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Asymptotic expansion of the nonlocal heat content

by

Tomasz Grzywny and Julia Lenczewska (Wrocław)

Abstract. Let (pt)t≥0 be a convolution semigroup of probability measures on Rd
defined by �

Rd

ei⟨ξ,x⟩ pt(dx) = e−tψ(ξ), ξ ∈ Rd,

and let Ω be an open subset of Rd with finite Lebesgue measure. We consider the quantity
HΩ(t) =

	
Ω

	
Ω−x

pt(dy) dx, called the heat content. We study its asymptotic expansion
under mild assumptions on ψ, in particular in the case of the α-stable semigroup.

1. Introduction. Let d ∈ N. We consider a semigroup (pt)t≥0 of prob-
ability measures given by�

Rd
ei⟨ξ,x⟩ pt(dx) = e−tψ(ξ), ξ ∈ Rd,

where ψ is a symbol defined by

ψ(ξ) =
�

Rd
(1− ei⟨ξ,z⟩) ν(dz), ξ ∈ Rd,

and ν(dz) is a Borel measure satisfying

ν({0}) = 0,
�

Rd
(1 ∧ |z|) ν(dz) <∞.

Let {Pt}t≥0 be the convolution semigroup of operators on C0(Rd) defined by
(pt)t≥0 and let L denote its infinitesimal generator, which for f ∈ C2

c (Rd) is
given by the formula

(1) Lf(x) =
�

Rd
(f(x+ z)− f(x)) ν(dz).
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LetΩ be a nonempty, open subset of Rd with finite Lebesgue measure |Ω|.
We consider the following quantity associated with the semigroup (pt)t≥0:

HΩ(t) =
�

Ω

�

Ω−x
pt(dy) dx,

which we will call the heat content.
We note that the function u(t, x) =

	
Ω−x pt(dy) is a weak solution of the

initial value problem
∂

∂t
u(t, x) = Lu(t, x), t > 0, x ∈ Rd,

u(0, x) = 1Ω(x).

Therefore, the quantity HΩ(t) can be interpreted as the amount of heat in Ω
if its initial temperature is 1 whereas the initial temperature of Ωc is zero.

Our main goal is to study the asymptotic expansion of HΩ(t) for small t.
We observe that

HΩ(t) = |Ω| −H(t), where H(t) =
�

Ω

�

Ωc−x
pt(dy) dx,

and hence it suffices to work with the function H(t). One of the main results
of [7] states that, for small t,

HΩ(t) = |Ω| − tPerν(Ω) + o(t),

where Perν(Ω) is the nonlocal perimeter related to the measure ν, defined
as

Perν(Ω) =
�

Ω

�

Ωc−x
ν(dy) dx.(2)

For instance, if ν is the α-stable Lévy measure ν(α) with α ∈ (0, 1), defined
by

ν(α)(dz) = Ad,−α|z|−d−α dz, where Ad,−α =
2αΓ

(
d+α
2

)
πd/2 |Γ (−α/2)|

,

then Perν(α)(Ω) = Ad,−α Per(α)(Ω), with Per(α)(Ω) being the well-known
α-perimeter [6], given for 0 < α < 1 by

Per(α)(Ω) =
�

Ω

�

Ωc

dy dx

|x− y|d+α
.

In the present paper, we shall establish the next terms of the asymptotic
expansion of the heat content related to convolution semigroups. Our result
is new even for the fractional Laplacian (−∆)α/2 (in our setting we consider
α ∈ (0, 1)). For instance, if 1/α is a natural number, we prove the following
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expansion of the heat content for the fractional Laplacian:

HΩ(t) = |Ω|+
1/α−1∑
n=1

(−1)n

n!
tn Perν(nα)(Ω)+

(−1)1/α

(1/α−1)!π
t1/α log(1/t) Per(Ω)

+ o(t1/α log(1/t)),

where Per is the classical perimeter of the set (see (8) below). A natural
question arises: will the next term be the mean curvature or its nonlocal
counterpart?

The key observation to obtain the asymptotic expansion is that the heat
content can be expressed as the action of the semigroup on the covariance
function of a set. We give more general results, concerning the asymptotic
expansion of Ptf for Hölder functions f . Our standing assumption is the
weak upper scaling of the symbol ψ∗, or equivalently, certain scaling proper-
ties of the concentration function of a Lévy measure (see Theorem 3.3). For
a class of convolution semigroups, for instance for the semigroup associated
to log(1 +∆), we get the full expansion (see Theorem 3.6). We apply these
results to obtain the expansion of the heat content (Corollaries 3.2 and 3.4).
Using the asymptotic expansion of the heat kernel of the fractional Lapla-
cian, we give a more explicit asymptotic expansion in the case of α-stable
semigroups (Theorems 3.10 and 3.11).

