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Hilbert transforms

The continuous Hilbert transform is defined by

Hf (x) = lp.v./_oo Mdz

m . z

for appropriate functions f : R — R.
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Hilbert transforms

The continuous Hilbert transform is defined by

Hf (x) = lp.v./_oo M

™

dz

59 V4

for appropriate functions f : R — R.

Definition
Similarly, the discrete Hilbert transform is given by

J—Canzl Z a"k_k

T
keZ\{0}

for appropriate doubly infinite sequences (a, : n € Z).
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Main result #1

Theorem (Rodrigo Bafiuelos, MK)
For p € (1,00) we have

|H| oo = [|H|| Lo Lr-
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Main result #1

Theorem (Rodrigo Bafiuelos, MK)
For p € (1,00) we have

[H e = | HI| o 10

e The operator J was introduced by D. Hilbert, and the problem goes back to
E.C. Titchmarsh and M. Riesz.
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Main result #1

Theorem (Rodrigo Bafiuelos, MK)
For p € (1,00) we have

hmarsh transform

[H e = | HI| o 10

e The operator J was introduced by D. Hilbert, and the problem goes back to
E.C. Titchmarsh and M. Riesz.
e We have

[H|[p—1» = max{tan(3;), cot(55)}

(S. Pichorides, 1972; B. Cole, unpublished; see T.W. Gamelin, 1978).
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Main result #

Theorem (Rodrigo Bafiuelos, MK)
For p € (1,00) we have

[H e = | HI| o 10

e The operator J was introduced by D. Hilbert, and the problem goes back to
E.C. Titchmarsh and M. Riesz.
e We have
[H|[p—1» = max{tan(3;), cot(55)}
(S. Pichorides, 1972; B. Cole, unpublished; see T.W. Gamelin, 1978).
e One direction is easy: by approximation and Fatou's lemma,

||J_C||€P—>€P = ||H||LP_>LP.
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Hilbert transforms revisited

The continuous Hilbert transform is defined by
1 * f(x — z)

HE(x) = S pv. /

™

dz

69 z

for appropriate functions f : R — R.
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Hilbert transforms revisited

The continuous Hilbert transform is defined by

Hf (x) = lp.v./Oo flx=2) dz

™ w Z

for appropriate functions f : R — R.

The Riesz—Titchmarsh transform is given by

1 an—k
Rap = —
n Wzk-l-%

keZ

for appropriate doubly infinite sequences (a, : n € 7).

itchmarsh transform
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Main result #2

Theorem (Rodrigo Bafiuelos, MK)

For p = 2,4,6.8, ... (or a conjugate exponent) we have

[Rlen-ste = |5t
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Main result #2

Theorem (Rodrigo Bafiuelos, MK)

For p = 2,4,6.8, ... (or a conjugate exponent) we have

[Rlen-ste = |5t

e This problem also goes back to E.C. Titchmarsh and M. Riesz.
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Main result #2

Theorem (Rodrigo Bafiuelos, MK)

For p = 2,4,6.8, ... (or a conjugate exponent) we have

[Rlen-ste = |5t

e This problem also goes back to E.C. Titchmarsh and M. Riesz.
e One direction is again easy: for a general p € (1, 00),

”j{HﬁP—wP = ||H||LP_>LP.
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Main result #2

te Hilbert transform Titchmarsh transform

Theorem (Rodrigo Bafiuelos, MK)

For p = 2,4,6.8, ... (or a conjugate exponent) we have

[Rlen-ste = |5t

e This problem also goes back to E.C. Titchmarsh and M. Riesz.
e One direction is again easy: for a general p € (1, 00),

”j{HZP—wP = ||H||LP_>LP.

e The other inequality remains a challenging open problem for general p.
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Bedlewo

e | learned about the problem at the Probability and Analysis conference in
Bedlewo, Poland (May 15-19, 2017).
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Bedlewo

e | learned about the problem at the Probability and Analysis conference in
Bedlewo, Poland (May 15-19, 2017).

e During a BBQ dinner, with free beer and a bonfire, Rodrigo Bafiuelos and
Eero Saksman invited me to join their fireside chat, and told me about it.

source: SACNAS source: University of Helsinki
sacnas.org helsinki.fi
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Bedlewo

e | learned about the problem at the Probability and Analysis conference in
Bedlewo, Poland (May 15-19, 2017).

e During a BBQ dinner, with free beer and a bonfire, Rodrigo Bafiuelos and
Eero Saksman invited me to join their fireside chat, and told me about it.

e They forgot to mention that some considered the problem to be rather hard.

source: SACNAS
sacnas.org helsinki.fi

source: University of Helsinki
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Continuous Hilbert transform

e The Hilbert transform

Hf (x) = %p.v./ @ dy

A

is a Fourier multiplier: Hf = A - £, with symbol
) =

A

—isigné&.



