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Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

Hilbert transforms

De�nition
The continuous Hilbert transform is de�ned by

Hf (x) =
1

π
p.v.

∫ ∞

−∞

f (x − z)

z
dz

for appropriate functions f : R→ R.

De�nition
Similarly, the discrete Hilbert transform is given by

Han =
1

π

∑
k∈Z\{0}

an−k

k

for appropriate doubly in�nite sequences (an : n ∈ Z).
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Main result #1

Theorem (Rodrigo Bañuelos, MK)

For p ∈ (1,∞) we have

∥H∥ℓp→ℓp = ∥H∥Lp→Lp .

• The operator H was introduced by D. Hilbert, and the problem goes back to
E.C. Titchmarsh and M. Riesz.

• We have

∥H∥Lp→Lp = max{tan( π
2p
), cot( π

2p
)}

(S. Pichorides, 1972; B. Cole, unpublished; see T.W. Gamelin, 1978).

• One direction is easy: by approximation and Fatou's lemma,

∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp .
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Hilbert transforms revisited

De�nition
The continuous Hilbert transform is de�ned by

Hf (x) =
1

π
p.v.

∫ ∞

−∞

f (x − z)

z
dz

for appropriate functions f : R→ R.

De�nition
The Riesz�Titchmarsh transform is given by

Ran =
1

π

∑
k∈Z

an−k

k + 1
2

for appropriate doubly in�nite sequences (an : n ∈ Z).
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Main result #2

Theorem (Rodrigo Bañuelos, MK)

For p = 2, 4, 6, 8, . . . (or a conjugate exponent) we have

∥R∥ℓp→ℓp = ∥H∥Lp→Lp .

• This problem also goes back to E.C. Titchmarsh and M. Riesz.

• One direction is again easy: for a general p ∈ (1,∞),

∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp .

• The other inequality remains a challenging open problem for general p.



Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

Main result #2

Theorem (Rodrigo Bañuelos, MK)

For p = 2, 4, 6, 8, . . . (or a conjugate exponent) we have

∥R∥ℓp→ℓp = ∥H∥Lp→Lp .

• This problem also goes back to E.C. Titchmarsh and M. Riesz.

• One direction is again easy: for a general p ∈ (1,∞),

∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp .

• The other inequality remains a challenging open problem for general p.



Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

Main result #2

Theorem (Rodrigo Bañuelos, MK)

For p = 2, 4, 6, 8, . . . (or a conjugate exponent) we have

∥R∥ℓp→ℓp = ∥H∥Lp→Lp .

• This problem also goes back to E.C. Titchmarsh and M. Riesz.

• One direction is again easy: for a general p ∈ (1,∞),

∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp .

• The other inequality remains a challenging open problem for general p.



Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

Main result #2

Theorem (Rodrigo Bañuelos, MK)

For p = 2, 4, 6, 8, . . . (or a conjugate exponent) we have

∥R∥ℓp→ℓp = ∥H∥Lp→Lp .

• This problem also goes back to E.C. Titchmarsh and M. Riesz.

• One direction is again easy: for a general p ∈ (1,∞),

∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp .

• The other inequality remains a challenging open problem for general p.



Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

B¦dlewo

• I learned about the problem at the Probability and Analysis conference in
B¦dlewo, Poland (May 15�19, 2017).

• During a BBQ dinner, with free beer and a bon�re, Rodrigo Bañuelos and
Eero Saksman invited me to join their �reside chat, and told me about it.

• They forgot to mention that some considered the problem to be rather hard.

source: SACNAS
sacnas.org

source: University of Helsinki
helsinki.�
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Continuous Hilbert transform

• The Hilbert transform

Hf (x) =
1

π
p.v.

∫ ∞

−∞

f (x − y)

y
dy

is a Fourier multiplier: Ĥf = Ĥ · f̂ , with symbol

Ĥ(ξ) = −i sign ξ.

• H : L2 → L2 is a unitary operator (D. Hilbert, 1905)

• ∥H∥Lp→Lp < ∞ for p ∈ (1,∞) (M. Riesz, 1928)

• ∥H∥Lp→Lp = max{tan( π
2p
), cot( π

2p
)} (S. Pichorides, 1972)

Throughout the talk, we assume that p ∈ (1,∞).
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Discrete Hilbert transform: prior results

• Also the discrete Hilbert transform

Han =
1

π

∑
k∈Z\{0}

an−k

k

is a Fourier multiplier: Ĥ[an] = Ĥ · [̂an], with symbol

Ĥ(ξ) = −i sign ξ · (1− 1
π
|ξ|) for ξ ∈ (−π, π).

