Multidimensional Yamada-Watanabe theorem and its applications to particle systems

Piotr Graczyk and Jacek Małecki

Citation: Journal of Mathematical Physics 54, 021503 (2013); doi: 10.1063/1.4790507
View online: http://dx.doi.org/10.1063/1.4790507
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/54/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Non-polynomial extensions of solvable potentials à la Abraham-Moses

Molecular noise induces concentration oscillations in chemical systems with stable node steady states

Dynamical systems analysis for polarization in ferroelectrics
J. Appl. Phys. 100, 114106 (2006); 10.1063/1.2388124

Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems

Three-dimensional vibration analysis of a homogeneous transversely isotropic thermoelastic cylindrical panel
J. Acoust. Soc. Am. 110, 254 (2001); 10.1121/1.1378350
Multidimensional Yamada-Watanabe theorem and its applications to particle systems

Piotr Graczyk and Jacek Malecki

1LAREMA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 1, France
2Institute of Mathematics and Computer Science, Wrocław University of Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

(Received 13 August 2012; accepted 22 January 2013; published online 15 February 2013)

We prove a multidimensional version of the Yamada-Watanabe theorem, i.e., a theorem giving conditions on coefficients of a stochastic differential equation for existence and pathwise uniqueness of strong solutions. It implies an existence and uniqueness theorem for the eigenvalue and eigenvector processes of matrix-valued stochastic processes, called a “spectral” matrix Yamada-Watanabe theorem. The multidimensional Yamada-Watanabe theorem is also applied to particle systems of squared Bessel processes, corresponding to matrix analogues of squared Bessel processes, Wishart and Jacobi matrix processes. The $\beta$-versions of these particle systems are also considered.

© 2013 American Institute of Physics [http://dx.doi.org/10.1063/1.4790507]

I. INTRODUCTION

In this paper, we prove a multidimensional analogue of the celebrated Yamada-Watanabe theorem, ensuring the existence and uniqueness of strong solutions of one-dimensional stochastic differential equations (SDEs) with a Hölder coefficient in the Itô integral part. It is proved in Sec. II, Theorem 2.

Consider the space $S_p$ of symmetric $p \times p$ real matrices and a function $g : \mathbb{R} \rightarrow \mathbb{R}$. Recall that the function $g$ acts spectrally on a matrix $X \in S_p$ in the following way:

$$g(X) = H \text{diag}(g(\lambda_1), \ldots, g(\lambda_p)) H^T,$$

(1.1)

where $X = H\Lambda H^T$ is a diagonalization of $X$, with an orthonormal matrix $H$ and an eigenvalue matrix $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)$. Consequently, $g(\Lambda) = \text{diag}(g(\lambda_1), \ldots, g(\lambda_p))$ and $g(X) = Hg(\Lambda)H^T$.

In Sec. III, we derive a system of SDEs for the eigenvalues and the eigenvectors for a solution of a matrix SDE of the form

$$dX_t = g(X_t)dB_t h(X_t) + h(X_t)dB_t^T g(X_t) + b(X_t)dt,$$

where $B_t$ is a Brownian matrix of dimension $p \times p$, the matrix stochastic process $X_t$ takes values in the space of symmetric $p \times p$ matrices and the functions $g, h, b : \mathbb{R} \rightarrow \mathbb{R}$ act on the spectrum of $X_t$. Under some mild conditions on the functions $g, h, b$ it is shown in Theorem 5 that the eigenvalues never collide. The $\beta$-versions and complex versions of the eigenvalue system are also considered for the collision time problem (Corollaries 1 and 2).

If the functions $g, h, b$ are such that $gh$ is 1/2-Hölder continuous, and the symmetrized functions $g^2 \otimes h^2$ and $b$ are Lipschitz continuous, then we establish in Theorem 6 the existence and uniqueness of a strong solution of the system of SDEs for the eigenvalues and the eigenvectors of $X_t$. We call such a result “a spectral matrix Yamada-Watanabe theorem”.

---

$^a$E-mail: piotr.graczyk@univ-angers.fr.
$^b$E-mail: jacek.malecki@pwr.wroc.pl.
II. A MULTIDIMENSIONAL YAMADA-WATANABE THEOREM

Let us recall the classical Yamada-Watanabe theorem see, e.g., Ref. 13, p. 168 and Ref. 28.

