Discrete Hilbert transforms on ℓ^{p}

Mateusz Kwaśnicki

Wrocław University of Science and Technology, Poland mateusz.kwasnicki@pwr.edu.pl

Joint work with Rodrigo Bañuelos (Purdue University)

ETA seminar

October 26, 2022

Hilbert transforms

Definition

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-z)}{z} d z
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Hilbert transforms

Definition

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-z)}{z} d z
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Definition

Similarly, the discrete Hilbert transform is given by

$$
\mathcal{H}\left(a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\right.
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Main result \#1
Theorem (Rodrigo Bañuelos, MK)
For $p \in(1, \infty)$ we have

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{p}} .
$$

Main result \#1
Theorem (Rodrigo Bañuelos, MK)
For $p \in(1, \infty)$ we have

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{p}} .
$$

- The operator \mathcal{H} was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.

Main result \#1
Theorem (Rodrigo Bañuelos, MK)
For $p \in(1, \infty)$ we have

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

- The operator \mathcal{H} was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.
- We have

$$
\|H\|_{L^{\rho} \rightarrow L^{p}}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}
$$

(S. Pichorides, 1972; B. Cole, unpublished; see T.W. Gamelin, 1978).

Main result \#1
Theorem (Rodrigo Bañuelos, MK)
For $p \in(1, \infty)$ we have

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{p}} .
$$

- The operator \mathcal{H} was introduced by D. Hilbert, and the problem goes back to E.C. Titchmarsh and M. Riesz.
- We have

$$
\|H\|_{L^{p} \rightarrow L^{p}}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}
$$

(S. Pichorides, 1972; B. Cole, unpublished; see T.W. Gamelin, 1978).

- One direction is easy: by approximation and Fatou's lemma,

$$
\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}} \geqslant\|H\|_{L^{p} \rightarrow L^{p}} .
$$

Hilbert transforms revisited

Definition

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-z)}{z} d z
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Hilbert transforms revisited

Definition

The continuous Hilbert transform is defined by

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-z)}{z} d z
$$

for appropriate functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Definition

The Riesz-Titchmarsh transform is given by

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

for appropriate doubly infinite sequences $\left(a_{n}: n \in \mathbb{Z}\right)$.

Main result \#2

Theorem (Rodrigo Bañuelos, MK)

For $p=2,4,6,8, \ldots$ (or a conjugate exponent) we have

$$
\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

Main result \#2
Theorem (Rodrigo Bañuelos, MK)
For $p=2,4,6,8, \ldots$ (or a conjugate exponent) we have

$$
\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

- This problem also goes back to E.C. Titchmarsh and M. Riesz.

Main result \#2
Theorem (Rodrigo Bañuelos, MK)
For $p=2,4,6,8, \ldots$ (or a conjugate exponent) we have

$$
\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

- This problem also goes back to E.C. Titchmarsh and M. Riesz.
- One direction is again easy: for a general $p \in(1, \infty)$,

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

Main result \#2

Theorem (Rodrigo Bañuelos, MK)

For $p=2,4,6,8, \ldots$ (or a conjugate exponent) we have

$$
\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

- This problem also goes back to E.C. Titchmarsh and M. Riesz.
- One direction is again easy: for a general $p \in(1, \infty)$,

$$
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{\rho} \rightarrow L^{\rho}} .
$$

- The other inequality remains a challenging open problem for general p.

Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15-19, 2017).

Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15-19, 2017).
- During a BBQ dinner, with free beer and a bonfire, Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about it.

source: University of Helsinki
helsinki.fi

Będlewo

- I learned about the problem at the Probability and Analysis conference in Będlewo, Poland (May 15-19, 2017).
- During a BBQ dinner, with free beer and a bonfire, Rodrigo Bañuelos and Eero Saksman invited me to join their fireside chat, and told me about it.
- They forgot to mention that some considered the problem to be rather hard.

source: SACNAS sacnas.org

source: University of Helsinki
helsinki.fi

Continuous Hilbert transform

- The Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-y)}{y} d y
$$

is a Fourier multiplier: $\widehat{H f}=\hat{H} \cdot \hat{f}$, with symbol

$$
\hat{H}(\xi)=-i \operatorname{sign} \xi .
$$

Continuous Hilbert transform

- The Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-y)}{y} d y
$$

is a Fourier multiplier: $\widehat{H f}=\hat{H} \cdot \hat{f}$, with symbol

$$
\hat{H}(\xi)=-i \operatorname{sign} \xi .
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator (D. Hilbert, 1905)

Continuous Hilbert transform

- The Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-y)}{y} d y
$$

is a Fourier multiplier: $\widehat{H f}=\hat{H} \cdot \hat{f}$, with symbol

$$
\hat{H}(\xi)=-i \operatorname{sign} \xi .
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator (D. Hilbert, 1905)
- $\|H\|_{L^{\rho} \rightarrow L^{p}}<\infty$ for $p \in(1, \infty)$ (M. Riesz, 1928)

Continuous Hilbert transform

- The Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-y)}{y} d y
$$

is a Fourier multiplier: $\widehat{H f}=\hat{H} \cdot \hat{f}$, with symbol

$$
\hat{H}(\xi)=-i \operatorname{sign} \xi .
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator (D. Hilbert, 1905)
- $\|H\|_{L^{\rho^{\prime}} L^{p}}<\infty$ for $p \in(1, \infty)$ (M. Riesz, 1928)
- $\|H\|_{L^{\rho} \rightarrow L^{p}}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}$ (S. Pichorides, 1972)

Continuous Hilbert transform

- The Hilbert transform

$$
H f(x)=\frac{1}{\pi} \text { p.v. } \int_{-\infty}^{\infty} \frac{f(x-y)}{y} d y
$$

is a Fourier multiplier: $\widehat{H f}=\hat{H} \cdot \hat{f}$, with symbol

$$
\hat{H}(\xi)=-i \operatorname{sign} \xi .
$$

- $H: L^{2} \rightarrow L^{2}$ is a unitary operator (D. Hilbert, 1905)
- $\|H\|_{L^{\rho^{\prime}} L^{p}}<\infty$ for $p \in(1, \infty)$ (M. Riesz, 1928)
- $\|H\|_{L^{\rho} \rightarrow L^{\rho}}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}$ (S. Pichorides, 1972)

Throughout the talk, we assume that $p \in(1, \infty)$.

