Fractional Laplacian: explicit calculations and applications

Mateusz Kwasnicki
Wrocław University of Science and Technology
mateusz.kwasnicki@pwr.wroc.pl

NO-PDE conference
Będlewo, June 27, 2016
Outline

- Fractional Laplace operator
- Explicit formulae
- Eigenvalues in the unit ball
- Spectral theory in half-line

Based on joint work with:
- Bartłomiej Dyda (Wrocław)
- Alexey Kuznetsov (Toronto)
Question

How can one define $L = (-\Delta)^{\alpha/2}$ for $\alpha \in (0, 2)$?

- Laplace operator: $-\Delta \hat{f}(\xi) = |\xi|^2 \hat{f}(\xi)$.
- Use spectral theorem!

Definition 1/10 (via Fourier transform)

Write $f \in \mathcal{D}_F$ if $f \in L^p$ and there is $Lf \in L^p$ such that

$$\hat{Lf}(\xi) = |\xi|^\alpha \hat{f}(\xi).$$

- Here $p \in [1, 2]$ in order that \hat{f} is well-defined.
• Can one relax the condition $p \in [1, 2]$?
• Use distribution theory!

Definition 2/10 (weak formulation)

Write $f \in \mathcal{D}_w$ if $f \in L^p$ and there is $Lf \in L^p$ such that

$$\int_{\mathbb{R}^d} Lf(x)g(x)dx = \int_{\mathbb{R}^d} f(x)Lg(x)dx$$

for $g \in C_c^\infty$.

• Works not only for L^p, but also C_0, C_b, C_{bu}, ...
• Is there a more explicit expression?

Definition 3/10 (as a singular integral)

Write \(f \in D_{pv} \) if \(f \in \mathcal{L}^p \) and the limit

\[
-Lf(x) = c \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^d \setminus B_\varepsilon} \frac{f(x+y) - f(x)}{|y|^{d+\alpha}} dy
\]

exists in \(\mathcal{L}^p \).

• Works in \(\mathcal{C}_0, \mathcal{C}_b, \mathcal{C}_{bu}, \ldots \)

• Allows for pointwise definition of \(Lf(x) \).

• Two common variants are less general:

\[
-Lf(x) = c \int_{\mathbb{R}^d} \frac{f(x+y) - f(x) - y \cdot \nabla f(x) 1_B(y)}{|y|^{d+\alpha}} dy,
\]

\[
-Lf(x) = c \int_{\mathbb{R}^d} \frac{f(x+y) + f(x-y) - 2f(x)}{|y|^{d+\alpha}} dy.
\]
• Yet another variant is surprisingly useful!

Definition 4/10 (as a Dynkin characteristic operator)

Write \(f \in \mathcal{D}_\text{Dy} \) if \(f \in \mathcal{L}^p \) and the limit

\[
-Lf(x) = c \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^d \setminus B_\varepsilon} \frac{f(x + y) - f(x)}{|y|^d (|y|^2 - \varepsilon^2)^{\alpha/2}} \, dy
\]

exists in \(\mathcal{L}^p \).

• Works in \(\mathcal{C}_0, \mathcal{C}_b, \mathcal{C}_{\text{bu}} \), pointwise...

• To be discussed later!
- Caffarelli–Silvestre(–Molchanov–Ostrovski) extension technique is quite similar!

Definition 5/10 (via harmonic extensions)

Write $f \in D_h$ if $f \in L^p$ and the limit

$$-Lf(x) = c \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^d} \frac{f(x + y) - f(x)}{(\varepsilon^2 + |y|^2)^{(d+\alpha)/2}} dy$$

exists in L^p.

- Works in C_0, C_b, C_{bu}, pointwise...
- Originates as the Dirichlet-to-Neumann operator

$$\begin{cases}
\Delta_x u(x, y) + cy^{2-2/\alpha} \frac{\partial^2 u}{\partial y^2}(x, y) = 0 & \text{for } y > 0 \\
u(x, 0) = f(x) \\
\partial_y u(x, 0) = Lf(x)
\end{cases}$$
• Semigroup definition is of the same kind!
• Let $\hat{p}_t(\xi) = \exp(-t|\xi|^\alpha)$.