Some history
0@0000

Continuous Hilbert transform

e The Hilbert transform

Hf (x) = %p.v./ @ dy

is a Fourier multiplier: Hf = A - £, with symbol
H(¢) = —isign&.
e H:L?— [?is a unitary operator (D. Hilbert, 1905)
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Continuous Hilbert transform

e The Hilbert transform

Hf (x) = %p.v./ @ dy

is a Fourier multiplier: Hf = A - £, with symbol
H(¢) = —isign&.
e H: L2 — [?is a unitary operator (D. Hilbert, 1905)
e ||H|lr—1r < 00 for p € (1,00) (M. Riesz, 1928)
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Continuous Hilbert transform

e The Hilbert transform

1 * f(x —

Hf(x) = — p.v./ fe=y) dy
T -0 y
is a Fourier multiplier: Hf = A - £, with symbol
H(¢) = —isign&.

e H:L?— [?is a unitary operator (D. Hilbert, 1905)
e ||H|lr—1r < 00 for p € (1,00) (M. Riesz, 1928)
o [[HI|to—1r = max{tan(3;), cot(3;)} (S. Pichorides, 1972)
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Continuous Hilbert transform

e The Hilbert transform
1 * f(x —
Hf(x) = — p.v./ fe=y) dy
T -0 y
is a Fourier multiplier: Hf = A - £, with symbol
H(¢) = —isign&.
e H:L?— [?is a unitary operator (D. Hilbert, 1905)
e ||H|lr—1r < 00 for p € (1,00) (M. Riesz, 1928)
o [[HI|to—1r = max{tan(3;), cot(3;)} (S. Pichorides, 1972)
Throughout the talk, we assume that p € (1, 00).
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Discrete Hilbert transform: prior results

e Also the discrete Hilbert transform

iJLCa,,Z1 Z a"k_k

Y
keZ\ {0}

is a Fourier multiplier: m = 5. [/a,,\], with symbol

F(§) = —isign& - (1— L[¢]) for & € (=, 7).
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e Also the discrete Hilbert transform

iJLCa,,Z1 Z a"k_k

Y
keZ\ {0}

is a Fourier multiplier: m = 5. [/a,,\], with symbol
F(&) = —isign& - (1= 2¢]) for £ € (—m,m).
o ||H||2—p =1, but H is not unitary (D. Hilbert, 1905)
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Discrete Hilbert transform: prior results

e Also the discrete Hilbert transform

iJLCa,,Z1 Z a"k_k

Y
keZ\ {0}

is a Fourier multiplier: m = 5. [/a,,\], with symbol
F0(€) = —isign& - (1 — LI¢]) for & € (—,7).
o ||H||2—p =1, but H is not unitary (D. Hilbert, 1905)
o [|H||o—e = ||H||r—1r (E.C. Titchmarsh, 1926)
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e Also the discrete Hilbert transform

iJLCa,,Z1 Z a"k_k

Y
keZ\ {0}

is a Fourier multiplier: m = . [/a,,\], with symbol
F(€) = —isign& - (1 — L[¢]) for & € (—m, ).
o ||H||2—p =1, but H is not unitary (D. Hilbert, 1905)
o [|H||o—e = ||H||r—1r (E.C. Titchmarsh, 1926)
o [|H||sp—sp < 00 (M. Riesz, 1927; E.C. Titchmarsh, 1926)
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Discrete Hilbert transform: prior results

e Also the discrete Hilbert transform

iJLCa,,Z1 Z a"k_k

Y
keZ\ {0}

is a Fourier multiplier: m = . [/a,,\], with symbol
F(€) = —isign& - (1 — L[¢]) for & € (—m, ).
|H |22 = 1, but H is not unitary (D. Hilbert, 1905)
| H||p—er = ||H||p—1r (E.C. Titchmarsh, 1926)
|H||ep—sep < 00 (M. Riesz, 1927; E.C. Titchmarsh, 1926)

|F||ep—er = ||H]|r—s1r when p=2,4,8,16,... (or a conjugate exponent)
(I.E. Verbitsky; see E. Laeng, 2007)
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Riesz—Titchmarsh transform: prior results

e The Riesz—Titchmarsh transform
o
o
=
is a Fourier multiplier too: fR[a,,] =R [a,,], with symbol