Discrete Hilbert transform: prior results

- Also the discrete Hilbert transform

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

is a Fourier multiplier: $\widehat{\mathcal{H}\left[a_{n}\right]}=\hat{\mathcal{H}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{H}}(\xi)=-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) \quad \text { for } \xi \in(-\pi, \pi)
$$

Discrete Hilbert transform: prior results

- Also the discrete Hilbert transform

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

is a Fourier multiplier: $\widehat{\mathcal{H}\left[a_{n}\right]}=\hat{\mathcal{H}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{H}}(\xi)=-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) \quad \text { for } \xi \in(-\pi, \pi)
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary (D. Hilbert, 1905)

Discrete Hilbert transform: prior results

- Also the discrete Hilbert transform

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

is a Fourier multiplier: $\widehat{\mathcal{H}\left[a_{n}\right]}=\hat{\mathcal{H}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{H}}(\xi)=-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) \quad \text { for } \xi \in(-\pi, \pi)
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary (D. Hilbert, 1905)
- $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}} \geqslant\|H\|_{L^{p} \rightarrow L^{p}}($ E.C. Titchmarsh, 1926)

Discrete Hilbert transform: prior results

- Also the discrete Hilbert transform

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

is a Fourier multiplier: $\widehat{\mathcal{H}\left[a_{n}\right]}=\hat{\mathcal{H}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{H}}(\xi)=-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) \quad \text { for } \xi \in(-\pi, \pi)
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary (D. Hilbert, 1905)
- $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{\rho} \rightarrow L^{\rho}}($ E.C. Titchmarsh, 1926)
- $\|\mathcal{H}\|_{e^{\rho} \rightarrow e^{\rho}}<\infty$ (M. Riesz, 1927; E.C. Titchmarsh, 1926)

Discrete Hilbert transform: prior results

- Also the discrete Hilbert transform

$$
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

is a Fourier multiplier: $\widehat{\mathcal{H}\left[a_{n}\right]}=\hat{\mathcal{H}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{H}}(\xi)=-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) \quad \text { for } \xi \in(-\pi, \pi)
$$

- $\|\mathcal{H}\|_{\ell^{2} \rightarrow \ell^{2}}=1$, but \mathcal{H} is not unitary (D. Hilbert, 1905)
- $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{p} \rightarrow L^{p}}$ (E.C. Titchmarsh, 1926)
- $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}<\infty(\mathrm{M}$. Riesz, 1927; E.C. Titchmarsh, 1926)
- $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{\rho}}=\|H\|_{L^{p} \rightarrow L^{p}}$ when $p=2,4,8,16, \ldots$ (or a conjugate exponent)
(I.E. Verbitsky; see E. Laeng, 2007)

Riesz-Titchmarsh transform: prior results

- The Riesz-Titchmarsh transform

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

is a Fourier multiplier too: $\widehat{\mathcal{R}\left[a_{n}\right]}=\hat{\mathcal{R}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{R}}(\xi)=-i \operatorname{sign} \xi \cdot e^{-i \xi / 2} \quad \text { for } \xi \in(-\pi, \pi) .
$$

Riesz-Titchmarsh transform: prior results

- The Riesz-Titchmarsh transform

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

is a Fourier multiplier too: $\widehat{\mathcal{R}\left[a_{n}\right]}=\hat{\mathcal{R}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{R}}(\xi)=-i \operatorname{sign} \xi \cdot e^{-i \xi / 2} \quad \text { for } \xi \in(-\pi, \pi) .
$$

- \mathcal{R} is a unitary operator on ℓ^{2} (D. Hilbert, 1905)

Riesz-Titchmarsh transform: prior results

- The Riesz-Titchmarsh transform

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

is a Fourier multiplier too: $\widehat{\mathcal{R}\left[a_{n}\right]}=\hat{\mathcal{R}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{R}}(\xi)=-i \operatorname{sign} \xi \cdot e^{-i \xi / 2} \quad \text { for } \xi \in(-\pi, \pi) .
$$

- \mathcal{R} is a unitary operator on ℓ^{2} (D. Hilbert, 1905)
- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{\rho} \rightarrow L^{\rho}}($ E.C. Titchmarsh, 1926)

Riesz-Titchmarsh transform: prior results

- The Riesz-Titchmarsh transform

$$
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
$$

is a Fourier multiplier too: $\widehat{\mathcal{R}\left[a_{n}\right]}=\hat{\mathcal{R}} \cdot \widehat{\left[a_{n}\right]}$, with symbol

$$
\hat{\mathcal{R}}(\xi)=-i \operatorname{sign} \xi \cdot e^{-i \xi / 2} \quad \text { for } \xi \in(-\pi, \pi) .
$$