• ∥H∥ℓ2→ℓ2 = 1, but H is not unitary (D. Hilbert, 1905)

• ∥H∥ℓp→ℓp ⩾ ∥H∥Lp→Lp (E.C. Titchmarsh, 1926)

• ∥H∥ℓp→ℓp < ∞ (M. Riesz, 1927; E.C. Titchmarsh, 1926)

• ∥H∥ℓp→ℓp = ∥H∥Lp→Lp when p = 2, 4, 8, 16, . . . (or a conjugate exponent)
(I.E. Verbitsky; see E. Laeng, 2007)
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Riesz�Titchmarsh transform: prior results

• The Riesz�Titchmarsh transform

Ran =
1

π

∑
k∈Z

an−k

k + 1
2

is a Fourier multiplier too: R̂[an] = R̂ · [̂an], with symbol

R̂(ξ) = −i sign ξ · e−iξ/2 for ξ ∈ (−π, π).

• R is a unitary operator on ℓ2 (D. Hilbert, 1905)

• ∥R∥ℓp→ℓp ⩾ ∥H∥Lp→Lp (E.C. Titchmarsh, 1926)

• ∥R∥ℓp→ℓp < ∞ (M. Riesz, 1927; E.C. Titchmarsh, 1926)
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Discretisations of the Hilbert transform

operator symbol

(ξ ∈ (−π, π))

Han =
1

π

∑
k∈Z\{0}

an−k

k
↭ -6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Ran =
1

π

∑
k∈Z

an−k

k + 1
2

↭

ADPan =
1

π

∑
k∈Z

k an−k

k2 − 1
4

↭

Kan =
2

π

∑
k∈2Z+1

an−k

k
↭
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Discretisations of the Hilbert transform

operator symbol (ξ ∈ (−π, π))

Han =
1

π

∑
k∈Z\{0}

an−k

k
↭ − i sign ξ · (1− 1

π
|ξ|);

Ran =
1

π

∑
k∈Z

an−k

k + 1
2

↭ − i sign ξ · e iξ/2;

ADPan =
1

π

∑
k∈Z

k an−k

k2 − 1
4

↭ − i sign ξ · cos ξ
2
.

Kan =
2

π

∑
k∈2Z+1

an−k

k
↭ − i sign ξ;
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Which discretisation is the right one?

Elementary inequalities

∥H∥Lp→Lp ⩽

{
∥H∥ℓp→ℓp

∥ADP∥ℓp→ℓp

}
⩽ ∥R∥ℓp→ℓp = ∥K∥ℓp→ℓp .

• Our proof of ∥H∥ℓp→ℓp = ∥H∥Lp→Lp is probabilistic and analytic: it involves
Burkholder's inequality for orthogonal martingales, and a lot of calculations.

• On the other hand, our proof of ∥R∥ℓp→ℓp = ∥H∥Lp→Lp is purely algebraic,
except for the use of the former result for all p ∈ (1,∞).

• Results on equality of the Lp norm of a singular integral operator and the
ℓp norm of its discretization are rare.

• For second-order Riesz transforms: K. Domolevo and S. Petermichl, 2014.
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except for the use of the former result for all p ∈ (1,∞).

• Results on equality of the Lp norm of a singular integral operator and the
ℓp norm of its discretization are rare.

• For second-order Riesz transforms: K. Domolevo and S. Petermichl, 2014.
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Hilbert transform and harmonic functions

• Let f ∈ Lp. For y > 0 we de�ne the Poisson integrals

u(x , y) =
1

π

∫ ∞

−∞
f (x − z)

y

z2 + y 2
dz ,

v(x , y) =
1

π

∫ ∞

−∞
f (x − z)

z

z2 + y 2
dz .

• Then u and v are conjugate harmonic functions:

∆u = ∆v = 0, ∇v =
(

0 1
−1 0

)
∇u.

• The boundary values of u and v are given by

f (x) = lim
y→0+

u(x , y), Hf (x) = lim
y→0+

v(x , y)

(the limits exist in Lp and almost everywhere).
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Harmonic functions and martingales

• Let Bt be the 2-D standard Brownian motion.

• We suppose that B0 = (0, y0), where y0 ≫ 0.

• Let τ be the hitting time of R× {0} for Bt .

• If u is a harmonic function in R× (0,∞), then the process

Mt = u(Bmin{t,τ})

is a martingale.