The heat content related to the Gaussian semigroup (L = 1
2∆) of a set

at time t was defined by van den Berg [20] by means of the heat semigroup.
Van den Berg and Gilkey [21] proved that the heat content, regarded as
a function of t, has an asymptotic expansion as t tends to 0. The first three
terms in the expansion involve the volume of the set, its perimeter and its
mean curvature. The short time behavior of the heat semigroup in connection
with the geometry of sets with finite perimeter was also studied by Angiuli,
Massari and Miranda [5]. The concept of heat content was extended to the
nonlocal setting of α-stable semigroups in 2016 by Acuña Valverde [1], who
described the small-time asymptotic behavior of the nonlocal heat content in
that case. In the one-dimensional case, the number of known terms of the ex-
pansion depends on the parameter α, and in the multidimensional case, the
first two terms of the expansion are known. The same author found the first
three terms of the asymptotic expansion for the Poisson heat content over
the unit ball [2] and over convex bodies [3]. In 2017, Cygan and Grzywny [7]
introduced the notion of nonlocal heat content related to general probabilis-
tic convolution semigroups and generalized the above-mentioned results of
Acuña Valverde. Later, they proved similar results for the generalized heat
content related to convolution semigroups [8]. Mazón, Rossi and Toledo [18]
found the full asymptotic expansion of the heat content for nonlocal diffu-
sion with nonsingular kernels. Recently, in a more general setting, the heat
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content related to the fractional Laplacian in Carnot groups was studied by
Ferrari, Miranda, Pallara, Pinamonti, and Sire [9].

2. Preliminaries

2.1. Convolution semigroups. For f : Rd → R, let

Ptf(x) =
�

Rd
f(x+ y) pt(dy), t ≥ 0, x ∈ Rd.

The generator L of the semigroup {Pt}t≥0 is defined as

Lf(x) = lim
t→0+

Ptf(x)− f(x)

t
,

for functions for which the above limit exists.
We denote by C0(Rd) the space of continuous functions f : Rd → R

vanishing at infinity. For β ∈ (0, 1] we define

|||f |||β := sup
|x−y|≤1

|f(x)− f(y)|
|x− y|β

.

We will consider the Hölder space

Cβ0 = {f ∈ C0(Rd) : ∥f∥β := |||f |||β + ∥f∥∞ <∞}.

[15, Theorem 3.2] implies that, for a fixed β ∈ (0, 1], if
	
|y|<1 |y|

β ν(dy) <∞,

then for f ∈ Cβ0 ,

(3) Lf(x) =
�

Rd
(f(x+ y)− f(x)) ν(dy).

The real part of the symbol ψ equals Re[ψ(ξ)] =
	
Rd(1−cos ⟨ξ, z⟩) ν(dz).

We will consider its radial, continuous and nondecreasing majorant defined
by

ψ∗(r) = sup
|ξ|≤r

Re[ψ(ξ)], r > 0.

For r > 0 we define the concentration function

h(r) =
�

Rd

(
1 ∧ |x|2

r2

)
ν(dx).

By [11, Lemma 4], for all r > 0,
1

8(1 + 2d)
h(1/r) ≤ ψ∗(r) ≤ 2h(1/r).(4)

Hence h is a more tractable version of ψ∗. By [12, Lemma 2.1],

(5)
�

|z|≥r

ν(dz) ≤ h(r) for all r > 0.
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By [12, Lemma 2.7], if f : [0,∞) → [0,∞) is differentiable, f(0) = 0, f ′ ≥ 0
and f ′ ∈ L1

loc([0,∞)), then for all r > 0,

(6)
�

|z|<r

f(|z|) ν(dz) =
r�

0

f ′(s)ν(|x| ≥ s) ds− f(r)ν(|x| ≥ r).

Let θ0 ≥ 0 and ϕ : (θ0,∞) → [0,∞]. We say that ϕ satisfies the weak
upper scaling condition (at infinity) if there are α ∈ R and C ∈ [1,∞) such
that

(7) ϕ(λθ) ≤ Cλαϕ(θ) for λ ≥ 1, θ > θ0.

For short, ϕ ∈ WUSC(α, θ0, C). This condition will be our standing assump-
tion on the symbol ψ∗ throughout the paper.

The following auxiliary result is a consequence of (4)–(6).

Lemma 2.1. Let α ∈ (0, 2], C ∈ [1,∞) and θ0 ∈ [0,∞). Consider the
following conditions:

(A1) ψ∗ ∈ WUSC(α, θ0, C),
(A2) there is C > 0 such that for all λ ≤ 1 and r < 1/θ0,

h(λr) ≤ Cλ−αh(r).

Then (A1) implies (A2) with C = cdC, where cd = 16(1 + 2d), while (A2)
gives (A1) with C = cdC. If additionally θ0 ∈ [0, 1), then (A1) and (A2)
each imply

(A3) for all ε > 0, �

|y|<1

|y|α+ε ν(dy) <∞.

Proof. We will show that (A1) implies (A2). Using (4), (7) and again (4),
we obtain

h(λr) ≤ 8(1 + 2d)ψ∗((λr)−1) ≤ 8(1 + 2d)Cλ−αψ∗(r−1)

≤ 16(1 + 2d)Cλ−αh(r).