- \mathcal{R} is a unitary operator on ℓ^{2} (D. Hilbert, 1905)
- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \geqslant\|H\|_{L^{p} \rightarrow L^{\rho}}($ E.C. Titchmarsh, 1926)
- $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}<\infty$ (M. Riesz, 1927; E.C. Titchmarsh, 1926)

Discretisations of the Hilbert transform

$$
\begin{gathered}
\text { operator } \\
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
\end{gathered}
$$

symbol

Discretisations of the Hilbert transform

$$
\begin{array}{cl}
\text { operator } & \text { symbol } \\
\mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} & \rightsquigarrow \\
\mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}}
\end{array}
$$

Discretisations of the Hilbert transform

$$
\begin{aligned}
& \text { operator } \\
\mathcal{H} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
\mathcal{R} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}} \\
\mathcal{A D P} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}}
\end{aligned}
$$

Discretisations of the Hilbert transform

$$
\begin{aligned}
& \text { operator } \\
& \mathcal{H} a_{n}= \frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}} \\
& \mathcal{A D P} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}} \\
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad
\end{aligned}
$$

Discretisations of the Hilbert transform

$$
\begin{aligned}
& \text { operator } \\
& \mathcal{H} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \quad \rightsquigarrow \quad-i \operatorname{sign} \xi \cdot\left(1-\frac{1}{\pi}|\xi|\right) ; \\
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+\frac{1}{2}} \quad \longleftrightarrow \quad-i \operatorname{sign} \xi \cdot e^{i \xi / 2} ; \\
& \mathcal{A D P} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{k a_{n-k}}{k^{2}-\frac{1}{4}} \quad \longleftrightarrow \quad-i \operatorname{sign} \xi \cdot \cos \frac{\xi}{2} . \\
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \leadsto \quad-i \operatorname{sign} \xi ;
\end{aligned}
$$

Which discretisation is the right one?

Elementary inequalities

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\left\{\begin{array}{c}
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}
\end{array}\right\} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

Which discretisation is the right one?

Elementary inequalities

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\left\{\begin{array}{c}
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}
\end{array}\right\} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- Our proof of $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}}$ is probabilistic and analytic: it involves Burkholder's inequality for orthogonal martingales, and a lot of calculations.

Which discretisation is the right one?

Elementary inequalities

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\left\{\begin{array}{c}
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}
\end{array}\right\} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- Our proof of $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$ is probabilistic and analytic: it involves Burkholder's inequality for orthogonal martingales, and a lot of calculations.
- On the other hand, our proof of $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$ is purely algebraic, except for the use of the former result for all $p \in(1, \infty)$.

Which discretisation is the right one?

Elementary inequalities

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\left\{\begin{array}{c}
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}
\end{array}\right\} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- Our proof of $\|\mathscr{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$ is probabilistic and analytic: it involves Burkholder's inequality for orthogonal martingales, and a lot of calculations.
- On the other hand, our proof of $\|\mathcal{R}\|_{\rho^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}}$ is purely algebraic, except for the use of the former result for all $p \in(1, \infty)$.
- Results on equality of the L^{p} norm of a singular integral operator and the ℓ^{p} norm of its discretization are rare.

Which discretisation is the right one?

Elementary inequalities

$$
\|H\|_{L^{\rho} \rightarrow L^{\rho}} \leqslant\left\{\begin{array}{c}
\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
\|\mathcal{A D P}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}
\end{array}\right\} \leqslant\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- Our proof of $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|H\|_{L^{\rho} \rightarrow L^{p}}$ is probabilistic and analytic: it involves Burkholder's inequality for orthogonal martingales, and a lot of calculations.
- On the other hand, our proof of $\|\mathcal{R}\|_{\rho^{\rho \rightarrow \ell^{\rho}}}=\|H\|_{L^{\rho} \rightarrow L^{\rho}}$ is purely algebraic, except for the use of the former result for all $p \in(1, \infty)$.
- Results on equality of the L^{p} norm of a singular integral operator and the ℓ^{p} norm of its discretization are rare.
- For second-order Riesz transforms: K. Domolevo and S. Petermichl, 2014.

Hilbert transform and harmonic functions

- Let $f \in L^{p}$. For $y>0$ we define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{y}{z^{2}+y^{2}} d z \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{z}{z^{2}+y^{2}} d z
\end{aligned}
$$

Hilbert transform and harmonic functions

- Let $f \in L^{p}$. For $y>0$ we define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{y}{z^{2}+y^{2}} d z, \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{z}{z^{2}+y^{2}} d z .
\end{aligned}
$$

- Then u and v are conjugate harmonic functions:

$$
\Delta u=\Delta v=0, \quad \nabla v=\left(\begin{array}{rl}
0 & 1 \\
-1 & 0
\end{array}\right) \nabla u .
$$

Hilbert transform and harmonic functions

- Let $f \in L^{p}$. For $y>0$ we define the Poisson integrals

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{y}{z^{2}+y^{2}} d z \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x-z) \frac{z}{z^{2}+y^{2}} d z
\end{aligned}
$$

- Then u and v are conjugate harmonic functions:

$$
\Delta u=\Delta v=0, \quad \nabla v=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \nabla u .
$$

- The boundary values of u and v are given by

$$
f(x)=\lim _{y \rightarrow 0^{+}} u(x, y), \quad H f(x)=\lim _{y \rightarrow 0^{+}} v(x, y)
$$

(the limits exist in L^{p} and almost everywhere).

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- We suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- We suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.

Harmonic functions and martingales

- Let B_{t} be the 2-D standard Brownian motion.
- We suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.
- If u is a harmonic function in $\mathbb{R} \times(0, \infty)$, then the process

$$
M_{t}=u\left(B_{\min \{t, \tau\}}\right)
$$

is a martingale.

