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Lecture 3

Infinite Series

In this lecture we are going to study sums of infinite sequences (an) of real numbers
(usually (an)n≥1), i.e.

a1 + a2 + . . .+ an + . . . .

The question arises how to define such an infinite sum in a meaningful way and develop
some theory which would tell us when such a sum is finite or infinite. For that purpose,
we start with the following definitions.

Definition 1. Let (an)n≥1 be a sequence of real numbers. The sum

Sn = a1 + . . .+ an

is called the n-th partial sum. By an infinite series we understand the sequence (Sn)n≥1.
If S = limn→∞ Sn exists and is finite we say that the series converges to S and if S = ∞
or S = −∞, then we say that it diverges to ∞ or −∞, respectively. The limit S is then
called the sum of the series. If the limit of partial sums doesn’t exist, we say that the
series diverges. It is convenient to denote infinite series as

∞∑
n=1

an

and let the context show whether the expression represents the series itself or the sum
of all its terms. In an analogous fashion we define series of the form

∑∞
n=n0

an.

Example 1. Using Definition 1, test for convergence or divergence the given series.
In the series

∞∑
n=1

1

n(n+ 1)

we can find an explicit expression for the n-th partial sum if we notice that

1

n(n+ 1)
=

1

n
− 1

n+ 1

1copyright Romuald Lenczewski

1



since then we have

Sn = (
1

1
− 1

2
) + (

1

2
− 1

3
) + . . .+ (

1

n
− 1

n+ 1
) = 1− 1

n+ 1
→ 1

and thus the series converges to 1.
Consider now

∞∑
n=1

ln

(
1 +

1

n

)
Note that an = ln(1+ 1/n) = ln(n+1)/n = ln(n+1)− lnn which gives Sn = lnn → ∞
and hence our series diverges to ∞.

An easy example of a divergent series is given by

∞∑
n=1

(−1)n

since
Sn =

{
−1 if n = 2k − 1
0 if n = 2k

and hence limn→∞ Sn doesn’t exist (it has two subsequences converging to two diferent
numbers) and the given series diverges.

Proposition 1. The geometric series

∞∑
n=0

qn

converges to 1/(1− q) if |q| < 1, diverges to ∞ if q ≥ 1 and otherwise diverges.

Proof. Let us give a proof of this fact. We know that

Sn = 1 + q + q2 + . . .+ qn =
1− qn+1

1− q

if q ̸= 1 and therefore, if |q| < 1, then Sn → 1/(1 − q). If q > 1, then 1 − qn+1 → ∞
and thus Sn → ∞. If q = 1, then we get Sn = n → ∞. Finally, in the remaining cases
we see that the limit limn→∞(1− qn+1) doesn’t exist, hence the series diverges. 2

Proposition 2. If the series
∑∞

n=1 an converges then limn→∞ an = 0

Proof. Suppose that limn→∞ an ̸= 0. Then

Sn+1 − Sn = an+1

and if Sn converged, say to S, then we would have

lim
n→∞

(Sn+1 − Sn) = S − S = 0
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where which is a contradiction. This proves our implication. 2

The above proposition gives a necessary convergence condition which is sometimes
useful. For instance, we can easily see that the series

∞∑
n=1

nsin
1

n

does not converge since limx→0 sinx/x = 1 and the necessary condition of Proposition
2 is not satisfied. In fact, it is also easy to see that this series diverges to ∞ since all
its terms are positive.

Theorem 1. (Integral test). Suppose that a series
∑∞

n=n0
an is given where

an = f(n) and f is a continuous, nonnegative and nonincreasing function on [n0,∞),
where n0 ∈ N. Then

(a) the series
∑∞

n=n0
an converges if the integral

∫∞
n0

f(x)dx converges

(b) the series
∑∞

n=n0
an diverges to ∞ if the integral

∫∞
n0

f(x)dx diverges to ∞

Note that since all the terms of the series are nonnegative, the cases of a divergent
series or a series divergent to −∞ are ruled out.

Example 2. Let us consider the series
∞∑
n=2

1

nlnn

First, let us notice that if we take f(x) = 1/(xlnx), then the assumptions of the integral
test are satisfied. Namely, f strictly decreases over [2,∞). Moreover, in the integral∫∞
2

1/(xlnx)dx we make the substitution lnx = t which gives∫ ∞

2

dx

xlnx
=

∫ ∞

ln2

dt

t
= ∞

hence, by Theorem 1 (b), our series diverges.

Proposition 3. The series
∞∑
n=1

1

np

converges for p > 1 and diverges to ∞ for p ≤ 1.

Proof. It is a straightforward consequence of the integral test. Note that if p ≥ 0,
the assumptions of the integral test are satisfied. Now, let p > 1. Since the integral∫∞
1

dx/xp converges for p < 1, the series also converges. Similarly, if 0 ≤ p ≤ 1, the
series diverges to ∞ since the corresponding integral diverges to ∞. If p < 0, then it is
clear that the series diverges to ∞ since all its terms are greater or equal to 1. 2
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Theorem 2. (Comparison test) Suppose that 0 ≤ an ≤ bn for all n ≥ n0. Then

(a) if
∑∞

n=n0
bn converges, then

∑∞
n=n0

converges

(b) if
∑∞

n=n0
an diverges to ∞, then

∑∞
n=1 bn diverges to ∞.