The converse implication can be proved analogously. It remains to show
that (A1) implies (A3). By (6) with f(s) = sα+ε and r = 1,

�

|y|<1

|y|α+ε ν(dy) = (α+ ε)

1�

0

sα+ε−1ν(|x| ≥ s) ds− ν(|x| ≥ 1)

≤ (α+ ε)

1�

0

sα+ε−1h(s) ds

≤ (α+ ε)Ch(1)

1�

0

sε−1 ds =
C(α+ ε)

ε
h(1) <∞.
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2.2. Heat content. Following [4, Section 3.3], for any measurable set
Ω ⊂ Rd we define its perimeter Per(Ω) as

Per(Ω) = sup
{ �

Rd
1Ω(x) div ϕ(x) dx : ϕ ∈ C1

c (Rd,Rd), ∥ϕ∥∞ ≤ 1
}
.(8)

We mention that, by [4, Proposition 3.62], for any open Ω with Lipschitz
boundary ∂Ω and finite Hausdorff measure σ(∂Ω) we have

Per(Ω) = σ(∂Ω).

For any Ω ⊂ Rd with finite Lebesgue measure |Ω|, we define the covari-
ance function gΩ of Ω as follows:

gΩ(y) = |Ω ∩ (Ω + y)| =
�

Rd
1Ω(x)1Ω(x− y) dx, y ∈ Rd.(9)

By [10, Proposition 2, Theorem 13 and Theorem 14], gΩ is symmetric,
nonnegative, bounded from above by |Ω|, and gΩ ∈ C0(Rd). Moreover, if
Per(Ω) <∞, then gΩ is Lipschitz with

(10) 2∥gΩ∥Lip ≤ Per(Ω).

Moreover, for all r > 0 the limit limr→0+
gΩ(0)−gΩ(ru)

r exists, is finite and

(11) Per(Ω) =
Γ ((d+ 1)/2)

π(d−1)/2

�

Sd−1

lim
r→0+

gΩ(0)− gΩ(ru)

r
σ(du).

In particular, there is a constant C = C(Ω) > 0 such that

0 ≤ gΩ(0)− gΩ(y) ≤ C(1 ∧ |y|).(12)

By Cygan and Grzywny [7, Lemma 3], the related function H(t) has the
following form:

(13) H(t) =
�

Rd
(gΩ(0)− gΩ(y)) pt(dy),

and by [7, proof of Lemma 1],

(14) Perν(Ω) =
�

Rd
(gΩ(0)− gΩ(y)) ν(dy).

By [7, Theorem 3], if Ω ⊂ Rd is an open set with |Ω| <∞ and Per(Ω) <∞
(i.e. 1Ω ∈ BV(Rd)), then

t−1H(t) = t−1(gΩ(0)− PtgΩ(0)),(15)

which converges to −LgΩ(0) = Perν(Ω) as t tends to 0.
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3. Main results and proofs

3.1. Convolution semigroups for nonlocal operators on Rd

Lemma 3.1. Assume that ψ∗ ∈ WUSC(α, 1, C) for some α ∈ (0, 1). If
f ∈ Cβ0 for some β ∈ (α, 1], then Lf ∈ Cβ−α0 and

∥Lf∥β−α ≤ C1(1− α/β)−1h(1)∥f∥β,
where C1 = C1(cd, C). In particular, if β ∈ (2α, 1], then Lf ∈ D(L).

Proof. By Lemma 2.1, for all λ ≤ 1 and r ≤ 1,

(16) h(λr) ≤ cλ−αh(r),

where c = cdC, and for all ε > 0,

(17)
�

|y|<1

|y|α+ε ν(dy) <∞.

First, we will deal with |||Lf |||β−α. Assume |x− y| ≤ 1. By (3),

(18) |Lf(x)− Lf(y)| =
∣∣∣ �
Rd

(
f(x+ z)− f(x)− (f(y + z)− f(y))

)
ν(dz)

∣∣∣
≤

�

Rd
|f(x+ z)− f(x)− f(y + z) + f(y)| ν(dz).

We split the integral above as follows:�

Rd
=

�

|z|≤|x−y|

+
�

|z|>|x−y|

=: I1 + I2.

We will first deal with I1. Denote L = |||f |||β . We have

(19) |f(x)− f(y)| ≤ L|x− y|β.
By (19), the Fubini theorem, (5) and (16) we have

I1 ≤
�

|z|≤|x−y|

(|f(x+ z)− f(x)|+ |f(y + z)− f(y)|) ν(dz)

≤ 2L
�

|z|≤|x−y|

|z|β ν(dz) = 2L
�

|z|≤|x−y|

|z|β�

0

ds ν(dz)

= 2L

|x−y|β�

0

�

s1/β≤|z|≤|x−y|

ν(dz) ds ≤ 2L

|x−y|β�

0

�

|z|≥s1/β
ν(dz) ds

≤ 2L

|x−y|β�

0

h(s1/β) ds ≤ 2Lch(1)

|x−y|β�

0

s−α/β ds

= 2Lch(1)(1− α/β)−1|x− y|β−α.
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Now we will estimate I2. Using again (19), (5) and (16) we get

I2 ≤
�

|z|>|x−y|

(|f(x+ z)− f(y + z)|+ |f(x)− f(y)|) ν(dz)

≤ 2L|x− y|β
�

|z|>|x−y|

ν(dz) ≤ 2L|x− y|βh(|x− y|)

≤ 2Lch(1)|x− y|β−α.
Hence

(20) |||Lf |||β−α ≤ (1 + (1− α/β)−1)2ch(1)|||f |||β.