Theorem 1: Let \( B(t) \) be a Brownian motion on \( \mathbb{R} \). Consider the SDE,
\[
dX(t) = \sigma(X(t))dB(t) + b(X(t))dt.
\]
If \( |\sigma(x) - \sigma(y)|^2 \leq \rho(|x - y|) \) for a strictly increasing function \( \rho \) on \( \mathbb{R}^+ \) with \( \rho(0) = 0 \) and \( \int_0^\infty \rho^{-1}(x)dx = \infty \), and \( b \) is Lipschitz continuous, then the pathwise uniqueness of solutions holds; consequently the equation has a unique strong solution.

No multidimensional versions of the Yamada-Watanabe theorem seem to be known, even if their need is great (cf. Ref. 3, p. 738). We propose a useful generalization; however, we stress the fact that the H"older continuous functions \( \sigma \), appearing in the following system of SDEs are one-dimensional. The proof is based on the approach presented in Revuz, Yor,25 in particular on the results of Le Gall.15 By \( \| \cdot \| \) we mean the Euclidean norm \( \| \cdot \|_2 \) on \( \mathbb{R}^d \).

Theorem 2: Let \( p, q, r \in \mathbb{N} \) and the functions \( b_i : \mathbb{R}^p \to \mathbb{R}, i = 1, \ldots, p \) and \( c_k, d_j : \mathbb{R}^{p+r} \to \mathbb{R}, k = p + 1, \ldots, p + q, j = p + 1, \ldots, p + r \), be bounded real-valued and continuous, satisfying the following Lipschitz conditions: for a constant \( A > 0 \),
\[
|b_i(y_1) - b_i(y_2)| \leq A\|y_1 - y_2\|, \quad i = 1, \ldots, p,
\]
\[
|c_k(y_1, z_1) - c_k(y_2, z_2)| \leq A\|(y_1, z_1) - (y_2, z_2)\|, \quad k = p + 1, \ldots, p + q,
\]
\[
|d_j(y_1, z_1) - d_j(y_2, z_2)| \leq A\|(y_1, z_1) - (y_2, z_2)\|, \quad j = p + 1, \ldots, p + r,
\]
for every \( y_1, y_2 \in \mathbb{R}^p \) and \( z_1, z_2 \in \mathbb{R}^r \). Moreover, let \( \sigma_i : \mathbb{R} \to \mathbb{R}, i = 1, \ldots, p \), be a set of bounded Borel functions such that
\[
|\sigma_i(x) - \sigma_i(y)|^2 \leq \rho_i(|x - y|), \quad x, y \in \mathbb{R},
\]
where \( \rho_i : (0, \infty) \to (0, \infty) \) are Borel functions such that \( \int_0^\infty \rho_i^{-1}(x)dx = \infty \). Then the pathwise uniqueness holds for the following system of stochastic differential equations:
\[
dY_i = \sigma_i(Y_i)dB_i + b_i(Y)dt, \quad i = 1, \ldots, p,
\]
\[ dZ_j = \sum_{k=p+1}^{p+q} c_k(Y, Z)dB_k + d_j(Y, Z)dt, \quad j = p+1, \ldots, p+r, \quad (2.2) \]

where \( B_1, \ldots, B_{p+q} \) are independent Brownian motions.

**Proof:** Let \((Y, Z)\) and \((\tilde{Y}, \tilde{Z})\) be two solutions with respect to the same Brownian motion \(B = (B_t)_{t \leq p+q}\) such that \(Y(0) = \tilde{Y}(0)\) and \(Z(0) = \tilde{Z}(0)\) a.s. For every \(i = 1, \ldots, p\), we have

\[
Y_i(t) - \tilde{Y}_i(t) = \int_0^t (\sigma_i(Y_i(s)) - \sigma_i(\tilde{Y}_i(s)))dB_i(s) + \int_0^t (b_i(Y_i(s)) - b_i(\tilde{Y}_i(s)))ds. \quad (2.3)
\]

Then we get

\[
\int_0^t \frac{1_{\{Y_i(s) > \tilde{Y}_i(s)\}}}{\rho_i(Y_i(s) - \tilde{Y}_i(s))} d\{Y_i - \tilde{Y}_i, Y_i - \tilde{Y}_i\} = \int_0^t \frac{\sigma_i(Y_i(s)) - \sigma_i(\tilde{Y}_i(s))}{\rho_i(Y_i(s) - \tilde{Y}_i(s))} 1_{\{Y_i(s) > \tilde{Y}_i(s)\}} ds \leq t.
\]