Harmonic functions and martingales

- Let B_{t} be the 2- D standard Brownian motion.
- We suppose that $B_{0}=\left(0, y_{0}\right)$, where $y_{0} \gg 0$.
- Let τ be the hitting time of $\mathbb{R} \times\{0\}$ for B_{t}.
- If u is a harmonic function in $\mathbb{R} \times(0, \infty)$, then the process

$$
M_{t}=u\left(B_{\min \{t, \tau\}}\right)
$$

is a martingale.

- Indeed: by the Itô formula, for $t<\tau$ we have

$$
\begin{aligned}
d M_{t} & =\nabla u\left(B_{t}\right) \cdot d B_{t}, \\
d[M]_{t} & =\left|\nabla u\left(B_{t}\right)\right|^{2} d t .
\end{aligned}
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{\min \{t, \tau\}}\right), \quad N_{t}=v\left(B_{\min \{t, \tau\}}\right) .
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{\min \{t, \tau\}}\right), \quad N_{t}=v\left(B_{\min \{t, \tau\}}\right) .
$$

- Quadratic variations of these martingales satisfy

$$
d[M]_{t}=\left|\nabla u\left(B_{t}\right)\right|^{2} d t=\left|\nabla v\left(B_{t}\right)\right|^{2} d t=d[N]_{t}
$$

Hilbert transform and martingales

- We have defined two conjugate harmonic functions: $u(x, y)$ and $v(x, y)$, with boundary values $f(x)$ and $H f(x)$, respectively.
- The corresponding martingales are

$$
M_{t}=u\left(B_{\min \{t, \tau\}}\right), \quad N_{t}=v\left(B_{\min \{t, \tau\}}\right) .
$$

- Quadratic variations of these martingales satisfy

$$
d[M]_{t}=\left|\nabla u\left(B_{t}\right)\right|^{2} d t=\left|\nabla v\left(B_{t}\right)\right|^{2} d t=d[N]_{t}
$$

and

$$
d[M, N]_{t}=\nabla u\left(B_{t}\right) \cdot \nabla v\left(B_{t}\right) d t=0 d t
$$

for $t<\tau$.

Burkholder's inequality

Theorem (R. Bañuelos, G. Wang, 1995)

If M_{t} and N_{t} are martingales and

- N_{t} is differentially subordinate to M_{t} :

$$
d[N]_{t} \leqslant d[M]_{t} ;
$$

- M_{t} and N_{t} are orthogonal:

$$
d[M, N]_{t}=0 d t
$$

then

$$
\mathbb{E}\left|N_{\infty}-N_{0}\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|M_{\infty}-M_{0}\right|^{p},
$$

with $C_{p}=\max \left\{\tan \left(\frac{\pi}{2 p}\right), \cot \left(\frac{\pi}{2 p}\right)\right\}$.

Summary

- We begin with $f \in L^{p}$.

Summary

- We begin with $f \in L^{p}$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and $H f \ldots$

Summary

- We begin with $f \in L^{p}$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and $H f$...
- \ldots and the corresponding martingales $M_{t}=u\left(B_{\min \{t, \tau\}}\right), N_{t}=v\left(B_{\min \{t, \tau\}}\right)$.

Summary

- We begin with $f \in L^{p}$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and $H f$...
- ... and the corresponding martingales $M_{t}=u\left(B_{\min \{t, \tau\}}\right), N_{t}=v\left(B_{\min \{t, \tau\}}\right)$.
- Clearly, $M_{\infty}=u\left(B_{\tau}\right)=f\left(B_{\tau}\right)$ and $N_{\infty}=v\left(B_{\tau}\right)=H f\left(B_{\tau}\right)$.

Summary

- We begin with $f \in L^{p}$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and $H f$...
- and the corresponding martingales $M_{t}=u\left(B_{\min \{t, \tau\}}\right), N_{t}=v\left(B_{\min \{t, \tau\}}\right)$.
- Clearly, $M_{\infty}=u\left(B_{\tau}\right)=f\left(B_{\tau}\right)$ and $N_{\infty}=v\left(B_{\tau}\right)=H f\left(B_{\tau}\right)$.
- Burkholder's inequality implies that

$$
\mathbb{E}\left|H f\left(B_{\tau}\right)-v\left(0, y_{0}\right)\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|f\left(B_{\tau}\right)-u\left(0, y_{0}\right)\right|^{p} .
$$

Summary

- We begin with $f \in L^{p}$.
- Then we define two conjugate harmonic functions u and v, with boundary values f and $H f$...
- and the corresponding martingales $M_{t}=u\left(B_{\min \{t, \tau\}}\right), N_{t}=v\left(B_{\min \{t, \tau\}}\right)$.
- Clearly, $M_{\infty}=u\left(B_{\tau}\right)=f\left(B_{\tau}\right)$ and $N_{\infty}=v\left(B_{\tau}\right)=H f\left(B_{\tau}\right)$.
- Burkholder's inequality implies that

$$
\mathbb{E}\left|H f\left(B_{\tau}\right)-v\left(0, y_{0}\right)\right|^{p} \leqslant\left(C_{p}\right)^{p} \mathbb{E}\left|f\left(B_{\tau}\right)-u\left(0, y_{0}\right)\right|^{p} .
$$

- We now pass to the limit as $y_{0} \rightarrow \infty$.