Definition 6/10 (as a generator of a C_0-semigroup)

Write $f \in D_s$ if $f \in L^p$ and the limit

$$-L f(x) = c \lim_{t \to 0^+} \int_{\mathbb{R}^d} (f(x + y) - f(x)) p_t(y) dy$$

exists in L^p.

• Works in C_0, C_b, C_{bu}, pointwise...
• General theory of C_0-semigroups is a powerful tool!
• The inverse of the generator is called potential
• The inverse of L is the Riesz potential

Definition 7/10 (as the inverse of a Riesz potential)

Write $f \in D_R$ if $f \in L^p$ and there is $Lf \in L^p$ such that

$$f(x) = c \int_{\mathbb{R}^d} \frac{Lf(x + y)}{|y|^{d-\alpha}} dy.$$

• Requires $\alpha < d$ (when $d = 1$).
• The convolution is well-defined if $p \in [1, \frac{d}{\alpha})$.
• The semigroup \(\exp(-tL) \) is subordinate (in the sense of Bochner) to the semigroup \(\exp(-t\Delta) \).

• \(\lambda^{\alpha/2} = \frac{1}{|\Gamma(-\frac{\alpha}{2})|} \int_0^\infty (1 - e^{-t\lambda}) t^{-1-\alpha/2} dt \).

Definition 8/10 (via Bochner’s subordination)

Write \(f \in \mathcal{D}_{Bo} \) if \(f \in L^p \) and the integral

\[
Lf = \frac{1}{|\Gamma(-\frac{\alpha}{2})|} \int_0^\infty (f - e^{t\Delta}f) t^{-1-\alpha/2} dt
\]

exists in \(L^p \).

• Works in \(C_0, C_b, C_{bu} \), pointwise...

• \(e^{t\Delta} \) is the convolution with Gauss–Weierstrass kernel.
A closely related idea is due to Balakrishnan.

\[\lambda^{\alpha/2} = \frac{1}{\pi} \frac{\sin \frac{\alpha \pi}{2}}{s + \lambda} \int_0^\infty \Delta(s - \Delta)^{-1} f s^{\alpha/2 - 1} ds. \]

Definition 9/10 (Balakrishnan’s definition)

Write \(f \in \mathcal{D}_{B_\alpha} \) if \(f \in L^p \) and the integral

\[Lf = \frac{1}{\pi} \frac{\sin \frac{\alpha \pi}{2}}{s + \lambda} \int_0^\infty \Delta(s - \Delta)^{-1} f s^{\alpha/2 - 1} ds \]

exists in \(L^p \).

- Works in \(C_0, C_b, C_{bu} \), pointwise...
- \((s - \Delta)^{-1} \) is the s-resolvent for \(\Delta \); not very useful.
• Quadratic form is a natural approach in \mathcal{L}^2.

• Define

$$E(f, g) = c \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{(f(x) - f(y))(g(x) - g(y))}{|x - y|^{d+\alpha}} \, dx \, dy$$

$$= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |\xi|^\alpha \hat{f}(\xi) \hat{g}(\xi) \, d\xi.$$

Definition 10/10 (via quadratic forms)

Write $f \in \mathcal{D}_q$ if $f \in \mathcal{L}^2$ and there is $Lf \in \mathcal{L}^2$ such that

$$E(f, g) = - \int_{\mathbb{R}^d} Lf(x)g(x) \, dx.$$
Theorem *(many authors)*

The above ten definitions are all equivalent:

\[D_F = D_w = D_{pv} = D_{Dy} = D_h = D_s = D_R = D_{Bo} = D_{Ba} = D_q \]

in \(L^p, p \in [1, \infty) \) (whenever meaningful).

Norm convergence implies a.e. convergence in four definitions:

\[pv, Dy, h, s. \]

- Very well-known for smooth functions.
- Some parts are very general (e.g. \(D_s = D_{Bo} = D_{Ba} \)).
- Some pieces were apparently missing.
Theorem \textit{(many authors)}

Seven out of ten definitions are equivalent:

\[D_w = D_{pv} = D_{Dy} = D_h = D_s = D_{Bo} = D_{Ba} \]

in C_0 and C_{bu}.

Uniform convergence is \textit{equivalent} to pointwise convergence with a limit in C_0 or C_{bu} in five definitions:

pv, Dy, h, s, Bo.

- The remaining three definitions (F, R, q) are meaningless for C_0 or C_{bu}.

