^{t}$, which contradicts property (5). The key observation is that $b=q^{t} a+s$ if and only if $\log _{q} a-\log _{q} b$ is nearly an integer or, in other words, the distance between $\left[\log _{q} a\right]$ and $\left[\log _{q} b\right]$ in \mathbb{T} is very small. Hence it is sufficient to show that the set of cosets $\left[\log _{q} a_{n}\right]$ may not be separated from $\left[\log _{q} a\right]$ for all n. It will turn out that the sequence $\left[\log _{q} a_{n}\right]$ has much in common with irrational rotations, well studied transformations on \mathbb{T}.

Relation (2) implies that $\lim _{n \rightarrow \infty} a_{n}=\infty$. It follows that there are infinitely many n such that $a_{n+1}=p a_{n}$; let k_{1}, k_{2}, \ldots be increasing sequence of all those n. Hence:

$$
\begin{equation*}
a_{k_{n+1}}=\left\lfloor\frac{a_{k_{n}+1}}{q^{k_{n+1}-k_{n}-1}}\right\rfloor, \quad a_{k_{n}+1}=p a_{k_{n}} . \tag{7}
\end{equation*}
$$

Let $b_{n}=\log _{q} a_{n}, \alpha=\log _{q} p ; \alpha$ is irrational. Define:

$$
\epsilon_{n}=\log _{q} \frac{a_{k_{n}+1}}{q^{k_{n+1}-k_{n}-1}}-\log _{q} a_{k_{n+1}}=b_{k_{n}+1}-b_{k_{n+1}}-k_{n+1}+k_{n}+1 .
$$

Relations (7) and $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$ for $x \in \mathbb{R}$ imply that:

$$
\begin{align*}
0 \leq \epsilon_{n} & <\log _{q}\left(a_{k_{n+1}}+1\right)-\log _{q} a_{k_{n+1}}= \\
& =\log _{q}\left(\frac{a_{k_{n+1}}+1}{a_{k_{n+1}}}\right)<\frac{1}{a_{k_{n+1}} \ln q} . \tag{8}
\end{align*}
$$

By definition of ϵ_{n} and (7):

$$
\begin{align*}
& {\left[b_{k_{n+1}}\right]=\left[b_{k_{n}+1}-\epsilon_{n}\right]} \tag{9}\\
& {\left[b_{k_{n}+1}\right]=\left[\log _{q}\left(p a_{k_{n}}\right)\right]=\left[b_{k_{n}}+\alpha\right] .}
\end{align*}
$$

This is exactly what we needed: $\left[b_{k_{n+1}}\right]$ is very close to $\left[b_{k_{n}+1}\right]$, which is an irrational rotation of $b_{k_{n}}$. Hence we can apply topological dynamics methods. Before we proceed with some technical details, let us recall that we are looking for a_{m} such that $a_{m}=q^{t} a+s$ for some $t, s \in \mathbb{Z}^{+}, 0 \leq s<q^{t}$, which is equivalent to $\log _{q} a_{m} \in\left(\log _{q} a+t, \log _{q}(a+1)+t\right)$.

Define:

$$
\begin{aligned}
& \delta=\log _{q}\left(a+\frac{1}{2}\right)-\log _{q} a \\
& V=\left(\log _{q}\left(a+\frac{1}{2}\right), \log _{q}(a+1)\right) \\
& U=\kappa(V)
\end{aligned}
$$

Since U is a nonempty open subset of \mathbb{T} and α is irrational, a topogical dynamics lemma implies that there exists $L \in \mathbb{Z}^{+}$such that for every $x \in \mathbb{R}$ we have $[x+l \alpha] \in U$ for some $l, 0 \leq l \leq L$.

Let M be large enough so that $L<M \delta \ln q$. Since $\lim _{n \rightarrow \infty} a_{n}=\infty$, there exists N such that $a_{n}>M$ for $n \geq N$. Fix any n such that $k_{n} \geq N$. For some $l, 0 \leq l \leq L$, we have $\left[b_{k_{n}}+l \alpha\right] \in U$. Equivalently, for some $i \in \mathbb{Z}$:

$$
b_{k_{n}}+l \alpha+i \in V .
$$

By definition of V :

$$
\begin{equation*}
\log _{q}\left(a+\frac{1}{2}\right)<b_{k_{n}}+l \alpha+i<\log _{q}(a+1) \tag{10}
\end{equation*}
$$

Let $m=n+l$. Using (9) and simple induction argument we get:

$$
\left[b_{k_{m}}\right]=\left[b_{k_{n}}+l \alpha-\epsilon_{n}-\epsilon_{n+1}-\cdots-\epsilon_{m-1}\right] .
$$

Again this is equivalent to:

$$
b_{k_{m}}=b_{k_{n}}+l \alpha-\epsilon_{n}-\epsilon_{n+1}-\cdots-\epsilon_{m-1}+j
$$

for some $j \in \mathbb{Z}$. Recall that if $n \leq \nu<m$, then $k_{\nu+1}>k_{n} \geq N$ and so $a_{k_{\nu+1}}>M$. According to (8) we get $0 \leq \epsilon_{\nu}<\left(a_{k_{\nu+1}} \ln q\right)^{-1}<(M \ln q)^{-1}$, so that:

$$
b_{k_{n}}+l \alpha+j-\frac{l}{M \ln q}<b_{k_{m}} \leq b_{k_{n}}+l \alpha+j .
$$

But M was defined so that $l /(M \ln q) \leq L /(M \ln q)<\delta$. Hence:

$$
b_{k_{n}}+l \alpha+j-\delta<b_{k_{m}} \leq b_{k_{n}}+l \alpha+j .
$$

Together with (10) and the definition of δ this leads us to:

$$
\log _{q}\left(a+\frac{1}{2}\right)+j-i-\left(\log _{q}\left(a+\frac{1}{2}\right)-\log _{q} a\right)<b_{k_{m}}<\log _{q}(a+1)+j-i .
$$

Finally we get:

$$
\log _{q} a+j-i<b_{k_{m}}<\log _{q}(a+1)+j-i .
$$

In terms of a_{ν} this means:

$$
q^{j-i} a<a_{k_{m}}<q^{j-i}(a+1) .
$$

It follows that $j-i>0$ and $a_{k_{m}}=q^{t} a+s$ for $t=i-j$ and some s such that $0<s<q^{t}$. Contradiction with (5).

This proves that B is empty and completes our solution.