Pichorides estimate

- Since B_{τ} has a Cauchy distribution on $\mathbb{R} \times\{0\}$, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|H f(x)-v\left(0, y_{0}\right)\right|^{p} \frac{y_{0}}{x^{2}+y_{0}^{2}} d x \\
& \quad \leqslant\left(C_{p}\right)^{p} \int_{-\infty}^{\infty}\left|f(x)-u\left(0, y_{0}\right)\right|^{p} \frac{y_{0}}{x^{2}+y_{0}^{2}} d x .
\end{aligned}
$$

Pichorides estimate

- Since B_{τ} has a Cauchy distribution on $\mathbb{R} \times\{0\}$, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|H f(x)-v\left(0, y_{0}\right)\right|^{p} \frac{y_{0}^{2}}{x^{2}+y_{0}^{2}} d x \\
& \quad \leqslant\left(C_{p}\right)^{p} \int_{-\infty}^{\infty}\left|f(x)-u\left(0, y_{0}\right)\right|^{p} \frac{y_{0}^{2}}{x^{2}+y_{0}^{2}} d x .
\end{aligned}
$$

- We multiply both sides by y_{0}

Pichorides estimate

- Since B_{τ} has a Cauchy distribution on $\mathbb{R} \times\{0\}$, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|H f(x)-\overbrace{v\left(0, y_{0}\right)}^{0}|^{p} \overbrace{\frac{y_{0}^{2}}{x^{2}+y_{0}^{2}}}^{1} d x \\
& \quad \leqslant\left(C_{p}\right)^{p} \int_{-\infty}^{\infty}|f(x)-\underbrace{u\left(0, y_{0}\right)}_{0}|^{p} \underbrace{\frac{y_{0}^{2}}{x^{2}+y_{0}^{2}}}_{1} d x .
\end{aligned}
$$

- We multiply both sides by y_{0} and pass to the limit as $y_{0} \rightarrow \infty$ to get

$$
\|H f\|_{L^{p}}^{p} \leqslant\left(C_{p}\right)^{p}\|f\|_{L^{p}}^{p}
$$

(the Pichorides-Cole bound).

Conditioned process

- At the time τ, the Brownian motion B_{t} hits the entire boundary $\mathbb{R} \times\{0\}$.

Conditioned process

- At the time τ, the Brownian motion B_{t} hits the entire boundary $\mathbb{R} \times\{0\}$.
- To study discrete transform, we replace B_{t} by a diffusion X_{t} which only hits a discrete subset of the boundary: $\mathbb{Z} \times\{0\}$.

Conditioned process

- At the time τ, the Brownian motion B_{t} hits the entire boundary $\mathbb{R} \times\{0\}$.
- To study discrete transform, we replace B_{t} by a diffusion X_{t} which only hits a discrete subset of the boundary: $\mathbb{Z} \times\{0\}$.
- The process X_{t} is obtained by conditioning the Brownian motion so that

$$
B_{\tau} \in\left(\bigcup_{k \in \mathbb{Z}}(k-\varepsilon, k+\varepsilon)\right) \times\{0\},
$$

and passing to the limit as $\varepsilon \rightarrow 0^{+}$.

What changes in the discrete case?

- There is no conjugate X_{t}-harmonic function.

What changes in the discrete case?

- There is no conjugate X_{t}-harmonic function.
- Martingale transform and conditioning need to be used instead.

What changes in the discrete case?

- There is no conjugate X_{t}-harmonic function.
- Martingale transform and conditioning need to be used instead.
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell \rho} \leqslant C_{\rho}\left\|a_{n}\right\|_{\ell \rho},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

What changes in the discrete case?

- There is no conjugate X_{t}-harmonic function.
- Martingale transform and conditioning need to be used instead.
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell^{\rho}} \leqslant C_{p}\left\|a_{n}\right\|_{\ell^{\rho}},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

- Surprise: after lengthy calculations, we find that

$$
\tilde{\mathcal{H}}\left(a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\left(1+\int_{0}^{\infty} \frac{2 y^{3}}{\left(y^{2}+\pi^{2} k^{2}\right) \sinh ^{2} y} d y\right) .\right.
$$

What changes in the discrete case?

- There is no conjugate X_{t}-harmonic function.
- Martingale transform and conditioning need to be used instead.
- The final result is the expected ℓ^{p} estimate

$$
\left\|\tilde{\mathcal{H}} a_{n}\right\|_{\ell^{\rho}} \leqslant C_{\rho}\left\|a_{n}\right\|_{\ell^{\rho}},
$$

for an appropriate transform $\tilde{\mathcal{H}}$.

- Surprise: after lengthy calculations, we find that

$$
\tilde{\mathcal{H}} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}\left(1+\int_{0}^{\infty} \frac{2 y^{3}}{\left(y^{2}+\pi^{2} k^{2}\right) \sinh ^{2} y} d y\right) .
$$

- (Initially I made a mistake and dropped a minus sign, and I got $\tilde{\mathcal{H}}=\mathcal{H}$.)

Convolution trick

- To complete the proof, we show that

$$
\mathcal{H} a_{n}=\sum_{k \in \mathbb{Z}} \varrho_{k} \tilde{\mathcal{H}} a_{n-k}
$$

for a probability sequence ϱ_{n}.

Convolution trick

- To complete the proof, we show that

$$
\mathcal{H} a_{n}=\sum_{k \in \mathbb{Z}} \varrho_{k} \tilde{\mathcal{H}} a_{n-k}
$$

for a probability sequence ϱ_{n}.

- We find the sequence ϱ_{n} explicitly (in terms of a rather complicated integral), after tedious calculations involving a number of fortunate identities.

Convolution trick

- To complete the proof, we show that

$$
\mathcal{H} a_{n}=\sum_{k \in \mathbb{Z}} \varrho_{k} \tilde{\mathcal{H}} a_{n-k}
$$

for a probability sequence ϱ_{n}.