M. Kwaśnicki

\textit{Ten equivalent definitions of the fractional Laplace operator}

arXiv:1507.07356
• The study of the fractional Laplacian was initiated by **Marcel Riesz** in 1938.
• His seminal article contains a lot of results!
• Some of them are often attributed to other authors.

M. Riesz

Intégrales de Riemann–Liouville et potentiels

M. Riesz

Rectification au travail “Intégrales de Riemann–Liouville et potentiels”

Theorem (M. Riesz)

\[L \left[(1 - |x|^2)^{\alpha/2} \right] = c \quad \text{for} \ x \in B. \]

Theorem (M. Riesz; Kac)

The Poisson kernel for \(L \) in \(B \) is given by

\[P_B(x, z) = c \left(\frac{1 - |x|^2}{|z|^2 - 1} \right)^{\alpha/2} \frac{1}{|x - z|^d}, \]

where \(x \in B, z \in \mathbb{R}^d \setminus B \).

Theorem (M. Riesz; Kac; Blumenthal–Getoor–Ray)

The Green function for \(L \) in \(B \) is given by

\[G_B(x, y) = \frac{c}{|y - z|^{d-\alpha}} \int_0^1 \frac{(r^2 - |y|^2)(r^2 - |z|^2)}{r^2|y - z|^2} s^{\alpha/2 - 1} \frac{1}{(1 + s)^{d/2}} ds, \]

where \(x, y \in B \).
Theorem (Hmissi, Bogdan)

If \(z \in \partial B \), then

\[
L \left[\frac{(1 - |x|^2)^{\alpha/2}}{|x - z|^d} \right] = 0 \quad \text{for } x \in B;
\]

that is:

\[
\Delta f = 0 \text{ in } B \iff L \left[(1 - |x|^2)^{\alpha/2} f(x) \right] = 0 \text{ in } B.
\]

In particular,

\[
L \left[(1 - |x|^2)^{\alpha/2-1} \right] = 0 \quad \text{for } x \in B.
\]

Theorem (Biler–Imbert–Karch; Dyda)

\[
L \left[(1 - |x|^2)^{\beta} \right] = c_2 F_1 \left(\frac{d+\alpha}{2}, \frac{\alpha}{2} - \beta; \frac{d}{2}; |x|^2 \right) \quad \text{for } x \in B.
\]
Theorem (M. Riesz; Bogdan–Żak)

The Kelvin transform is compatible with L:

$$L\left[\frac{1}{|x|^{d-\alpha}} f\left(\frac{x}{|x|^2}\right)\right] = \frac{1}{|x|^{d+\alpha}} Lf\left(\frac{x}{|x|^2}\right).$$

- **Translation invariance**: $L[f(x_0 + x)] = Lf(x_0 + x)$.
- **Scaling**: $L[f(rx)] = r^\alpha Lf(rx)$.
- This extends previous results to arbitrary balls, half-spaces or complements of balls.
• Full-space results are more rare!
• Fourier transform: $L[e^{i\xi x}] = |\xi|^\alpha e^{i\xi x}$.
• Composition of Riesz potentials: $L[|x|^{p-d}] = c|x|^{p-d-\alpha}$.

Theorem (Samko)

\[
\begin{align*}
L[\exp(-|x|^2)] &= c_1 F_1 \left(\frac{d+\alpha}{2}; \frac{d}{2}; -|x|^2 \right); \\
L \left[\frac{1}{(1 + |x|^2)^{(d+1)/2}} \right] &= c_2 F_1 \left(\frac{d+1+\alpha}{2}, \frac{d+\alpha}{2}; \frac{d}{2}; -|x|^2 \right); \\
L \left[\frac{1}{(1 + |x|^2)^{(d-\alpha)/2+n}} \right] &= c \frac{\{\text{polynomial}\}}{(1 + |x|^2)^{(d+\alpha)/2+n}}.
\end{align*}
\]
Theorem (DKK)

\[
L \left[\begin{array}{c}
\begin{array}{c}
\alpha \\
\vdots \\
a_p \\
b_1, \ldots, b_{q-1}, \frac{d}{2}
\end{array}
\end{array} \right] = \]

\[
= c \begin{array}{c}
\begin{array}{c}
\alpha \\
\frac{d}{2}
\end{array}
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\alpha \\
\frac{d}{2}
\end{array}
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\alpha \\
\frac{d}{2}
\end{array}
\end{array}
\frac{\Gamma(a + \frac{\alpha}{2}) \Gamma(b)}{\Gamma(a) \Gamma(b + \frac{\alpha}{2})}.
\]

Note: \(c = 2^\alpha \frac{\Gamma(a + \frac{\alpha}{2}) \Gamma(b)}{\Gamma(a) \Gamma(b + \frac{\alpha}{2})} \).

