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Lecture 1

Improper Integrals of the First Kind

In this lecture we will study Riemann integrals over infinite intervals, such as [a,∞),
(−∞, b] and (−∞,∞), where a, b are real numbers.

Definition 1. Suppose that a function f is continuous on [a,∞), where a is a real
number. By an improper integral of the first kind of the function f over the interval
[a,∞) we understand the limit∫ ∞

a

f(x)dx := lim
T→∞

∫ T

0

f(x)dx

if it exists. If this limit is finite, we say that the integral converges. If this limit is equal
to ∞ or −∞, we say that the integral diverges to ∞, or −∞, respectively. If this limit
does not exist, we say that the integral diverges.

Remarks. In an analogous fashion we define an improper integral of the first kind
of a function f ∈ C(−∞, b] (i.e. continuous on the interval (−∞, b]), namely∫ b

−∞
f(x)dx := lim

S→−∞

∫ b

S

f(x)dx

if it exists. Note that the continuity assumption ensures existence of the integrals∫ T

a
f(x)dx and

∫ b

−S
f(x)dx for all finite T, S and that is why the above definitions makes

sense. In principle, we can consider improper integrals of the first kind of functions
which are not continuous, but it is not necessary for our purposes.

If an improper integral I converges, diverges to ∞ or diverges to −∞, we often write
I < ∞, I = ∞, or I = −∞, respectively.

Example 1. Using the definition of the improper integral of the first kind, check if
the integrals given below converge, diverge to ∞, −∞, or diverge. If possible, evaluate
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the integrals. ∫ ∞

0

dx

x2 + 1
= lim

T→∞

∫ T

0

dx

x2 + 1

= lim
T→∞

(arctgT − arctg0)

=
π

2

∫ ∞

π

cosxdx = lim
T→∞

∫ T

π

cosxdx

= lim
T→∞

(sinT − sinπ)

= lim
T→∞

(sinT )

Note, however, that the above limit does not exist, and therefore that the above integral
diverges. In turn, ∫ −1

−∞

dx

x
= lim

S→−∞

∫ −1

S

dx

x

= lim
S→−∞

(ln|x|)x=−1
x=S

= lim
S→−∞

(−ln|S|)

= −∞

and therefore this integral diverges to −∞.

Definition 1.2. Let f be a function which is continuous on the real line, i.e. on
the interval (−∞,∞). The improper integral of the first kind of the function f over
the real line is given by∫ ∞

−∞
f(x)dx :=

∫ 0

−∞
f(x)dx+

∫ ∞

0

f(x)dx

thus it is defined in terms of two improper integrals of the first kind defined previously.
We will say that this integral converges if both integrals on the right-hand side converge.
If both integrals on the right-hand side diverge to ∞, we will say that this integral
diverges to ∞. In turn, if both integrals on the right-hand side diverge to −∞, we will
say that the considered integral diverges to −∞. In the remaining cases we will say
that the integral diverges.

We can replace 0 in Definition 1.2 by any finite number a without changing the
outcome. However, in most cases it seems convenient to split up the infinite interval
into (−∞, 0] and [0,∞). Now, let us consider an easy example.
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Example 2.∫ ∞

−∞
xe−x2

dx = lim
S→−∞

∫ 0

S

xe−x2

dx+ lim
T→∞

∫ T

0

xe−x2

dx

= lim
S→∞

(
−1

2
e−x2

)x=0

x=S

+ lim
T→∞

(
−1

2
e−x2

)x=T

x=0

= lim
S→∞

(
1

2
e−S2 − 1

2

)
+ lim

T→∞

(
1

2
− 1

2
e−T 2

)
= 0− 1

2
+

1

2
− 0

= 0

Example 3. Let us consider an important class of integrals of the form∫ ∞

a

dx

xp

where a > 0 and p ∈ R. One can show that the above integrals converge for p > 1 and
diverge to ∞ for p ≤ 1. In fact, take p ̸= 1. Then∫ ∞

a

x−pdx = lim
T→∞

(
1

−p+ 1
x−p+1

)x=T

x=a

= lim
T→∞

1

−p+ 1
(T−p+1 − a−p+1)

However, it is easy to see that for p > 1 the limit in the last formula is finite and equals
− 1

−p+1
a−p+1, whereas for p < 1 the limit is equal to ∞. The case p = 1 has to be

treated separately since then∫ ∞

a

x−1dx = lim
T→∞

(ln|x|)x=T
x=a

= lim
T→∞

(lnT − lna)

= ∞

Using these facts, we conclude that, for instance, the integral∫ ∞

2

dx√
x3

converges since p = 3/2 > 1. Even slightly more complicated examples can be solved.
For instance, ∫ ∞

0

dx√
(2x+ 1)3

is also convergent since one can perform a substitution t = 2x + 1 which reduces the
above integral to the integral ∫ ∞

1

dt

t3/2
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which is convergent (the details are left to the reader).