R(E) = —isigne-e /% for & € (—m, 7).

l
T2
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Riesz—Titchmarsh transform: prior results

e The Riesz—Titchmarsh transform
o
o
=
is a Fourier multiplier too: fR[a,,] =R [a,,], with symbol

R(E) = —isigne-e /% for & € (—m, 7).

l
T2

e R is a unitary operator on (2 (D. Hilbert, 1905)
o [|R||p—ee = ||H]|r—rr (E.C. Titchmarsh, 1926)
o ||R|ler—er < 00 (M. Riesz, 1927; E.C. Titchmarsh, 1926)
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Discretisations of the Hilbert transform

operator

keZ\ {0}

Riesz—Titchmarsh transform
00000000



Discrete Hilbert transform

lé)/l(;‘aci)lgresult i%rgg.hoistory gggt(;gléous transform Discret
Discretisations of the Hilbert transform
operator symbol

fHa,,zl Z a"k_k I

i
keZ\ {0}
_ e VIV N

Riesz—Titchmarsh transform
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Discretisations of the Hilbert transform
operator symbol

o= 3 BE e
keZ\{0}

1 dn—k
Rap = —
? Wzk+%

keZ

ADPay = 23 Kok A/
7TkeZk_Z i

Riesz—Titchmarsh transform
00000000
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Discretisations of the Hilbert transform

operator symbol
Ia, = 3 Ik
= — 02 ad
" k
keZ\{0}
1 dn—k ]
Ra, = — Z 1 s
s keZ k + 2

ADPa, = L3 KoL /] /]
7Tkezk 4 i
fKa,,:g Z n—k “nny

™
ke2Z+1

Riesz—Titchmarsh transform
00000000
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Discretisations of the Hilbert transform

operator symbol (¢ € (—m, 7))

f}Ca,,:l Z a"k_k e —isigné- (1= L)g));

keZ\ {0}

1 ne
iRa,,:—Z n—k e~ —isign€ - e?,

1
T k -+ =
kEZ + 2

kan_ .
ADiPa,,:—Z n—k s —/5|gn§-cos§.

_ 1
keZ 4

2 dn—k ..
Ka, = = E n e —isigné;
™
ke2Z+1
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Which discretisation is the right one?

Elementary inequalities

H
||H||L"—>LP X {“‘L|[®:|]|3T|J;£P£p} < ||:R||€P—>£P = ||:K||€P—>£P-
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Titchmarsh transform

Which discretisation is the right one?

Elementary inequalities

H
||H||L"—>LP X {H.L|l@'.|]|)ﬁ;ﬁgp} < ||:RH€P—>£P = ||:K||€P—>£P-

e Our proof of ||H|[pe—e = ||H||r—1r is probabilistic and analytic: it involves
Burkholder's inequality for orthogonal martingales, and a lot of calculations.
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Which discretisation is the right one?

Elementary inequalities

H
||H||L"—>LP X {H.L|l@'.|]|)ﬁ;ﬁgp} < ||:RH€P—>£P = ||:K||€P—>£P-

e Our proof of ||H|[pe—e = ||H||r—1r is probabilistic and analytic: it involves
Burkholder's inequality for orthogonal martingales, and a lot of calculations.

e On the other hand, our proof of || R||p e = |[H][1r— e is purely algebraic,
except for the use of the former result for all p € (1,00).
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Which discretisation is the right one?

Elementary inequalities

H
||H||L"—>LP < {,lﬂglﬁ;ﬁ”} < ||:RH€P—>£P = ||:K||€P—>£P-

e Our proof of ||H|[pe—e = ||H||r—1r is probabilistic and analytic: it involves
Burkholder's inequality for orthogonal martingales, and a lot of calculations.

e On the other hand, our proof of || R||p e = |[H][1r— e is purely algebraic,
except for the use of the former result for all p € (1,00).

e Results on equality of the L norm of a singular integral operator and the
¢P norm of its discretization are rare.
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Which discretisation is the right one?