Thus, applying Lemma 3.3 from Ref. 25, p. 389, we get that the local time of \(Y_i - \tilde{Y}_i\) at 0 vanishes identically. Consequently, by Tanaka’s formula we get

\[
|Y_i(t) - \tilde{Y}_i(t)| = \int_0^t \text{sgn}(Y_i(s) - \tilde{Y}_i(s))d(Y_i(s) - \tilde{Y}_i(s)) + L_i^0(Y_i - \tilde{Y}_i)
\]

\[
= \int_0^t \text{sgn}(Y_i(s) - \tilde{Y}_i(s))d(Y_i(s) - \tilde{Y}_i(s)).
\]

Since \(\sigma_i\) is bounded, using (2.3), we state that

\[
|Y_i(t) - \tilde{Y}_i(t)| - \int_0^t \text{sgn}(Y_i(s) - \tilde{Y}_i(s))(b_i(Y_i(s)) - b_i(\tilde{Y}_i(s)))ds
\]

is a martingale vanishing at 0. This together with the Lipschitz conditions satisfied by \(b_i\) give

\[
E|Y_i(t) - \tilde{Y}_i(t)| \leq A \int_0^t E||Y(s) - \tilde{Y}(s)||ds.
\]

Summing up the above-given inequalities, we arrive at

\[
E||Y(t) - \tilde{Y}(t)|| \leq C \int_0^t E||Y(s) - \tilde{Y}(s)||ds
\]

and Gronwall’s lemma shows that \(Y(t) = \tilde{Y}(t)\) for every \(t > 0\) a.s.

Using in a standard way the properties of the Itô integral and the Schwarz inequality, similarly as in Ref. 13, p. 165, we get that for every \(t \in [0, T]\),

\[
E|Z_j(t) - \tilde{Z}_j(t)|^2 \leq C \sum_{k=p+1}^{p+q} E\left( \int_0^t (c_k(Y(s), Z(s)) - c_k(\tilde{Y}(s), \tilde{Z}(s)))dB_k(s)^2 \right)
\]

\[
+ C \sum_{k=p+1}^{p+q} E\left( \int_0^t (d_j(Y(s), Z(s)) - d_j(\tilde{Y}(s), \tilde{Z}(s)))^2ds \right)
\]

\[
\leq C \sum_{k=p+1}^{p+q} E\left( \int_0^t (c_k(Y(s), Z(s)) - c_k(\tilde{Y}(s), \tilde{Z}(s)))^2ds \right)
\]

\[
+ C T E\left( \int_0^t (d_j(Y(s), Z(s)) - d_j(\tilde{Y}(s), \tilde{Z}(s)))^2ds \right)
\]

\[
\leq C A^2(q + T)E\left( \int_0^t (||Y(s) - \tilde{Y}(s)||^2 + ||Z(s) - \tilde{Z}(s)||^2)ds \right).
\]
Thus, using the previously proved fact that $Y = \bar{Y}$ a.s. we get that

$$E[|Z(t) - \bar{Z}(t)|^2] \leq CA^2(q + T)r \int_0^t E[|Z(s) - \bar{Z}(s)|^2] ds.$$ 

One more application of the Gronwall’s lemma ends the proof.

\[\square\]

### III. EIGENVALUES AND EIGENVECTORS OF MATRIX STOCHASTIC PROCESSES

#### A. Real case

Consider the space $S_p$, of symmetric $p \times p$ real matrices. Denote by $B$, a Brownian $p \times p$ matrix. Let $X_t$ be a stochastic process with values in $S_p$ satisfying the matrix SDE,

$$dX_t = g(X_t)dB_t h(X_t) + h(X_t)dB_t^T g(X_t) \, dt + b(X_t)dt,$$

where $g, h, b : R \rightarrow R$, and $X_0 \in \bar{S}_p$, the set of symmetric matrices with $p$ different eigenvalues. The spectral action of the functions $g, h, b : R \rightarrow R$ on a symmetric matrix $X$ was explained in (1.1) in the Introduction.