Futhermore, for x ∈ Rd,

|Lf(x)| ≤
�

Rd
|f(x+ y)− f(x)| ν(dy).

We split the integral above as follows:�

Rd
=

�

|y|<1

+
�

|y|≥1

=: I3 + I4.

Proceeding as for I1, we obtain

I3 ≤ |||f |||β
�

|y|<1

|y|β ν(dy) ≤ |||f |||β
c

1− α/β
h(1).

Next,

I4 ≤ 2∥f∥∞
�

|y|≥1

ν(dy) ≤ 2∥f∥∞h(1).

Therefore

(21) ∥Lf∥∞ ≤ c

1− α/β
h(1)|||f |||β + 2h(1)∥f∥∞

≤
(

c

1− α/β
+ 2

)
h(1)∥f∥β

≤ 3c

1− α/β
h(1)∥f∥β.

By (20) and (21),

(22) ∥Lf∥β−α ≤ 2h(1)∥f∥∞ +

(
2 +

3

1− α/β

)
ch(1)|||f |||β

≤
(
2 +

(
2 +

3

1− α/β

)
c

)
h(1)∥f∥β

≤ 7c

1− α/β
h(1)∥f∥β.

The proof is complete.
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Corollary 3.2. Assume that ψ∗ ∈ WUSC(α, 1, C) for some α ∈ (0, 1).
If f ∈ Cβ0 for some β ∈ (nα, 1], then Lkf ∈ Cβ−kα0 for k ∈ {1, . . . , n} and
Lkf ∈ D(L) for k ∈ {1, . . . , n− 1}.

It is well-known that for f ∈ D(L) and t ≥ 0, Pt is differentiable and
d
dtPtf = LPtf = PtLf ; see e.g. Pazy [19, Theorem 1.2.4 c)]. Therefore, if
Lkf ∈ D(L) for k ∈ {1, . . . , n−1}, then dn

dtnPtf = LnPtf = PtLnf . To apply
this result, we will use the fact that for t0 > 0, Pt0(C

β
0 ) ⊂ Cβ0 . Indeed,

|Pt0f(x)− Pt0f(y)| ≤
�

Rd
|f(x+ z)− f(x)− f(y + z) + f(y)| pt0(dz)

≤
�

Rd
(|f(x+ z)− f(y + z)|+ |f(y)− f(x)|) pt0(dz)

≤ 2L|x− y|β
�

Rd
pt0(dz) = 2L|x− y|β.

Theorem 3.3. Assume that ψ∗ ∈ WUSC(α, 1, C) for some α ∈ (0, 1). If
f ∈ Cβ0 for some β ∈ (nα, 1], then

lim
t→0+

t−n
(
Ptf −

n−1∑
k=0

tk

k!
Lkf

)
=

1

n!
Lnf.

Proof. By Corollary 3.2, Lkf ∈ D(L) for k ∈ {1, . . . , n − 1}, hence Ptf
is n times differentiable. By Taylor’s theorem applied to t 7→ Ptf ,

Ptf =

n−1∑
k=0

tk

k!
Lkf +

tn

n!
Pθ0Lnf

for some θ0 ∈ (0, t). The claim follows from the right continuity of Pt at
t = 0.

Theorem 3.3, Lemma 2.1 and (10) give the following result.

Corollary 3.4. Assume that there exists C > 0 such that for all λ ≤ 1
and r < 1, h(λr) ≤ Cλ−αh(r) for some α ∈ (0, 1). Let n ≥ 2. If nα < 1,
then

lim
t→0+

t−n
(
H(t)− tPerν(Ω) +

n−1∑
k=2

tk

k!
LkgΩ(0)

)
= − 1

n!
LngΩ(0).

Example 3.5. If ν(α) is an α-stable Lévy measure, α ∈ (0, 1), then
the Hölder space Cβ0 is contained in the domain of L = −(−∆)α/2 for any
β ∈ (α, 1], and we have

Lf(x) =
�

Rd\{0}

(f(x+ y)− f(x)) ν(α)(dy), f ∈ Cβ0 , x ∈ Rd.
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The associated semigroup (pt)t≥0 is the α-stable semigroup in Rd, deter-
mined by ψ(ξ) = |ξ|α. We have ψ(rξ) = rαψ(ξ), so in particular ψ∗ ∈
WUSC(α, 0, 1). If f ∈ Cβ0 for some β ∈ (nα, 1], then by Corollary 3.2,
Lkf ∈ D(L) for k ∈ {1, . . . , n − 1} and Lkf ∈ Cβ−kα0 for k ∈ {1, . . . , n},
and by Theorem 3.3,
(23)

lim
t→0+

t−n
(
−Ptf +

n−1∑
k=0

(−1)k−1tk

k!
(−(−∆)kα/2)f

)
=

(−1)n

n!
(−(−∆)nα/2)f,

since ((−∆)α/2)n = (−∆)nα/2 for nα < 2; see [16, (1.1.12)]. By Corollary 3.4,

lim
t→0+

t−n
(
H(t)−

n−1∑
k=1

(−1)k−1tk

k!
Perν(kα)(Ω)

)
=

(−1)n−1

n!
Perν(nα)(Ω).