Of course, the ideal situation is when we can evaluate the improper integrals directly
using the definitions. Unfortunately, it is not always possible, as it is also the case with
proper (i.e. usual) integrals. Nevertheless, it is important to know at least whether
an improper integral converges, diverges to ∞ or −∞, or diverges. Even if we do not
know the exact value of a convergent integral, we can then always use approximations
and computer methods to get pretty good estimates. But is is essential to know that
looking for an estimate is meaningful. For that purpose, we need some simple criteria
which would tell us when an improper integral converges.

Theorem 1. (Comparison test). Suppose that 0 ≤ f(x) ≤ g(x) for all x ∈
[a,∞), where a is a (finite) real number and f and g are continuous on [a,∞). Then

(a) if
∫∞
a

g(x)dx converges then
∫∞
a

f(x)dx converges

(b) if
∫∞
a

f(x)dx diverges to ∞, then
∫∞
a

g(x)dx diverges to ∞.

The intuitive sense of this test is clear. In (a), the area under the graph of a “smaller”
function is finite if the area under the graph of a “bigger” function is finite. A similar
reasoning can be used in (b). Note also that a similar test can be phrased for integrals
over te interval (−∞, b].

Example 4. Let us look at the integral∫ ∞

1

√
xdx

x+ 1

and study its convergence or divergence to ∞. First, we have to look for a nonnegative
function f or g and set the above integrand to be g or f , respectively. This is probably
the hardest part of the whole test since it is not clear what we should expect. Therefore,
let us look at the function √

x

x+ 1
and its behavior at infinity. We can see that 1 in the denominator is irrelevant for large
x and therefore we can expect that this function behaves like 1

√
x for large x, of which

the improper integral diverges. This means that we can expect the above integral to
diverge. To use (b) of Theorem 1, we set

f(x) =

√
x

x+ x
≤

√
x

x+ 1
= g(x)

(the inequality holds for x ≥ 1) and evaluate∫ ∞

1

f(x) =

∫ ∞

1

dx

2
√
x
= ∞

(here p = 1/2 < 1). By the comparison test (b), the integral of the function g also
diverges.
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Example 5. On the other hand, the integral∫ ∞

2

1 + sinx

x2
dx

converges since

f(x) =
1 + sinx

x2
≤ 1 + 1

x2
= g(x),

both functions f and g are nonnegative and∫ ∞

2

g(x)dx < ∞

which follows from convergence of the integral
∫∞
2

x−2dx.

Theorem 2. (Limit ratio test) Suppose that f and g are both positive (or, both
negative) continuous functions on [a,∞) and that

lim
x→∞

f(x)

g(x)
= K

where 0 < K < ∞. Then

(a)
∫∞
a

f(x)dx converges if and only if
∫∞
a

g(x)dx converges

(b)
∫∞
a

f(x)dx diverges to ∞ if and only if
∫∞
a

g(x)dx diverges to ∞.

(c)
∫∞
a

f(x)dx diverges to −∞ if and only if
∫∞
a

g(x)dx diverges to −∞.

A similar test holds for improper integrals over (−∞, b].

The ratio test says that if the asymptotic behavior of functions f, g is the same,
then they either both converge or diverge to ∞ or −∞. Clearly, they can diverge to
∞ only if they are both positive, and they can diverge to −∞ only if they are both
negative. It is very important that K ̸= 0 and K ̸= ∞. If K = 0 or K = ∞, the test
does not hold.

Example 6. Let us check for convergence the integral∫ ∞

π

dx

x2 + sinx

We can see that the function f(x) = 1/(x2 + sinx) is positive on [π,∞). Let us take
the positive function

g(x) =
1

x2

which is a natural choice for the ratio test since sinx is irrelevant as compared with x2

at infinity. Note that

lim
x→∞

f(x)

g(x)
= lim

x→∞

x2

x2 + sinx
= 1 = K

and that
∫∞
π

x−2 < ∞, which implies that the investigated integral also converges by
the ratio test (a).
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