Let $\Lambda_t = \text{diag}[\lambda_i(t)]$ be the diagonal matrix of eigenvalues of $X_t$, ordered increasingly: $\lambda_1(t) \leq \lambda_2(t) \leq \ldots \leq \lambda_p(t)$ and $H_t$, an orthonormal matrix of eigenvectors of $X_t$. Matrices $\Lambda$ and $H$ may be chosen (Ref. 24) as smooth functions of $X$ until the first collision time

$$\tau = \inf\{t : \lambda_i(t) = \lambda_j(t) \text{ for some } i \neq j\}.$$

We want to consider the processes of eigenvalues and eigenvectors of $X_t$, in the sequel, we use the notation $dYdZ = d(Y, Z)$ for the quadratic variation process. Note that if $Y, Z$ are matrix valued processes, then $dYdZ$ is a matrix process (see, e.g., Ref. 12).

**Theorem 3:** Suppose that an $S_p$-valued stochastic process $X_t$ satisfies the following matrix stochastic differential equation:

$$dX_t = g(X_t)dB_t h(X_t) + h(X_t)dB_t^T g(X_t) + b(X_t)dt,$$

where $g, h, b : R \rightarrow R$, and $X_0 \in \bar{S}_p$.

Let $G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x)$. Then, for $t < \tau$ the eigenvalues process $\Lambda_t$ and the eigenvectors process $H_t$ verify the following stochastic differential equations:

$$d\lambda_i = 2g(\lambda_i)h(\lambda_i)dv_i + \left(b(\lambda_i) + \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k}\right) dt,$$

$$dh_{ij} = \sum_{k \neq j} h_{ik} \frac{\sqrt{G(\lambda_j, \lambda_k)}}{\lambda_j - \lambda_k} d\beta_{kj} - \frac{1}{2} h_{ij} \sum_{k \neq j} \frac{G(\lambda_j, \lambda_k)}{(\lambda_k - \lambda_j)^2} dt,$$

where $(v_i)$, and $(\beta_{kj})_{k < j}$ are independent Brownian motions and $\beta_{kj} = \beta_{kj}$.

**Proof:** The proof generalizes ideas of Bru in the case of Wishart processes. See also Ref. 15 for the SDEs for the eigenvalue processes of $X_t$. Following Ref. 10 in the case of matrix Jacobi processes, it is handy to use the Stratonovich differential notation $X \circ dy = XdY + \frac{1}{2}dXdY$. We then write the Itô product formula

$$d(XY) = dX \circ Y + X \circ dY.$$ 

We also have $d(X \circ YZ) = (dX \circ Y) \circ Z$ and $(X \circ dY)^T = dY^T \circ X^T$.

Define $A$, a stochastic logarithm of $H$, by

$$dA = H^{-1} \circ dH = H^T \circ dH.$$
Observe that by Itô formula applied to $H^T H = I$, the matrix $A$ is skew-symmetric. By Itô formula applied to $\Lambda = H^T X H$, setting $dN = H^T dX \circ H$, we get
\[
d\Lambda = dN + \Lambda \circ dA - dA \circ \Lambda.
\]
The process $\Lambda \circ dA - dA \circ \Lambda$ is zero on the diagonal. Consequently, $d\lambda_i = dN_{ii}$ and $0 = dN_{ij} + (\lambda_i - \lambda_j) \circ dA_{ij}$, when $i \neq j$. Thus
\[
\frac{1}{\lambda_j - \lambda_i} dA_{ij} = dN_{ij}, \quad i \neq j. \quad (3.4)
\]

For further computations, we need the quadratic variation $dX_{ij}dX_{km}$ which is easily computed from (3.1).
\[
dX_{ij}dX_{km} = \left( g^2(X)_{ij} h^2(X)_{jm} + g^2(X)_{im} h^2(X)_{jk} + g^2(X)_{jk} h^2(X)_{im} + g^2(X)_{jm} h^2(X)_{ik} \right) dt.
\]
The martingale part of $dN$ equals the martingale part of $H^T dX H$ and by the last formula
\[
dN_{ij}dN_{km} = \left( g^2(\Lambda)_{ik} h^2(\Lambda)_{jm} + g^2(\Lambda)_{im} h^2(\Lambda)_{jk} + g^2(\Lambda)_{jk} h^2(\Lambda)_{im} + g^2(\Lambda)_{jm} h^2(\Lambda)_{ik} \right) dt. \quad (3.5)
\]

From (3.5) it follows that
\[
dN_{ii}dN_{jj} = 4\delta_{ij} g^2(\lambda_i) h^2(\lambda_i) dt. \quad (3.6)
\]