B. Dyda, A. Kuznetsov, M. Kwaśnicki

Fractional Laplace operator and Meijer G-function

Constr. Approx., to appear
Theorem (DKK)

\[L \left[G_{p,q}^{m,n} \left(a_1, \ldots, a_p \middle| b_1, \ldots, b_q \right) ; |x|^2 \right] = \]

\[= 2^\alpha G_{p+2,q+2}^{m+1,n+1} \left(\frac{1-d-\alpha}{2}, a-\frac{\alpha}{2}, -\frac{\alpha}{2} \middle| 0, b-\frac{\alpha}{2}, 1-d \frac{d}{2}; |x|^2 \right). \]

- The generalised hypergeometric function \(pF_q \) is already a complicated object.
- The Meijer G-function \(G_{p,q}^{m,n} \) is even worse.
- But it is perfectly compatible with \(L \)!
• **A lot of functions** can be expressed as $G_{p,q}^{m,n}!$
 (see a hundred-page-long table in Prudnikov’s book)

• **Full space**:
 \[
 (-\Delta)^{\alpha/2} [|x|^p (1 + |x|^2)^{q/2}] = \frac{2^{\alpha}}{\Gamma(-\frac{q}{2})} G_{3,3}^{2,2} \left(\frac{1 - \frac{d+\alpha}{2}, 1 + \frac{p+q-\alpha}{2}, -\alpha}{0, \frac{p-\alpha}{2}, 1 - \frac{d}{2}} ; |x|^2 \right).
 \]

• **Unit ball**:
 \[
 (-\Delta)^{\alpha/2} [|x|^p (1 - |x|^2)^{q/2}] = 2^{\alpha} \Gamma(1 + \frac{q}{2}) G_{3,3}^{2,1} \left(\frac{1 - \frac{d+\alpha}{2}, 1 + \frac{p+q-\alpha}{2}, -\alpha}{0, \frac{p-\alpha}{2}, 1 - \frac{d}{2}} ; |x|^2 \right).
 \]
Theorem (DKK; follows from Bochner’s relation)

Let $V(x)$ be a **solid harmonic polynomial** of degree ℓ. Then:

$$L[V(x)f(|x|)] = V(x)g(|x|) \quad \text{in } \mathbb{R}^d$$

if and only if

$$L[f(|y|)] = g(|y|) \quad \text{in } \mathbb{R}^{d+2\ell}.$$

- Here ‘solid’ = ‘homogeneous’.
- Examples of $V(x)$: $1, x_1, x_1 x_2, x_1 x_2 \ldots x_d, x_1^2 - x_2^2$.
- Solid harmonic polynomials span $L^2(\partial B)$.
- Extends to arbitrary convolution operators with isotropic kernels.
Eigenvalue problem

\[
\begin{cases}
(−\Delta)^{\alpha/2} \varphi_n(x) = \lambda_n \varphi_n(x) & \text{for } x \in B \\
\varphi_n(x) = 0 & \text{otherwise}
\end{cases}
\]

Question

We know that φ_1 is radial. Is φ_2 radial or antisymmetric?
• This is still an **open problem**!
• We have a partial answer.
• Plus strong numerical evidence in the general case.

Theorem (DKK)

φ₂ is antisymmetric if \(d \leq 2 \), or if \(\alpha = 1 \) and \(d \leq 9 \).

