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Absolute and conditional convergence

Note that not all convergence tests apply to series with both positive and negative
terms. Only Cauchy’s test and d’Alemebert’s test are general enough in that respect.
Unfortunately, it happens quite often that q = 1 and thus these tests don’t work.
Therefore, we need some convenient convergence tests for series like

∞∑
n=1

(−1)n

n
,

∞∑
n=2

(−1)n

nlnn
,

∞∑
n=2

(−1)n

nln2n

There are two typical tools which can be used: absolute convergence (which implies
convergence) and Leibniz’s theorem. Let us begin with introducing the notion of abso-
lute convergence. It can be seen that it is similar to absolute convergence of improper
integrals.

Definition 1. We say that the series
∑∞

n=1 an converges absolutely if the series∑∞
n=1 |an| converges.

Theorem 1. If the series
∑∞

n=1 an converges absolutely then it converges and

|
∞∑
n=1

an| ≤
∞∑
n=1

|an|

Example 1. The series
∞∑
n=2

(−1)n

nln2n

converges by Theorem 1 since it converges absolutely, which follows from the integral
test (use the substitution t = lnx to show that

∫∞
2

dx/(xln2x) < ∞).

Although there are many series whose convergence can be established simply because
they are absolutely convergent, the notion of absolute convergence is much stronger than
that of convergence and there are plenty of examples to demonstrate this. For instance,
two of the series given in the beginning of this lecture are not absolutely convergent.
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Then, of course, we don’t know anything about their convergence and more subtle test
are needed. The most typical test is given by Leibniz’s theorem.

Theorem 2. (Leibniz’s theorem) Suppose that (bn)n≥1 is nonincreasing for
n ≥ n0 and limn→∞ bn = 0. Then the series

∞∑
n=1

(−1)nbr

converges.

Remark. Notice that the assumptions imply that bn ≥ 0 for n ≥ n0 (this is some-
times stated as an explicit assumption). Of course, as in practically all other tests, what
matters is the behavior of the series at infinity – that’s why we have n ≥ n0 appearing
again.

Example 2. This test allows us to deal with the two series

∞∑
n=1

(−1)n

n
,

∞∑
n=2

(−1)n

nlnn

which are not absolutely convergent. The first one is the easiest application of Theorem
2. It is enough to see that the sequence bn = 1/n ↓ 0, i.e. decreases and has limit
equal to 0. The second series can be treated in a similar manner. Again, if we take
bn = 1/(nlnn) ↓ 0 and apply Theorem 2, we get convergence of our series.

Example 3. Let us consider more sophisticated examples. For instance, let us
study convergence of the series

∞∑
n=1

(−1)nlnn

n
.

Although each term of the series can be written as (−1)nbn, where bn is positive, this
is far from enough. We need to show that limn→∞ bn = 0 and that bn is non-increasing
starting from some n = n0. To evaluate the limit we take the function f(x) = lnx/x
and evaluate the limit

lim
x→∞

lnx

x
= lim

x→∞
1/x = 0

using de L’Hospital’s rule. Even that is not enough though since we still haven’t shown
that the sequence bn is non-increasing. Again, we will look at the function f(x). Of
course, if the function f(x) is non-increasing for x ≥ x0, then the sequence bn is non-
increasing for n ≥ n0 for some n0 and it is much easier to show monotonicity of a
function using derivatives than monotonicity of a sequence using the definition). Thus,

f ′(x) =
1− lnx

x2

and hence, if x > e then f is decreasing. Thus, if n ≥ n0 = 3, then bn = lnn/n ↓ 0.
Therefore, we can use Theorem 2 to conclude that our series converges.
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