- We find the sequence ϱ_{n} explicitly (in terms of a rather complicated integral), after tedious calculations involving a number of fortunate identities.
- (Had I not send an enthusiastic email to Rodrigo before noticing the error, I would have never found enough motivation to do that.)

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
a_{n} \rightsquigarrow M_{t} ;
$$

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ;
\end{aligned}
$$

(2) martingale transform:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ;
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
a_{n} \rightsquigarrow M_{t} ;
$$

(2) martingale transform:
$M_{t} \rightsquigarrow N_{t}$;
(3) conditional expectation:
(4) convolution with ϱ_{n} :

$$
N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ;
$$

$$
\tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H} a_{n} .
$$

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ; \\
& \tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H}_{n} .
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:
(4) convolution with ϱ_{n} :

- Items (3) and (4) do not preserve the ℓ^{2} norm.

Why this cannot work for the Riesz-Titchmarsh transform

- In the proof, the operator \mathcal{H} is expressed as the composition of four operations:
(1) definition of the martingale:

$$
\begin{aligned}
& a_{n} \rightsquigarrow M_{t} ; \\
& M_{t} \rightsquigarrow N_{t} ; \\
& N_{t} \rightsquigarrow \tilde{\mathcal{H}} a_{n} ; \\
& \tilde{\mathcal{H}} a_{n} \rightsquigarrow \mathcal{H}_{n} .
\end{aligned}
$$

(2) martingale transform:
(3) conditional expectation:
(4) convolution with ϱ_{n} :

- Items (3) and (4) do not preserve the ℓ^{2} norm.
- Therefore, no similar argument can be given for the unitary operator \mathcal{R}.

Equivalence of Riesz-Titchmarsh and Kak-Hilbert transforms

$$
\begin{aligned}
\mathcal{R} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+1 / 2} \\
\mathcal{K} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \leadsto \longmapsto
\end{aligned}
$$

Equivalence of Riesz-Titchmarsh and Kak-Hilbert transforms

$$
\begin{aligned}
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+1 / 2}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k+1} \\
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \text { an }
\end{aligned}
$$

Equivalence of Riesz-Titchmarsh and Kak-Hilbert transforms

$$
\begin{aligned}
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+1 / 2}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k+1} \\
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad \rightsquigarrow \quad,
\end{aligned}
$$

- The operators \mathcal{R} and \mathcal{K} are equivalent:

$$
\mathcal{K} a_{n}=b_{n} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{R}\left[a_{2 n}\right]=\left[b_{2 n+1}\right] \\
\mathcal{R}\left[a_{2 n-1}\right]=\left[b_{2 n}\right]
\end{array}\right.
$$

Equivalence of Riesz-Titchmarsh and Kak-Hilbert transforms

$$
\begin{aligned}
& \mathcal{R} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{k+1 / 2}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k+1} \\
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \quad
\end{aligned}
$$

- The operators \mathcal{R} and \mathcal{K} are equivalent:

$$
\mathcal{K} a_{n}=b_{n} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{R}\left[a_{2 n}\right]=\left[b_{2 n+1}\right] \\
\mathcal{R}\left[a_{2 n-1}\right]=\left[b_{2 n}\right]
\end{array}\right.
$$

- In particular, $\|\mathcal{R}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}$.

Scaled discrete Hilbert transform

$$
\mathcal{H}^{\text {original }} a_{n}=\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
$$

Scaled discrete Hilbert transform

$$
\begin{aligned}
\mathcal{H}^{\text {original }} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k} \\
\mathcal{H}^{\text {scaled }} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
\end{aligned}
$$

Scaled discrete Hilbert transform

$$
\begin{aligned}
\mathcal{H}^{\text {original }} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k} \\
\mathcal{H}^{\text {scaled }} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
\end{aligned}
$$

- The operators $\mathcal{H}^{\text {original }}$ and $\mathcal{H}^{\text {scaled }}$ are equivalent:

$$
\mathcal{H}^{\text {scaled }} a_{n}=b_{n} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{H}^{\text {original }}\left[a_{2 n}\right]=\left[b_{2 n}\right] \\
\mathcal{H}^{\text {original }}\left[a_{2 n+1}\right]=\left[b_{2 n+1}\right]
\end{array}\right.
$$

Scaled discrete Hilbert transform

$$
\begin{aligned}
\mathcal{H}^{\text {original }} a_{n} & =\frac{1}{\pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}=\frac{2}{\pi} \sum_{k \in \mathbb{Z}} \frac{a_{n-k}}{2 k} \\
\mathcal{H}^{\text {scaled }} a_{n} & =\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k}
\end{aligned}
$$

- The operators $\mathcal{H}^{\text {original }}$ and $\mathcal{H}^{\text {scaled }}$ are equivalent:

$$
\mathcal{H}^{\text {scaled }} a_{n}=b_{n} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{H}^{\text {original }}\left[a_{2 n}\right]=\left[b_{2 n}\right] \\
\mathcal{H}^{\text {original }}\left[a_{2 n+1}\right]=\left[b_{2 n+1}\right]
\end{array}\right.
$$

- In particular, $\left\|\mathcal{H}^{\text {original }}\right\|_{\ell^{\rho} \rightarrow \ell^{p}}=\left\|\mathcal{H}^{\text {scaled }}\right\|_{\ell^{\rho} \rightarrow \ell^{\rho}}$.