Now we compute the finite variation part $dF$ of $dN$,
\[
dF = H^T b(X) dt + \frac{1}{2} (dH^T dX + H^T dXdH)
= b(\Lambda) dt + \frac{1}{2} \left( (dH^T H)(H^T dX H) + (H^T dX H)(H^T dH) \right)
= b(\Lambda) dt + \frac{1}{2} (dNdA + (dNdA)^T).
\]

Using (3.4) and (3.5) we find, writing $G(x, y) = g^2(x) h^2(y) + g^2(y) h^2(x)$,
\[(dNdA)_{ij} = \sum_{k \neq j} dN_{ik} dA_{kj} = \delta_{ij} \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} dt.
\]

It follows that the matrix $dNdA$ is diagonal, so also $dF$ is diagonal and
\[dF_{ii} = b(\lambda_i) dt + \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} dt.
\]

Finally, using (3.6) and the last formula, there exist independent Brownian motions $\nu_i, i = 1, \ldots, m$, such that (3.2) holds.

In order to find SDEs for $H_i$, we deduce from the definition of $dA$ that
\[dH = H \circ dA = H dA + \frac{1}{2} dH dA = H dA + \frac{1}{2} H dAdA.
\]

By (3.5), we find $dN_{ij} dN_{ij} = g^2(\lambda_i) h^2(\lambda_i) + g^2(\lambda_j) h^2(\lambda_i)$ and $dN_{ij} dN_{km} = 0$ when the ordered pairs $i < j$ and $k < m$ are different. We infer from (3.4) that
\[dA_{ij} = \sqrt{\frac{G(\lambda_i, \lambda_j)}{\lambda_j - \lambda_i}} d\beta_{ij}, \quad (3.7)
\]
where the Brownian motions $(\beta_{ij})_{i < j}$ are independent and $\beta_{ij} = \beta_{ji}$. Moreover, when $k < m$, we have $d\lambda_k dA_{km} = dN_{ik} dN_{km}(\lambda_m - \lambda_k) = 0$ by (3.5), so the Brownian motions $(\beta_{ij})_{i < j}$ and $(\nu_i)$ are
The martingale part of \( \lambda - B \). Complex case

From (3.7), we deduce that the matrix \( dAdA \) is diagonal and

\[
(dAdA)_{ij} = - \sum_{k \neq l} dA_{lk} dA_{ik} = - \sum_{k \neq l} \frac{G(\lambda_i, \lambda_k)}{(\lambda_k - \lambda_i)^2} dt.
\]

Now we can compute \( dH = H dA + \frac{1}{2} H dAdA \) and prove (3.3).

\[ \square \]

B. Complex case

In this subsection, we study the eigenvalues process for a process \( X_t \) with values in the space \( \mathcal{H}_p \) of Hermitian \( p \times p \) matrices.

**Theorem 4:** Let \( W_t \) be a complex \( p \times p \) Brownian matrix (i.e., \( W_t = B^1_t + i B^2_t \) where \( B^1_t \) and \( B^2_t \) are two independent real Brownian \( p \times p \) matrices).

Suppose that an \( \mathcal{H}_p \)-valued stochastic process \( X_t \) satisfies the following matrix stochastic differential equation:

\[
dX_t = g(X_t)dW_t h(X_t) + h(X_t) dW^*_t g(X_t) + b(X_t) dt,
\]

where \( g, h, b : \mathbb{R} \rightarrow \mathbb{R} \), and \( X_0 \in \mathcal{H}_p \).

Let \( G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x) \). Then, for \( t < \tau \) the eigenvalues process \( \Lambda_t \), verifies the following system of stochastic differential equations:

\[
d\lambda_{ij} = 2g(\lambda_i)h(\lambda_j)dv_t + \left( b(\lambda_i) + 2 \sum_{k \neq l} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} \right) dt,
\]

where \( (v_t) \) are independent Brownian motions.