Example 3. Below we use a short-hand notation, but filling in the details and
checking the assumptions is easy (the reader is advised to do that).

∞∑
n=1

1√
n+ 1

>

∞∑
n=1

1√
n+

√
n
=

1

2

∞∑
n=1

1√
n
= ∞

by Proposition 3 (p = 1/2 < 1).
∞∑
n=1

nsin
1

n3
<

∞∑
n=1

n
1

n3
=

∞∑
n=1

1

n2
< ∞

by Proposition 3 again (here, p = 2 > 1). We used the inequality sinx ≤ x which holds
for all x ≥ 0.

Theorem 3. (Limit ratio test) Suppose that an, bn > 0 for all n ≥ n0 and that

lim
n→∞

an
bn

= K

where 0 < K < ∞. Then

(a)
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges

(b)
∑∞

n=1 an diverges to ∞ if and only if
∑∞

n=1 bn diverges to ∞

Remark. A similar theorem holds if an, bn < 0 for all n ≥ n0. In that case, in (b)
we have divergence to −∞ instead of ∞. Note also that the assumption that all terms,
except perhaps a finite number of them, are positive or all are negative implies that
such series cannot diverge in the snse of Definition 1.

Example 4. Test for convergence the series
∞∑
n=1

arcsin
1

n
.

Let
an = arcsin

1

n
, bn =

1

n
Then an, bn > 0 for all n ≥ 1 and

lim
n→∞

arcsin1/n

1/n
= 1

hence K = 1 and all assumptions of Theorem 3 are satisfied. Therefore, the series
diverges to ∞ since the harmonic series

∑∞
n=1 1/n diverges to ∞.
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Example 5. Test for convergence the series

∞∑
n=1

n+ 2

n3 − n2 + n− 1
.

It is a little cumbersome to find a specific n0 of Theorem 3, but it is clear that such n0

such that
an =

n+ 2

n3 − n2 + n− 1
> 0

for all n ≥ n0 since the numerator is always positive and the denominator is positive
for large n since the leading power of n has a positive coefficient. Since the numerator
behaves like n for large n and the denominator behaves like n3 for large n, we guess
that a good choice for bn is bn = 1/n2 which gives a convergent series

∑∞
n=1 1/n

2, thus,
by Theorem 3, our series is also convergent.

Theorem 4. (Cauchy’s test) Suppose that limn→∞ |an|1/n = q, where q ≥ 0,
by which we mean that the limit exists and is equal q, allowing also q = ∞. Then the
series

∑∞
n=1 an converges if q < 1 and it does not converge if q > 1.

Proof. We will prove the theorem in the case when an ≥ 0 for large n. If q < 1, then
for each ϵ < 1− q there exists n0 ∈ N such that if n ≥ n0, then a

1/n
n < q + ϵ. Thus, for

such n we have an < (q + ϵ)n and

∞∑
n=n0

an <
∞∑

n=n0

(q + ϵ)n < ∞

since q+ ϵ < 1 and we have a convergent geometric series on the right-hand side of the
first inequality. Therefore, our series converges. The case q > 1 is proved in a similar
way (the reader is advised to do it as an exercise). 2

Remark. It is important to note that if q = 1, then Cauchy’s test doesn’t work, i.e.
the series can converge, diverge to ∞, diverge to −∞ or diverge. For instance, notice
that the series

∞∑
n=1

1

n2
,

∞∑
n=1

1

n
,

∞∑
n=1

−1

n
,

∞∑
n=1

(−1)n

are easy examples of such series.

Example 6. Using Cauchy’s test, we can see that the series

∞∑
n=1

(
n− 1

2n+ 1

)n

converges since

q = lim
n→∞

n− 1

2n+ 1
=

1

2
< 1.
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Example 7. Consider the series
∞∑
n=1

nkan

where a > 0. Here,
q = lim

n→∞
nk/na = ( lim

n→∞
n1/n)ka = a

hence the series converges for a < 1 and diverges to ∞ for a > 1 (it has to diverge to
∞ if it doesn’t converge since it has only positive terms).

Theorem 5. (d’Alembert’s test) Suppose that an ̸= 0 for n ≥ n0 and that
limn→∞ |an+1/an| = q, by which we mean that the limit exists and is equal to q, allowing
q = ∞. Then the series

∑∞
n=1 an converges if q < 1 and it does not converge if q > 1.

Remark. The same remark as in the case of Cauchy’s test applies, i.e. if q = 1, then
the test doesn’t say anything about convergence or divergence of the series (even the
same examples can be used to illustrate this). Also the proof of the theorem is similar
and is based on the comparison with the geometric series (the reader is advised to carry
out the proof in the case of positive terms)

Example 8. Consider the series
∞∑
n=1

bn

n!

for b > 0. We have
an+1

an
=

bn+1

bn
n!

(n+ 1)!
=

b

n+ 1
→ 0

and hence the series converges.
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