• Indeed: by the Itô formula, for t < τ we have

dMt = ∇u(Bt) · dBt ,

d [M]t = |∇u(Bt)|2dt.
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Hilbert transform and martingales

• We have de�ned two conjugate harmonic functions: u(x , y) and v(x , y),
with boundary values f (x) and Hf (x), respectively.

• The corresponding martingales are

Mt = u(Bmin{t,τ}), Nt = v(Bmin{t,τ}).

• Quadratic variations of these martingales satisfy

d [M]t = |∇u(Bt)|2dt = |∇v(Bt)|2dt = d [N]t

and

d [M ,N]t = ∇u(Bt) · ∇v(Bt)dt = 0dt

for t < τ .
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Burkholder's inequality

Theorem (R. Bañuelos, G. Wang, 1995)

If Mt and Nt are martingales and

• Nt is di�erentially subordinate to Mt :

d [N]t ⩽ d [M]t ;

• Mt and Nt are orthogonal:

d [M ,N]t = 0dt,

then

E|N∞ − N0|p ⩽ (Cp)
p E|M∞ −M0|p,

with Cp = max{tan( π
2p
), cot( π

2p
)}.
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Summary

• We begin with f ∈ Lp.

• Then we de�ne two conjugate harmonic functions u and v ,
with boundary values f and Hf . . .

• . . . and the corresponding martingales Mt = u(Bmin{t,τ}), Nt = v(Bmin{t,τ}).

• Clearly, M∞ = u(Bτ ) = f (Bτ ) and N∞ = v(Bτ ) = Hf (Bτ ).

• Burkholder's inequality implies that

E|Hf (Bτ )− v(0, y0)|p ⩽ (Cp)
p E|f (Bτ )− u(0, y0)|p.

• We now pass to the limit as y0 → ∞.
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Pichorides estimate

• Since Bτ has a Cauchy distribution on R× {0}, we have

∫ ∞

−∞
|Hf (x)−

0︷ ︸︸ ︷

v(0, y0) |p

1︷ ︸︸ ︷

y

2

0

x2 + y 2
0

dx

⩽ (Cp)
p

∫ ∞

−∞
|f (x)− u(0, y0)

︸ ︷︷ ︸
0

|p y

2

0

x2 + y 2
0

︸ ︷︷ ︸
1

dx .

• We multiply both sides by y0

and pass to the limit as y0 → ∞ to get

∥Hf ∥pLp ⩽ (Cp)
p∥f ∥pLp

(the Pichorides�Cole bound).
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Conditioned process

• At the time τ , the Brownian motion Bt hits the entire boundary R× {0}.

• To study discrete transform, we replace Bt by a di�usion Xt which only hits
a discrete subset of the boundary: Z× {0}.

• The process Xt is obtained by conditioning the Brownian motion so that

Bτ ∈
(⋃

k∈Z

(k − ε, k + ε)

)
× {0},

and passing to the limit as ε → 0+.
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What changes in the discrete case?

• There is no conjugate Xt-harmonic function.

• Martingale transform and conditioning need to be used instead.

• The �nal result is the expected ℓp estimate

∥H̃an∥ℓp ⩽ Cp∥an∥ℓp ,

for an appropriate transform H̃.

• Surprise: after lengthy calculations, we �nd that

H̃an =
1

π

∑
k∈Z\{0}

an−k

k

(
1+

∫ ∞

0

2y 3

(y 2 + π2k2) sinh2y
dy

)
.

• (Initially I made a mistake and dropped a minus sign, and I got H̃ = H.)
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Convolution trick

• To complete the proof, we show that

Han =
∑
k∈Z

ϱkH̃an−k

for a probability sequence ϱn.

• We �nd the sequence ϱn explicitly (in terms of a rather complicated integral),
after tedious calculations involving a number of fortunate identities.

• (Had I not send an enthusiastic email to Rodrigo before noticing the error,
I would have never found enough motivation to do that.)
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Why this cannot work for the Riesz�Titchmarsh transform

• In the proof, the operator H is expressed as the composition of four
operations:

(1) de�nition of the martingale: an ⇝ Mt ;

(2) martingale transform: Mt ⇝ Nt ;

(3) conditional expectation: Nt ⇝ H̃an;

(4) convolution with ϱn: H̃an ⇝ Han.

• Items (3) and (4) do not preserve the ℓ2 norm.

• Therefore, no similar argument can be given for the unitary operator R.
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Equivalence of Riesz�Titchmarsh and Kak�Hilbert transforms

Ran =
1

π

∑
k∈Z

an−k

k + 1/2
↭ -6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Kan =
2

π

∑
k∈2Z+1

an−k

k
↭ -6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

• The operators R and K are equivalent:

Kan = bn ⇐⇒

{
R[a2n] = [b2n+1],

R[a2n−1] = [b2n].