Factorization

- Write $\mathcal{H}=\mathcal{H}^{\text {scaled }}$

$$
\mathcal{J} a_{n}=\frac{2}{\pi} \quad \sum_{k \in 2 \mathbb{Z}+1} \quad a_{n-k}
$$

Factorization

- Write $\mathcal{H}=\mathcal{H}^{\text {scaled }}$

$$
\begin{aligned}
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
& \mathcal{H} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}} \\
& \leftrightarrow \\
& \leftrightarrow
\end{aligned}
$$

Factorization

- Write $\mathcal{H}=\mathcal{H}^{\text {scaled }}$.

$$
\begin{aligned}
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
& \mathcal{H} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}} \\
& \leftrightarrow \\
& \leftrightarrow \text { (} \\
& \text { W }
\end{aligned}
$$

- J a_{n} is the convolution of a_{n} with a probability kernel.

Factorization

- Write $\mathcal{H}=\mathcal{H}^{\text {scaled }}$.

$$
\begin{aligned}
& \mathcal{K} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k} \\
& \mathcal{H} a_{n}=\frac{2}{\pi} \sum_{k \in 2 \mathbb{Z} \backslash\{0\}} \frac{a_{n-k}}{k} \\
& \mathcal{J} a_{n}=\frac{4}{\pi^{2}} \sum_{k \in 2 \mathbb{Z}+1} \frac{a_{n-k}}{k^{2}} \\
& \leftrightarrow \\
& \text { tus } \\
& \xrightarrow{W}
\end{aligned}
$$

- $\mathcal{J} a_{n}$ is the convolution of a_{n} with a probability kernel.
- We have $\mathcal{H}=\mathfrak{J K}$.

Product rule

Lemma (see Titchmarsh, 1926)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

Product rule

Lemma (see Titchmarsh, 1926)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is a discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

Product rule

Lemma (see Titchmarsh, 1926)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is a discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

- ... which is a consequence of

$$
(f+i H f) \cdot(g+i H g)=(f \cdot g-H f \cdot H g)+i(H f \cdot g+f \cdot H g) .
$$

Product rule

Lemma (see Titchmarsh, 1926)

We have

$$
\mathcal{K} a_{n} \cdot \mathcal{K} b_{n}=\mathcal{K}\left[\mathcal{H} a_{n} \cdot b_{n}\right]+\mathcal{K}\left[a_{n} \cdot \mathcal{H} b_{n}\right]+\mathcal{J}\left[a_{n} \cdot b_{n}\right] .
$$

- This is a discrete counterpart of

$$
H f \cdot H g=H[H f \cdot g]+H[f \cdot H g]+f \cdot g \ldots
$$

- ... which is a consequence of

$$
(f+i H f) \cdot(g+i H g)=(f \cdot g-H f \cdot H g)+i(H f \cdot g+f \cdot H g)
$$

- Compare with the cotangent of sum formula

$$
\cot \alpha \cot \beta=\cot (\alpha+\beta) \cot \alpha+\cot (\alpha+\beta) \cot \beta+1
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho / 2}}\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}+1 .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
$p \rightsquigarrow 2 p$
- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- If $p \geqslant 4$ and $\|\mathcal{K}\|_{\ell \rho / 2 \rightarrow \ell \rho / 2}=\cot \frac{\pi}{p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2} .
$$

$p \rightsquigarrow 2 p$

- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{p}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{p / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1
$$

- We know that $\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- If $p \geqslant 4$ and $\|\mathcal{K}\|_{\ell^{p} / 2 \rightarrow \ell^{p} / 2}=\cot \frac{\pi}{p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2}
$$

- $p=2 \rightsquigarrow p=4 \rightsquigarrow p=8 \rightsquigarrow \ldots$
$p \rightsquigarrow 2 p$
- By the product rule:

$$
\left(\mathcal{K} a_{n}\right)^{2}=2 \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{J}\left[a_{n}^{2}\right] .
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\left\|\mathcal{K} a_{n}\right\|_{\rho}^{2}=\left\|\left(\mathcal{K} a_{n}\right)^{2}\right\|_{\rho / 2} \leqslant 2\|\mathcal{K}\|_{\ell^{p / 2} \rightarrow \ell^{p / 2}}\|\mathcal{H}\|_{\ell^{p} \rightarrow \ell^{p}}+1 .
$$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ when $p \geqslant 2$.
- If $p \geqslant 4$ and $\|\mathcal{K}\|_{\ell \rho / 2 \rightarrow \ell \rho / 2}=\cot \frac{\pi}{p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{2} \leqslant 2 \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+1=\left(\cot \frac{\pi}{2 p}\right)^{2} .
$$

- $p=2 \rightsquigarrow p=4 \rightsquigarrow p=8 \rightsquigarrow \ldots$
- Note: we can replace $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ by $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}$.
- By the product rule:

$$
\begin{aligned}
\left(\mathcal{K} a_{n}\right)^{3}= & 2 \mathcal{K} a_{n} \cdot \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] \\
= & 2 \mathcal{K}\left[\left(\mathcal{H} a_{n}\right)^{2} \cdot a_{n}\right]+2 \mathcal{K}\left[a_{n} \cdot \mathcal{H}\left[\mathcal{H} a_{n} \cdot a_{n}\right]\right] \\
\quad & \quad+2 \mathcal{J}\left[\mathcal{H} a_{n} \cdot a_{n}^{2}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] .
\end{aligned}
$$