Theorem 3.6. Assume there exists C > 0 such that for all α ∈ (0, 1),
ψ∗ ∈ WUSC(α, 1, Cα−1). If f ∈ Cβ0 for some β ∈ (0, 1], then there exists
t0 > 0 such that for all t ∈ (0, t0),

Ptf =
∞∑
k=0

tk

k!
Lkf

in C0(Rd).
Proof. Without loss of generality, we can assume h(1) = 1. For any

N ∈ N, let α = α(N) = β/(2N). For n ∈ {1, . . . , N − 1}, let βn = β − nα.
Since Nα = β/2 < β, by the proof of Theorem 3.3,

Ptf(x) =
N−1∑
n=0

tnLnf(x)
n!

+ R̃N , where R̃N =
tNPθ0LNf(x)

N !
.

By (21), for any N ∈ N,

(24) ∥LNf∥∞ ≤ 7C/α

1− α/βN−1
∥LN−1f∥βN−1

.

By (22), for k ∈ {1, . . . , N − 1},

(25) ∥Lf∥βk ≤ 7C/α

1− α/βk−1
∥f∥βk−1

.

Using (24) and applying (25) N times we get

(26) ∥LNf∥∞ ≤ 7C/α

1− α/βN−1
∥LN−1f∥βN−1

≤
(N−1∏
k=0

7C/α

1− α/βk

)
∥f∥β

≤ (7C)N
(N−1∏
k=0

1/α

1− 2α/β

)
∥f∥β



Nonlocal heat content 11

= (7C)N
(N−1∏
k=0

2N/β

1− 1/N

)
∥f∥β

= (14C/β)NNN

(N−1∏
k=0

1

1− 1/N

)
∥f∥β

≤ (14C/β)NNNe∥f∥β.

By the contractivity of Pθ0 , (26) and Stirling’s formula,

|R̃N | ≤
∥tNPθ0LNf∥∞

N !
≤ tN∥LNf∥∞

N !

≤ cC ′NNN tN√
2πN(N/e)N

∥f∥β ≤ c′C̃N tN√
N

∥f∥β,

which tends to 0 as N → ∞. The proof is complete.

Example 3.7. Let ψ(ξ) = log(1 + |ξ|2), i.e. L = − log(1 − ∆). Let
α ∈ (0, 1]. Since, for λ ≥ 1 and x ≥ 1,

log(1 + λx) ≤ log(λ(1 + x)) =
1

α
log(λα(1 + x)α) ≤ 1

α
log(λα(1 + x)),

and
log(λα(1 + x))

log(1 + x)
≤ λα

log 2
,

we have log(1+ ·) ∈ WUSC(α, 1, 2/α). Hence ψ ∈ WUSC(α, 1, 4/α), that is,
ψ satisfies the assumptions of Theorem 3.6.

Corollary 3.8. Assume that there exists C > 0 such that for all α ∈
(0, 1) and λ ≤ 1, h(λr) ≤ Cα−1λ−1h(r). Then there exists t0 > 0 such that
for all t ∈ (0, t0),

H(t) = tPerν(Ω)−
∞∑
k=2

tk

k!
LkgΩ(0).

Example 3.9. Let ν be a finite measure on Rd and let (pt)t≥0 be deter-
mined by

ψ(ξ) =
�

Rd
(1− ei⟨ξ,z⟩) ν(dz).

In this case

Lf(x) =
�

Rd
(f(x+ y)− f(x)) ν(dy).

The generator L can be expressed as a convolution operator

Lf = (ν − ν(Rd)δ0) ∗ f,
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therefore

Lnf = (ν − ν(Rd)δ0)∗n ∗ f =
n∑
i=0

(−1)n−i
(
n

i

)
ν(Rd)n−iν∗i ∗ f,

where for k ∈ N, µ∗k denotes the k-fold iteration of the convolution of µ with
itself, i.e. µ∗0 = δ0 and µ∗k = µ∗(k−1) ∗ µ for k ≥ 1. It is well-known that,
since ν is finite and L is bounded, we have

Pt = etL.

Therefore

Pt =
∞∑
n=0

tn

n!
Ln =

∞∑
n=0

n∑
i=0

(−1)n−i
tn

i!(n− i)!
ν(Rd)n−iν∗i

=
∞∑
i=0

∞∑
n=i

(−1)n−i
tn

i!(n− i)!
ν(Rd)n−iν∗i

=
∞∑
j=0

(−tν(Rd))j

j!

∞∑
i=0

ti

i!
ν∗i = e−tν(R

d) exp(tν),

where exp(ν) =
∑∞

n=0
1
n!ν

∗n. This expansion follows also from Theorem 3.6.
Applying this result to f = gΩ, we extend [17, Theorem 1.2], which holds for
compactly supported probabilistic measures with radial density, to general
finite measures.

3.2. Heat content for the fractional Laplacian on Rd. Let (pt)t≥0

be the α-stable semigroup in Rd, α ∈ (0, 2). We recall that in this case
ψ(ξ) = |ξ|α and the corresponding Lévy measure ν is the α-stable Lévy
measure ν(α). The related function h turns into h(r) = c/rα, for some c > 0.