Elementary inequalities

H
||H||L"—>LP < {“-ﬂl@lﬁ;ﬁﬁ} < ||:RH€P—>£P = ||:K||€P—>£P-

Our proof of || H||;e—er = ||H||r—1r is probabilistic and analytic: it involves
Burkholder's inequality for orthogonal martingales, and a lot of calculations.

On the other hand, our proof of [|R||s—e = [|H||1s—1» is purely algebraic,
except for the use of the former result for all p € (1,00).

Results on equality of the LP norm of a singular integral operator and the
¢P norm of its discretization are rare.

For second-order Riesz transforms: K. Domolevo and S. Petermichl, 2014.
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Hilbert transform and harmonic functions

e Let f € LP. For y > 0 we define the Poisson integrals

1 o
by =1 [ fxm2) T

. 22+ y

v(x,y)zlfoo F(x — 2) ——— dz.

T ) o 22+_y2
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Hilbert transform and harmonic functions

e Let f € LP. For y > 0 we define the Poisson integrals

1 o
by =1 [ fxm2) T

. 24y
1 [ z
v(x,y) = - f(x—z)mdz.

e Then v and v are conjugate harmonic functions:

Au=Av =0, Vv=(194)Vu.

Riesz—Titchmarsh transform
00000000
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Hilbert transform and harmonic functions

e Let f € LP. For y > 0 we define the Poisson integrals

1 [e.9]
u(x,y):;/ f(x —z) 4 5 dz,

. 24y
1 [ z
v(x,y) = - f(x—z)mdz.

e Then v and v are conjugate harmonic functions:
Au=Av =0, Vv =(1g)Vu.
e The boundary values of u and v are given by
f(x)= 1l Hf (x) = i
(x) = lim u(x,y), (x) = lim v(x,y)

(the limits exist in LP and almost everywhere).
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Bty

Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.
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Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.

e We suppose that By = (0, yp), where y > 0.

Riesz—Titchmarsh transform
00000000
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Harmonic functions and martingales

e Let B; be the 2-D standard Brownian motion.
e We suppose that By = (0, yp), where y > 0.
e Let 7 be the hitting time of R x {0} for B;.

Riesz—Titchmarsh transform
00000000
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Harmonic functions and martingales

Let B; be the 2-D standard Brownian motion.
e We suppose that By = (0, yp), where y > 0.
Let 7 be the hitting time of R x {0} for B;.

e If uis a harmonic function in R x (0, 00), then the process
Mt = U(Bmin{t,T}) : i3

is a martingale.
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Harmonic functions and martingales

Let B; be the 2-D standard Brownian motion.

e We suppose that By = (0, yp), where y > 0.

Let 7 be the hitting time of R x {0} for B;.

If uis a harmonic function in R x (0, 00), then the process

Mt = U(Bmin{t;r}) &

4

is a martingale.

Indeed: by the It6 formula, for t < 7 we have
dM, = Vu(B,) - dB., £
d[M], = |[Vu(B,)[*dt. : 2%
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are

Mt - U(Bmin{t,r})a Nt = V(Bmin{t,r})~
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are
M, = u(Bint,r}); Ne = v(Bmin{t,r})-
e Quadratic variations of these martingales satisfy
d[M]; = |Vu(B:)]2dt = |[Vv(B,)|*dt = d[N].
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Hilbert transform and martingales

e We have defined two conjugate harmonic functions: u(x,y) and v(x, y),
with boundary values f(x) and Hf(x), respectively.

e The corresponding martingales are
Mz = u(Buinge.r}), Ne = v(Brin{t.r})-
e Quadratic variations of these martingales satisfy
d[M]; = |Vu(B:)]2dt = |[Vv(B,)|*dt = d[N].
and
d[M, N]; = Vu(B;) - Vv(B;)dt = 0dt
for t <.
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Burkholder's inequality
Theorem (R. Bafiuelos, G. Wang, 1995)

If M; and N, are martingales and
e N, is differentially subordinate to M,:

d[N]; < d[M];;
e M, and N, are orthogonal:
d[M, N], = 0dt,
then
E|Ns — Nol|P < (Cp)P E|My — Mpl?,
with G, = max{tan(3;), cot(3;)}.
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Summary

e We begin with f € LP.
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Summary

e We begin with f € LP.

e Then we define two conjugate harmonic functions v and v,
with boundary values f and Hf. ..

e ...and the corresponding martingales M, = u(Bin{t,r}), Ne = V(Bumin{e,7})-
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Summary

We begin with f € LP.