B. Dyda, A. Kuznetsov, M. Kwaśnicki

Eigenvalues of the fractional Laplace operator in the unit ball

• Upper bounds: **Rayleigh–Ritz variational method**.
• Lower bounds: **Weinstein–Aronszajn method** of intermediate problems.
• These are numerical methods!
• We use them analytically for small (2 × 2) matrices.
• As a side-result, we get an extremely efficient numerical scheme for finding \(\lambda_n \) in a ball \(B \).
• Requires **explicit expressions** for \((-\Delta)^{\alpha/2}f(x)\).
Theorem (DKK)

Let $V(x)$ be a solid harmonic polynomial of degree ℓ. Let $P_n^{(\alpha,\beta)}(r)$ be the Jacobi polynomial. Then:

$$L \left[(1 - |x|^2)^{\alpha/2} V(x) P_n^{\left(\frac{\alpha}{2}, \frac{d+2\ell}{2} - 1\right)}(2|x|^2 - 1) \right] =$$

$$= c V(x) P_n^{\left(\frac{\alpha}{2}, \frac{d+2\ell}{2} - 1\right)}(2|x|^2 - 1) \quad \text{for } x \in B.$$

- Here $c = 2^\alpha \frac{\Gamma\left(\frac{\alpha}{2} + n + 1\right)\Gamma\left(\frac{d+2\ell+\alpha}{2} + n\right)}{n! \Gamma\left(\frac{d+2\ell}{2} + n\right)}$.
- For $\ell = 0$, c is an upper bound for radial eigenvalues!
Theorem (K, KMR, KK)

For $x > 0$ let

$$F(x) = \sin(x + \frac{(2-\alpha)\pi}{8}) - \int_0^\infty e^{-xs} \Phi(s) \, ds,$$

where

$$\Phi(s) = \frac{\sqrt{2\alpha} \sin \frac{\alpha\pi}{2}}{2\pi} \frac{s^\alpha}{1 + s^{2\alpha} - 2s^\alpha \cos \frac{\alpha\pi}{2}}$$

$$\times \exp \left(\frac{1}{\pi} \int_0^\infty \frac{1}{1 + r^2} \log \frac{1 - s^2r^2}{1 - s^\alpha r^\alpha} \, dr \right)$$

$$= \frac{\sqrt{\alpha} S_2(-\frac{\alpha}{2})}{4\pi} s^{\alpha/4-1/2} |S_2(\alpha; 1 + \alpha + \frac{\alpha}{4} + \frac{i\alpha \log s}{2\pi}; \alpha)|^2,$$

and $F(x) = 0$ for $x \leq 0$. Then $LF(x) = F(x)$ for $x > 0$.

- Due to scaling, $L[F(\lambda x)] = \lambda^\alpha F(\lambda x)$.
- S_2 is the Koyama–Kurokawa’s double sine function.
M. Kwaśnicki
Spectral analysis of subordinate Brownian motions on the half-line

M. Kwaśnicki, J. Małecki, M. Ryznar
First passage times for subordinate Brownian motions

A. Kuznetsov, M. Kwaśnicki
Spectral analysis of stable processes on the positive half-line
arXiv:1509.06435

- Extends to general symmetric operators with completely monotone kernels.
- Extends to **non-symmetric** fractional derivatives!
• In the non-symmetric case F has exponential decay or growth:

$$F(x) = e^{ax} \sin(bx + \theta) + \int_0^\infty e^{-xs} \Phi(s) \, ds,$$

where $a = \cos(\pi \rho)$, $b = \sin(\pi \rho)$, $\theta = \frac{1}{2} \pi \rho (1 - \alpha + \alpha \rho)$,

$$\Phi(s) = s^{\alpha \rho / 2 - 1 / 2} |S_2(\alpha; 1 + \frac{3\alpha}{2} - \frac{\alpha \rho}{2} + \frac{i\alpha \log s}{2\pi}; \alpha)|^2,$$

• Still, it gives rise to a Fourier-type transform!

• Describes the spectral resolution for L in $(0, \infty)$: e.g. heat kernel of L in $(0, \infty)$ can be written in terms of F.

• Application: explicit expression for the supremum of a stable Lévy process.
P. Biler, C. Imbert, G. Karch
Barenblatt profiles for a nonlocal porous medium equation

R. M. Blumenthal, R. K. Getoor, D. B. Ray
On the distribution of first hits for the symmetric stable processes

K. Bogdan, T. Žak
On Kelvin transformation

B. Dyda
Fractional calculus for power functions and eigenvalues of the fractional Laplacian
F. Hmissi
Fonctions harmoniques pour les potentiels de Riesz sur la boule unité

M. Kac
Some remarks on stable processes

S. Samko
Hypersingular Integrals and their applications

A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev
Integrals and Series, Vol. 3: More Special Functions
Gordon and Breach, 1989