Let

an :=
1

π1+d/2
(−1)n−1

n!
2nαΓ

(
nα

2
+ 1

)
Γ

(
nα+ d

2

)
sin

(
πnα

2

)
.

For nα/2 /∈ N,

an =
(−1)n−1

n!
Ad,−nα.

By Hiraba [14, Remark 2.b)], for α < 1 and x ∈ Rd \ {0},

(27) p1(x) =
∞∑
n=1

an|x|−nα−d.

The following two results extend [1, Theorem 1.2]. Note that they provide
a more detailed expansion than the one resulting from Corollary 3.4; compare
with Example 3.5.
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Theorem 3.10. Let α ∈ (0, 1) be such that 1/α /∈ N and let Ω ⊂ Rd be
an open set of finite Lebesgue measure and perimeter. Then

lim
t→0+

t−1/α

(
H(t)−

[1/α]∑
n=1

(−1)n−1

n!
tn Perν(nα)(Ω)

)

=
π
d−1
2

Γ
(
d+1
2

) Per(Ω)

( 1�

0

rdp1(red) dr −
∞∑
n=1

an
1− nα

)
.

Proof. Without loss of generality, we can assume that diam(Ω) = 1. For
1/α /∈ N, [1/α] = ⌈1/α⌉ − 1, and we will use this formula in order to avoid
repeating similar calculations in the next proof. By (13), (14) and the scaling
property of pt,

H(t)−
⌈1/α⌉−1∑
n=1

(−1)n−1

n!
tn Perν(nα)(Ω)

=
�

Rd
(gΩ(0)− gΩ(x))

(
pt(x)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
tnAd,−nα|x|−d−nα

)
dx

=
�

Rd
(gΩ(0)− gΩ(t

1/αx))

(
p1(x)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nα|x|−d−nα

)
dx.

We split the above integral into

(28)
�

|x|≤1

+
�

1<|x|≤t−1/α

+
�

|x|>t−1/α

=: I1 + I2 + I3.

We have

I1 =
�

|x|≤1

(gΩ(0)− gΩ(t
1/αx))

(
p1(x)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nα|x|−d−nα

)
dx

= t1/α
1�

0

�

Sd−1

rd
gΩ(0)− gΩ(t

1/αru)

t1/αr

×
(
p1(red)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nαr

−d−nα
)
σ(du) dr.

By (10), (11) and the Dominated Convergence Theorem,

lim
t→0+

t−1/αI1 =
π
d−1
2

Γ
(
d+1
2

) Per(Ω)

( 1�

0

rdp1(red) dr −
⌈1/α⌉−1∑
k=1

(−1)n−1

n!

Ad,−nα
1− nα

)
.
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Next,

I3
gΩ(0)

=
�

|x|>t−1/α

(
p1(x)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nα|x|−d−nα

)
dx

=
�

|x|>t−1/α

∞∑
n=⌈1/α⌉

an|x|−nα−d dx

=

∞∑
n=⌈1/α⌉

an
�

|x|>t−1/α

|x|−nα−d dx = ωd−1

∞∑
n=⌈1/α⌉

an
nα

tn.

We have

|I3| ≤ gΩ(0)ωd−1

∞∑
n=⌈1/α⌉

|an|
nα

tn = O(t⌈1/α⌉)

for t < 1, thus
lim
t→0+

t−1/αI3 = 0.

We have

I2 =
�

1<|x|<t−1/α

(gΩ(0)− gΩ(t
1/αx))

×
(
p1(x)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nα|x|−d−nα

)
dx

= t1/α
t−1/α�

1

�

Sd−1

rd
gΩ(0)− gΩ(t

1/αru)

t1/αr

×
(
p1(red)−

⌈1/α⌉−1∑
n=1

(−1)n−1

n!
Ad,−nαr

−d−nα
)
σ(du) dr

= t1/α
t−1/α�

1

�

Sd−1

gΩ(0)− gΩ(t
1/αru)

t1/αr

∞∑
n=⌈1/α⌉

an σ(du) r
−nα dr.

By (10),

|I2| ≤
Per(Ω)

2
t1/α

∞∑
n=⌈1/α⌉

|an|
�

1<|x|≤t−1/α

|x|1−nα−d dx

≤ Per(Ω)

2
t1/α

∞∑
n=⌈1/α⌉

|an|
�

|x|>1

|x|1−nα−d dx

=
Per(Ω)

2
ωd−1t

1/α
∞∑

n=⌈1/α⌉

|an|
nα− 1

,
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hence

I2 =
∞∑

n=⌈1/α⌉

an
�

1<|x|≤t−1/α

gΩ(0)− gΩ(t
1/αx)

|x|d+nα
dx

and

lim
t→0+

t−1/αI2 =

∞∑
n=⌈1/α⌉

an lim
t→0+

t−1/α
�

1<|x|≤t−1/α

gΩ(0)− gΩ(t
1/αx)

|x|d+nα
dx.