**Proof:** We will need the following formula for the quadratic variation \( dX_{ij} dX_{kl} \) which is computed from (3.8), using the fact that for a complex Brownian motion \( w_t \), the quadratic variation processes satisfy \( dw dw = 0 \) and \( dw d\bar{w} = 2 dt \),

\[
dX_{ij} dX_{kl} = 2 \left( g^2(X_{ij})h^2(X_{jk}) + g^2(X_{jk})h^2(X_{ij}) \right) dt.
\]

Define \( A \), a stochastic logarithm of \( H \), by

\[
dA = H^{-1} \circ dH = H^* \circ dH.
\]

By Itô formula applied to \( H^* H = I \), the matrix \( A \) is skew-Hermitian. In particular, the terms of \( \text{diag}(A) \) are purely imaginary (recall that in the real case they were 0). By Itô formula applied to \( \Lambda = H^* XH \), we get, setting \( dN = H^* \circ dX \circ H \),

\[
d\Lambda = dN + \Lambda \circ dA - dA \circ \Lambda.
\]

We have

\[
dN = H^* dXH + \frac{1}{2}(dH^* dXH + H^* dXdH),
\]

so the process \( N \) takes values in \( \mathcal{H}_p \). In particular, its diagonal entries are real. The process \( \Lambda \circ dA - dA \circ \Lambda \) is zero on the diagonal, so \( d\lambda_i = dN_{ii} \). Moreover, when \( i \neq j \), we have \( 0 = dN_{ij} + (\lambda_i - \lambda_j) \circ dA_{ij} \) and

\[
dA_{ij} = \frac{1}{\lambda_j - \lambda_i} \circ dN_{ij}, \quad i \neq j.
\]

The martingale part of \( dN \) equals the martingale part of \( H^* dXH \) and by formula (3.10), we obtain

\[
dN_{ij} dN_{km} = 2 \left( g^2(\Lambda)_{ij} h^2(\Lambda)_{jk} + g^2(\Lambda)_{jk} h^2(\Lambda)_{jm} \right) dt.
\]

(3.12)
From (3.12) it follows that

\[ dN_{ii}dN_{jj} = 4\delta_{ij}g^2(\lambda_i)h^2(\lambda_i)dt. \]  

(3.13)

Now we compute the finite variation part \(dF\) of \(dN\),

\[
dF = H^*b(X)\lambda dt + \frac{1}{2}(dH^*dX + H^*dXdH) \]
\[
= b(\lambda)dt + \frac{1}{2}((dH^*H)(H^*dXH) + (H^*dXH)(H^*dH)) \]
\[
= b(\lambda)dt + \frac{1}{2}(dNdA + (dNdA)^*). \]

Recall that \(G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x)\). We get

\[
(dNdA)_{ij} = \sum_k dN_{ik}dA_{kj} = 2\delta_{ij} \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} dt + dN_{ij}dA_{jj}. \]

When \(i = j\), the term \(dN_{ii}\) is real and \(dA_{ii} \in \mathbb{R}\). It follows that

\[
dF_{ii} = b(\lambda_i)dt + 2 \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} dt. \]

Finally, using (3.13) and the last formula, there exist independent Brownian motions \(v_i, i = 1, \ldots, m\), such that (3.9) holds. \[\square\]

Theorem 4 may be applied in a special case \(g(x) = \sqrt{x}, h(x) = 1\), and \(b(x) = 2\delta > 0\), when Eq. (3.8) is the SDE for the complex Wishart process, called also a Laguerre process. This process and its eigenvalues were studied by König-O’Connell\(^{18}\) and Demni.\(^{5}\)

**Remark 1:** The SDEs for the eigenvectors matrix \(H_t\) remain an open problem in the complex Hermitian case and a complex analogue of equations (3.3) will be treated in a forthcoming paper. Also, similar problems for more general functions \(G, H, B : \mathbb{R}^p \to \mathbb{R}\), acting spectrally on \(S_p\) by \(G(X) = HG(\Lambda)H^T\), should be investigated. Note that in this paper, we consider the case when \(G = g^{\otimes p}\) is a \(p\)th tensor power of a function \(g : \mathbb{R} \to \mathbb{R}\).

### C. Collision time

In this subsection, we show that under some mild conditions on the functions \(g, h,\) and \(b\) in the matrix SDE (3.1), the eigenvalues of the process \(X_t\) never collide.

**Theorem 5:** Let \(\Lambda = (\lambda_i)_{i=1, \ldots, p}\) be a process starting from \(\lambda_1(0) < \ldots < \lambda_p(0)\) and satisfying (3.2) with functions \(b, g, h : \mathbb{R} \to \mathbb{R}\) such that \(b, g^2, h^2\) are Lipschitz continuous and \(g^2h^2\) is convex or in class \(C^{1,1}\). Then the first collision time \(\tau\) is infinite a.s.