Then we define two conjugate harmonic functions v and v,
with boundary values f and Hf. ..

...and the corresponding martingales M; = u(Buingt,r}), Ne = V(Brmin{t,r})-
Clearly, My, = u(B;) = f(B.) and Ny, = v(B,) = Hf(B,).
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Summary

We begin with f € LP.

Then we define two conjugate harmonic functions u and v,
with boundary values f and Hf. ..

...and the corresponding martingales M; = u(Buingt,r}), Ne = V(Brmin{t,r})-
Clearly, My, = u(B;) = f(B.) and Ny, = v(B,) = Hf(B,).
Burkholder's inequality implies that

E[Hf(B;) — v(0,y0)|” < (G)P Elf(B;) — u(0, y0)|”.
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Summary

We begin with f € LP.

Then we define two conjugate harmonic functions u and v,
with boundary values f and Hf. ..

...and the corresponding martingales M; = u(Buingt,r}), Ne = V(Brmin{t,r})-
Clearly, My, = u(B;) = f(B.) and Ny, = v(B,) = Hf(B,).
Burkholder's inequality implies that

E[Hf(B;) — v(0,y0)|” < (G)P Elf(B;) — u(0, y0)|”.

e We now pass to the limit as yy — oc.
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Pichorides estimate

e Since B, has a Cauchy distribution on R x {0}, we have

> Y,
/_OO|Hf(x)— v(0,y0) [P X2—|(jy02 dx

> Y
<G [ 176 = w0, P s o

o) 0
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Pichorides estimate

e Since B, has a Cauchy distribution on R x {0}, we have

o) 2
Y
/_00|Hf(x)— v(0,y0) [P X2—|(jy02 dx

e We multiply both sides by yq
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Pichorides estimate

e Since B, has a Cauchy distribution on R x {0}, we have

1
0

00 —— yg
/_ |Hf(x) — v(0,y0)|? ey dx

0o 0

oo 2
Y
< (C,,)”/_ F00) = w0, 00) 1P 577 o

0o 0

1
e We multiply both sides by yy and pass to the limit as yg — oo to get
IHANE < (G)PIFIIL
(the Pichorides—Cole bound).
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a discrete subset of the boundary: Z x {0}.
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Conditioned process

e At the time 7, the Brownian motion B; hits the entire boundary R x {0}.

e To study discrete transform, we replace B; by a diffusion X; which only hits
a discrete subset of the boundary: Z x {0}.

e The process X; is obtained by conditioning the Brownian motion so that

B, € (U(k—e,k—l—a)) x {0},

keZ

and passing to the limit as ¢ — 0.
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What changes in the discrete case?

e There is no conjugate X;-harmonic function.
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e Martingale transform and conditioning need to be used instead.

e The final result is the expected /P estimate
| Fanller < Collan|er,

for an appropriate transform (.
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What changes in the discrete case?

There is no conjugate X;-harmonic function.
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What changes in the discrete case?

There is no conjugate X;-harmonic function.

Martingale transform and conditioning need to be used instead.

The final result is the expected /P estimate

[Fanller < Col|an]|e,

for an appropriate transform (.

Surprise: after lengthy calculations, we find that

™ 1 dn—k /OO 2y3 >
Ha, = — 1+ dy |.
D DR ( o (2 +m2k2)sinh?y

keZ\ {0}

(Initially | made a mistake and dropped a minus sign, and | got H = F.)
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Convolution trick

e To complete the proof, we show that

Han = oxHan i

o kEZ
for a probability sequence o,. ©

e We find the sequence g, explicitly (in terms of a rather complicated integral),
after tedious calculations involving a number of fortunate identities.

e (Had I not send an enthusiastic email to Rodrigo before noticing the error,
| would have never found enough motivation to do that.)
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Why this cannot work for the Riesz—Titchmarsh transform

e In the proof, the operator J is expressed as the composition of four

operations:

(1) definition of the martingale: ap ~ My;
(2) martingale transform: M, ~~ Ny,
(3) conditional expectation: N, ~ Hap;
(4) convolution with g,: Ha, ~ Hap.

e Items (3) and (4) do not preserve the (2 norm.
e Therefore, no similar argument can be given for the unitary operator R.
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Equivalence of Riesz—Titchmarsh and Kak—Hilbert transforms

1 an—k 2 an—k
Ra, = — == Z
wkeZk+1/2 T 2k +1

fKa,, = g Z ank—k “nny

™
ke2Z+1

e The operators R and X are equivalent:
Ko, = b, Rlazn] = [b2n+1],
fR[aznq] = [b2n]-

e In particular, ||R||€P*)ep = HJCHEP*)ZP-
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Scaled discrete Hilbert transform

. . 1 an—k 2 an—k
J_Corlgmal L= —
-l %

2 an_

scaled _ n—k

H dp = % E K Raaad
ke27Z\{0}

e The operators J{°8"l and J{sc@ed zre equivalent:

J{original [a2n] — [b2n] 7

U_Cscaledan — bn — .
fH:orlglna [a2n+1] — [b2n+1]'

e In particular, H%original|’gp_>gp = Hj’(scalengp_)gp.
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Factorization
o Write J{ = Jsc@led,
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T k
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e Ja, is the convolution of a, with a probability kernel.
e We have H = JX.
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Product rule

Lemma (see Titchmarsh, 1926)
We have

Kan - Kby = K[Hap - by] + Klan - Hba] + I[an - by].

e This is a discrete counterpart of
Hf - Hg = H[Hf - g| + H[f - Hg] +f - g ...
e ...which is a consequence of
(f +iHf)- (g +iHg) = (f - g — Hf - Hg) + i(Hf - g + f - Hg).
e Compare with the cotangent of sum formula

cot o cot f = cot(a + ) cot a + cot(ax + [5) cot § + 1.
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p~2p
e By the product rule:
(Kan)? = 2K[Ha, - a,] + I[a%].

e If ||an]|, = 1, then
15anlly = [1(Kan)llpr2 < 201K lorz o2 | FH]lep—s0 + 1.
o We know that ||H[[p—p» = cot 7 when p > 2.
e If p>4and | K| p2_ypr = cot— then
(1K Nl ep—er)* < < 2cot S cot 55 + 1 = (cot 21,;)2-
e p=2~ p=4 ~ p=8 ~ ...

Note: we can replace ||3||e—e = cot 35 by [[H[[ee—ser < [|K[[eoser.
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p~3p

e By the product rule:
(Ka,)® = 2Ka, - K[Ha, - an] + Ka, - I[a?]
= 2K[(Han)? - an] + 2K[an - H[Ha, - a,]]
+ 29[Ha, - a2] + Ka, - I[a2].
e If ||an]|, = 1, then
1Kanll; = [1(Kan)*llp/3 < 201K lleoi5 ors (13 5720012 )?

+ 20K gor3 s 013 [|FC| o125 o2 || FC | 0 0
+ 2[|Hleo—eo + [|K[[o00-
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p~3p

We know that [|3([|¢—» = cot 57 and [|7(
If p =6 and || H|| /33 = cot 3% 3” , then

¢p/2_ypp/2 — Cot% When p 2 4

([|K || ep—er)® < 2cot 32 cot2 = +2cot > cot £ cot 3o + 2 cot 3 + || K| oo

After a short calculation, this implies that ||X||z— < cot 7.

Note: we use ||J([[;p2_ o2 = cot | in an essential way.
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e We apply the same strategy:
» Start with (Xa,)" with ||a,|/, = 1.
Use the product rule repeatedly for Ka, - K[longest expression.
Apply Holder's inequality.

>

>

» Use known bounds on ||| jo/k_, g/«
» Use the cotangent of sum formula.
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0000000e

p ~ np

e We apply the same strategy:
» Start with (Xa,)" with ||a,|/, = 1.
» Use the product rule repeatedly for Ka, - K[longest expression.
» Apply Holder's inequality.
» Use known bounds on ||F|| o/, ses«-
» Use the cotangent of sum formula.

> Show that ||K{|g/n_mm < cot 37 implies || K[ < cot 5.

e Enumeration of all intermediate terms is a non-obvious task.

e To get things under control, we introduce frames, skeletons and buildings.
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