We get

t−1/αI2 =

∞∑
n=⌈1/α⌉

an

t−1/α�

1

MΩ(t, r)r
−nα dr,

where

MΩ(t, r) =
�

Sd−1

gΩ(0)− gΩ(rt
1/αu)

rt1/α
σ(du).(29)

We claim that

lim
t→0+

t−1/α�

1

MΩ(t, r)r
−nα dr =

π(d−1)/2

Γ ((d+ 1)/2)
Per(Ω)

1

nα− 1
.(30)

Indeed, by (10) and (11),

0 ≤ MΩ(t, r) ≤ 1
2 Per(Ω)σ(Sd−1)(31)

and, for any r > 0,

lim
t→0+

MΩ(t, r) =
π(d−1)/2

Γ ((d+ 1)/2)
Per(Ω).(32)

Moreover,
t−1/α�

1

r−nα dr ≤
∞�

1

r−nα dr =
1

nα− 1

and hence (30) follows by the Dominated Convergence Theorem.

Theorem 3.11. Let α ∈ (0, 1) be such that 1/α ∈ N and let Ω ⊂ Rd be
an open set of finite Lebesgue measure and perimeter. Then

lim
t→0+

(t1/α log(1/t))−1

(
H(t)−

1/α−1∑
n=1

(−1)n−1

n!
tn Perν(nα)(Ω)

)
=

(−1)1/α−1

(1/α− 1)!π
Per(Ω).
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Proof. By the proof of Theorem 3.10,

H(t)−
1/α−1∑
n=1

(−1)n−1

n!
tn Perν(nα)(Ω) = I1 + I2 + I3,

where

I1 = t1/α
1�

0

�

Sd−1

rd
gΩ(0)− gΩ(t

1/αru)

t1/αr

×
(
p1(red)−

1/α−1∑
n=1

(−1)n−1

n!
Ad,−nαr

−d−nα
)
σ(du) dr,

I2 =
�

1<|x|≤t−1/α

(gΩ(0)− gΩ(t
1/αx))

∞∑
n=1/α

an|x|−nα−d dx,

I3 = |gΩ(0)|ωd−1

∞∑
n=1/α

an
nα

tn.

By (10), (11) and the Dominated Convergence Theorem,

lim
t→0+

(t1/α log(1/t))−1I1 = 0.

Next,

lim
t→0+

(t1/α log(1/t))−1I3 = 0.

By (10),

|I2| ≤
Per(Ω)

2
t1/α

∞∑
n=1/α

|an|
�

1<|x|≤t−1/α

|x|1−nα−d dx

=
Per(Ω)

2

( ∞∑
n=1/α+1

|an|t1/α
tn−1/α − 1

1− nα
+
a1/α

α
t1/α log(1/t)

)

≤ Per(Ω)

2

( ∞∑
n=1/α+1

|an|
t1/α

nα− 1
+
a1/α

α
t1/α log(1/t)

)
.

Therefore

I2 =

∞∑
n=1/α

an
�

1<|x|≤t−1/α

(gΩ(0)− gΩ(t
1/αx))|x|−nα−d dx.
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We have

(t1/α log(1/t))−1
�

1<|x|≤t−1/α

(gΩ(0)− gΩ(t
1/αx))|x|−nα−d dx

= log(1/t)−1
t−1/α�

1

�

Sd−1

gΩ(0)− gΩ(t
1/αru)

t1/αr
σ(du) r−nα dr

= log(1/t)−1
t−1/α�

1

MΩ(t, r)r
−nα dr.

We claim that

lim
t→0+

log(1/t)−1
t−1/α�

1

MΩ(t, r)r
−1 dr =

π
d−1
2

αΓ
(
d+1
2

) Per(Ω),(33)

where

MΩ(t, r) =
�

Sd−1

gΩ(0)− gΩ(rt
1/αu)

rt1/α
σ(du).

Indeed, by substitution,

log(1/t)−1
t−1/α�

1

MΩ(t, r)r
−1 dr = log(1/t)−1

log(1/t)/α�

0

MΩ(t, e
r) dr

=

1/α�

0

MΩ(t, t
−r) dr,

and by (10), (11) and the Dominated Convergence Theorem,

lim
t→0+

1/α�

0

MΩ(t, t
−r) dr =

1/α�

0

�

Sd−1

lim
t→0+

gΩ(0)− gΩ(t
1/α−ru)

t1/α−r
σ(du) dr

=
π(d−1)/2

αΓ ((d+ 1)/2)
Per(Ω).

We claim that for n ≥ 1/α+ 1 we have

lim
t→0+

log(1/t)−1
t−1/α�

1

MΩ(t, r)r
−nα dr = 0.(34)

Indeed, by (31), (32) and since we have

t−1/α�

1

log(1/t)−1r−nα dr ≤
∞�

1

r−nα dr =
1

nα− 1
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for t < 1/e, (34) follows by the Dominated Convergence Theorem. Formulas
(33) and (34) yield the claim of the theorem.

3.3. Heat content for general stable operators on R. Let α ∈
(0, 1)∪ (1, 2), β ∈ [−1, 1] and γ > 0. We consider the convolution semigroup
(pt)t≥0 on R such that

ψ(ξ) = γ|ξ|α
(
1− iβ tan

(
πα

2

)
sgn(ξ)

)
, ξ ∈ R.