- By the product rule:

$$
\begin{aligned}
\left(\mathcal{K} a_{n}\right)^{3}= & 2 \mathcal{K} a_{n} \cdot \mathcal{K}\left[\mathcal{H} a_{n} \cdot a_{n}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] \\
= & 2 \mathcal{K}\left[\left(\mathcal{H} a_{n}\right)^{2} \cdot a_{n}\right]+2 \mathcal{K}\left[a_{n} \cdot \mathcal{H}\left[\mathcal{H} a_{n} \cdot a_{n}\right]\right] \\
& \quad+2 \mathcal{J}\left[\mathcal{H} a_{n} \cdot a_{n}^{2}\right]+\mathcal{K} a_{n} \cdot \mathcal{J}\left[a_{n}^{2}\right] .
\end{aligned}
$$

- If $\left\|a_{n}\right\|_{p}=1$, then

$$
\begin{aligned}
& \left\|\mathcal{K} a_{n}\right\|_{p}^{3}=\left\|\left(\mathcal{K} a_{n}\right)^{3}\right\|_{\rho / 3} \leqslant 2\|\mathcal{K}\|_{\ell^{\rho} / 3 \rightarrow \ell^{\rho / 3}}\left(\|\mathcal{H}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho} / 2}\right)^{2} \\
& +2\|\mathcal{K}\|_{\ell^{\rho / 3} \rightarrow \ell^{\rho / 3}}\|\mathcal{H}\|_{\ell^{\rho / 2} \rightarrow \ell^{\rho / 2}}\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \\
& +2\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \text {. }
\end{aligned}
$$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 \rho}$ and $\|\mathcal{H}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho} / 2}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.
- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{\rho / 2} \rightarrow \ell^{\rho / 2}}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.
- If $p \geqslant 6$ and $\|\mathcal{H}\|_{\ell^{\rho} / 3 \rightarrow \ell^{\rho / 3}}=\cot \frac{3 \pi}{2 p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 p} \cot ^{2} \frac{\pi}{p}+2 \cot \frac{3 \pi}{2 p} \cot \frac{\pi}{\rho} \cot \frac{\pi}{2 p}+2 \cot \frac{\pi}{2 p}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

$p \rightsquigarrow 3 p$

- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow e^{\rho}}=\cot \frac{\pi}{2 p}$ and $\|\mathcal{H}\|_{\ell^{\rho / 2} \rightarrow e^{\rho / 2}}=\cot \frac{\pi}{p}$ when $p \geqslant 4$.
- If $p \geqslant 6$ and $\|\mathcal{H}\|_{\ell^{p / 3} \rightarrow \ell^{p / 3}}=\cot \frac{3 \pi}{2 p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 p} \cot ^{2} \frac{\pi}{\rho}+2 \cot \frac{3 \pi}{2 p} \cot \frac{\pi}{\rho} \cot \frac{\pi}{2 p}+2 \cot \frac{\pi}{2 p}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- After a short calculation, this implies that $\|\mathcal{K}\|_{\rho_{\rho} \rightarrow \ell_{\rho}} \leqslant \cot \frac{\pi}{2 p}$.
- We know that $\|\mathcal{H}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}=\cot \frac{\pi}{2 \rho}$ and $\|\mathcal{H}\|_{\ell^{\rho} / 2 \rightarrow \ell^{\rho} / 2}=\cot \frac{\pi}{\rho}$ when $p \geqslant 4$.
- If $p \geqslant 6$ and $\|\mathcal{H}\|_{\ell^{p / 3} \rightarrow \ell^{p / 3}}=\cot \frac{3 \pi}{2 p}$, then

$$
\left(\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}}\right)^{3} \leqslant 2 \cot \frac{3 \pi}{2 p} \cot ^{2} \frac{\pi}{\rho}+2 \cot \frac{3 \pi}{2 p} \cot \frac{\pi}{p} \cot \frac{\pi}{2 p}+2 \cot \frac{\pi}{2 p}+\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} .
$$

- After a short calculation, this implies that $\|\mathcal{K}\|_{\rho_{\rho} \rightarrow \ell_{\rho}} \leqslant \cot \frac{\pi}{2 p}$.
- Note: we use $\|\mathcal{H}\|_{\mathrm{ep}^{\mathrm{p} / 2} \rightarrow e^{\mathrm{p} / 2}}=\cot \frac{\pi}{p}$ in an essential way.
$p \rightsquigarrow n p$
- We apply the same strategy:
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression].
- Apply Hölder's inequality.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell^{\rho / k} \rightarrow \ell^{\rho / k}}$.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell^{\rho / K} \rightarrow \ell^{\rho / k}}$.
- Use the cotangent of sum formula.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}$ [longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell^{\rho / K} \rightarrow \ell^{\rho / k}}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n}} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression].
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell \rho / k \rightarrow \ell^{\rho / k}}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n}} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
- Enumeration of all intermediate terms is a non-obvious task.
$p \rightsquigarrow n p$
- We apply the same strategy:
- Start with $\left(\mathcal{K} a_{n}\right)^{n}$ with $\left\|a_{n}\right\|_{p}=1$.
- Use the product rule repeatedly for $\mathcal{K} a_{n} \cdot \mathcal{K}[$ longest expression $]$.
- Apply Hölder's inequality.
- Use known bounds on $\|\mathcal{H}\|_{\ell^{\rho / k} \rightarrow \ell^{\rho / k}}$.
- Use the cotangent of sum formula.
- Show that $\|\mathcal{K}\|_{\ell^{\rho} / n \rightarrow \ell^{\rho / n}} \leqslant \cot \frac{n \pi}{2 \rho}$ implies $\|\mathcal{K}\|_{\ell^{\rho} \rightarrow \ell^{\rho}} \leqslant \cot \frac{\pi}{2 \rho}$.
- Enumeration of all intermediate terms is a non-obvious task.
- To get things under control, we introduce frames, skeletons and buildings.