• In particular, ∥R∥ℓp→ℓp = ∥K∥ℓp→ℓp .
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Scaled discrete Hilbert transform
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• The operators Horiginal and Hscaled are equivalent:

Hscaledan = bn ⇐⇒

{
Horiginal[a2n] = [b2n],

Horiginal[a2n+1] = [b2n+1].

• In particular, ∥Horiginal∥ℓp→ℓp = ∥Hscaled∥ℓp→ℓp .
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Factorization

• Write H = Hscaled.
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• Ian is the convolution of an with a probability kernel.

• We have H = IK.
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Main result Some history Continuous transform Discrete Hilbert transform Riesz�Titchmarsh transform

Product rule

Lemma (see Titchmarsh, 1926)

We have

Kan ·Kbn = K[Han · bn] +K[an ·Hbn] + I[an · bn].

• This is a discrete counterpart of

Hf · Hg = H[Hf · g ] + H[f · Hg ] + f · g . . .

• . . . which is a consequence of
(f + iHf ) · (g + iHg) = (f · g − Hf · Hg) + i(Hf · g + f · Hg).

• Compare with the cotangent of sum formula

cotα cot β = cot(α + β) cotα + cot(α + β) cot β + 1.
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p ⇝ 2p

• By the product rule:

(Kan)
2 = 2K[Han · an] + I[a2n].

• If ∥an∥p = 1, then

∥Kan∥2p = ∥(Kan)
2∥p/2 ⩽ 2∥K∥ℓp/2→ℓp/2∥H∥ℓp→ℓp + 1.

• We know that ∥H∥ℓp→ℓp = cot π
2p

when p ⩾ 2.

• If p ⩾ 4 and ∥K∥ℓp/2→ℓp/2 = cot π
p
, then

(∥K∥ℓp→ℓp)
2 ⩽ 2 cot π

p
cot π

2p
+ 1 = (cot π

2p
)2.

• p = 2 ⇝ p = 4 ⇝ p = 8 ⇝ . . .

• Note: we can replace ∥H∥ℓp→ℓp = cot π
2p

by ∥H∥ℓp→ℓp ⩽ ∥K∥ℓp→ℓp .
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p ⇝ 3p

• By the product rule:

(Kan)
3 = 2Kan ·K[Han · an] +Kan · I[a2n]
= 2K[(Han)

2 · an] + 2K[an ·H[Han · an]]
+ 2I[Han · a2n] +Kan · I[a2n].

• If ∥an∥p = 1, then

∥Kan∥3p = ∥(Kan)
3∥p/3 ⩽ 2∥K∥ℓp/3→ℓp/3(∥H∥ℓp/2→ℓp/2)

2

+ 2∥K∥ℓp/3→ℓp/3∥H∥ℓp/2→ℓp/2∥H∥ℓp→ℓp

+ 2∥H∥ℓp→ℓp + ∥K∥ℓp→ℓp .
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• We know that ∥H∥ℓp→ℓp = cot π
2p

and ∥H∥ℓp/2→ℓp/2 = cot π
p
when p ⩾ 4.

• If p ⩾ 6 and ∥H∥ℓp/3→ℓp/3 = cot 3π
2p
, then

(∥K∥ℓp→ℓp)
3 ⩽ 2 cot 3π

2p
cot2 π

p
+ 2 cot 3π

2p
cot π

p
cot π

2p
+ 2 cot π

2p
+ ∥K∥ℓp→ℓp .

• After a short calculation, this implies that ∥K∥ℓp→ℓp ⩽ cot π
2p
.

• Note: we use ∥H∥ℓp/2→ℓp/2 = cot π
p
in an essential way.
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2p
.

• Note: we use ∥H∥ℓp/2→ℓp/2 = cot π
p
in an essential way.
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p ⇝ np

• We apply the same strategy:

▶ Start with (Kan)
n with ∥an∥p = 1.

▶ Use the product rule repeatedly for Kan ·K[longest expression].

▶ Apply Hölder's inequality.

▶ Use known bounds on ∥H∥ℓp/k→ℓp/k .

▶ Use the cotangent of sum formula.

▶ Show that ∥K∥ℓp/n→ℓp/n ⩽ cot nπ
2p

implies ∥K∥ℓp→ℓp ⩽ cot π
2p
.

• Enumeration of all intermediate terms is a non-obvious task.

• To get things under control, we introduce frames, skeletons and buildings.
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