The corresponding Lévy measure on R is given by

ν(dx) =
c+1x≥0 + c−1x<0

|x|1+α
dx,

where

c+ = − 1 + β

2Γ (−α) cos(πα/2)
and c− = − 1− β

2Γ (−α) cos(πα/2)
.

Let Ω = (a, b) ⊂ R. We have gΩ(x) = (b − a − |x|)1[0,b−a)(|x|). For
α ∈ (0, 1), Perν(Ω) = (c+ + c−)α

−1(1− α)−1(b− a)1−α.
We can fix the parameter γ without loss of generality. Assume that γ =

cos(πβα/2) if α < 1 and γ = cos
(
πβ 2−α

2

)
if α > 1.

Let

bn :=
(−1)n−1

π

Γ (nα+ 1)

n!
sin(πnαρ),

where ρ = 1+β
2 if α < 1, and ρ = 1−β(2−α)/α

2 if α > 1. By [22, (2.4.8)], for
α < 1 and x > 0,

(35) p1(x) =

∞∑
n=1

bnx
−nα−1.

By [22, (2.5.4)], for α > 1 and β ̸= −1, and any N ∈ N,

(36) p1(x) =

N∑
n=1

bnx
−nα−1 +Oα(x

−(N+1)α−1)

as x→ ∞. Let

dn =
(−1)n−1

π

2Γ (nα)

n!
sin

(
πnα

2

)
cos

(
πnβ

(
α ∧ 2−α

α

)
2

)
This constant will appear in the following proposition, which complements
[1, Theorem 1.1]. We generalize the results for α < 1 to the nonsymmetric
case. The last result is new even for the symmetric case, since previously
only the first two terms of the expansion were known.
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Proposition 3.12. Let Ω = (a, b), |Ω| = b− a.

(i) Let 0 < α < 1 and 0 < t < min {|Ω|α, e−1}.

(a) If 1/α /∈ N, then there is a constant Cα independent of Ω such that

H(t) =

[1/α]∑
n=1

dn|Ω|1−nα

1− nα
tn + Cα t

1/α +Oα(t
[1/α]+1)

as t→ 0+, where

Cα =
�

R

(1 ∧ |x|)p1(x) dx− 1√
π

∞∑
n=1

dn
1− nα

.

(b) If α = 1/N for some N ∈ N, then there is a constant CN = CN (Ω)
such that

H(t) =

N−1∑
n=1

dn|Ω|1−n/N

1− nα
tn + CN t

N +NdN t
N log

(
1

t

)
+Oα(t

N+1)

as t→ 0+, where

CN =
�

R

(1 ∧ |x|)p1(x) dx+
log(|Ω|)√

π
dN − 1√

π

∑
n̸=N

dn
1− nα

.

(ii) If 1 < α < 2, |β| ≠ 1, then, for any N ∈ N,

H(t) = t1/α
�

R

|x|p1(x) dx+
N∑
n=1

dn|Ω|1−nα

1− nα
tn +Oα(t

N+1)

as t→ 0+.

Note that by [13, Proposition 1.4],
�

R

|x|p1(x) dx =
2

π
Γ

(
1− 1

α

)
Re

(
1 + iβ tan

(
πα

2

))1/α

.

Proof. (i) can be proved analogously to [1, Theorem 1.1], using (35). We
will prove (ii). We have

H(t) =
�

R

(|Ω| ∧ |x|)pt(x) dx =
�

R

(|Ω| ∧ t1/α|x|)p1(x) dx

= t1/α
�

|x|<|Ω|t−1/α

|x|p1(x) dx+
�

|x|≥|Ω|t−1/α

(|Ω| − t1/α|x|)p1(x) dx

= t1/α
�

R

|x|p1(x) dx+
�

|x|≥|Ω|t−1/α

(|Ω| − t1/α|x|)p1(x) dx.
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By (36), for any N ∈ N,

p1(x) =
N∑
n=1

bnx
−nα−1 +Oα(x

−(N+1)α−1)

as x→ ∞. Therefore
∞�

|Ω|t−1/α

(|Ω| − t1/αx)p1(x) dx

=

∞�

|Ω|t−1/α

( N∑
n=1

(−1)n−1bnx
−nα−1 +Oα(x

−(N+1)α−1)
)
(|Ω| − t1/αx) dx

=

N∑
n=1

bn
nα(1− nα)

|Ω|1−nαtn +
∞�

|Ω|t−1/α

Oα(x
−(N+1)α−1)(|Ω| − t1/αx) dx.

We also have∣∣∣ ∞�

|Ω|t−1/α

Oα(x
−(N+1)α−1)(|Ω| − t1/αx) dx

∣∣∣
≤ C

∞�

|Ω|t−1/α

(t1/αx− |Ω|)x−(N+1)α−1 dx

= C
1

(N + 1)α((N + 1)α− 1)
|Ω|1−(N+1)α tN+1.

The calculations for
	−Ω|t−1/α

−∞ (|Ω|+ t1/αx)p1(x) dx are similar since p1(−x)
corresponds to p1(x) with parameters (α,−β, γ).
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