**Proof:** We define \(U = -\sum_{i,j} \log(\lambda_j - \lambda_i)\) on \(t \in [0, \tau]\). Applying Itô formula, using (3.2) and the fact that \(d\lambda_i d\lambda_j = \delta_{ij} g^2(\lambda_i)h^2(\lambda_i)dt\), we obtain

\[
dU = \sum_{i < j} \frac{d\lambda_i - d\lambda_j}{\lambda_j - \lambda_i} + \frac{1}{2} \frac{d(\lambda_i, \lambda_j) + d(\lambda_j, \lambda_i)}{(\lambda_j - \lambda_i)^2} = dM + dA^{(1)} + dA^{(2)} + dA^{(3)}, \]

where

- \(dM\) is the quadratic variation,
- \(dA^{(1)}\) is the first order correction,
- \(dA^{(2)}\) is the second order correction,
- \(dA^{(3)}\) is the third order correction.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to 156.17.33.187 On: Fri, 06 Nov 2015 08:33:52
where

\[
\begin{align*}
    dM &= 2 \sum_{i<j} g(\lambda_i) h(\lambda_i) d\nu_i - g(\lambda_j) h(\lambda_j) d\nu_j, \\
    dA^{(1)} &= \sum_{i<j} \frac{h(\lambda_i) - h(\lambda_j)}{\lambda_j - \lambda_i} dt, \\
    dA^{(2)} &= 2 \sum_{i<j} \frac{(g^2(\lambda_j) - g^2(\lambda_i)) (h^2(\lambda_j) - h^2(\lambda_i))}{(\lambda_j - \lambda_i)^2} dt, \\
    dA^{(3)} &= \sum_{i<j<k} \frac{1}{\lambda_j - \lambda_i} \sum_{k \neq i, k \neq j} \left( \frac{G(\lambda_i, \lambda_k) - G(\lambda_j, \lambda_k)}{\lambda_i - \lambda_k} - \frac{G(\lambda_j, \lambda_k) - G(\lambda_k, \lambda_i)}{\lambda_j - \lambda_k} \right) dt \\
    &= \sum_{i<j<k} \frac{G(\lambda_j, \lambda_k)(\lambda_k - \lambda_j) - G(\lambda_i, \lambda_k)(\lambda_k - \lambda_i) + G(\lambda_i, \lambda_j)(\lambda_j - \lambda_i)}{(\lambda_j - \lambda_i)(\lambda_k - \lambda_i)(\lambda_k - \lambda_j)} dt.
\end{align*}
\]

We will show that the finite variation part of \( U \) is bounded on any interval \([0, t]\). Lipschitz continuity of \( b, g^2 \), and \( h^2 \) implies that \( |A^{(1)}| \leq K(p - 1)t/2 \) and \( |A^{(2)}| \leq K^2 p(p - 1)t \), where \( K \) is a constant appearing in the Lipschitz condition. Observe also that if for every \( x, y, z \), we set

\[
H(x, y, z) = [(g^2(x) - g^2(z))(h^2(y) - h^2(z)) + (g^2(y) - g^2(z))(h^2(x) - h^2(z))] (y - x),
\]

then \( H(x, y, z) = (G(x, y) - G(x, z) - G(y, z) + G(z, z))(y - x) \) and

\[
\begin{align*}
    H(x, y, z) + H(y, z, x) - H(x, z, y) &= 2(z - y)G(y, y) - 2(z - x)G(x, z) \\
    &+ 2(y - x)G(x, y) + G(x, x)(z - y) - G(y, y)(z - x) + G(z, z)(y - x).
\end{align*}
\]

Using the last equality and the fact that \( |H(x, y, z)| \leq 2K^2 |(y - x)(z - y)(z - x)| \), we can write

\[
dA^{(5)} = dA^{(4)} + dA^{(5)}, \quad \text{where} \quad 0 \leq A^{(5)}(t) \leq K^2 p(p - 1)(p - 2)t/6 \quad \text{and}
\]

\[
dA^{(5)} = \sum_{i<j<k} \frac{G(\lambda_j, \lambda_k)(\lambda_k - \lambda_j) - G(\lambda_i, \lambda_k)(\lambda_k - \lambda_i) - G(\lambda_k, \lambda_j)(\lambda_j - \lambda_i)}{(\lambda_j - \lambda_i)(\lambda_k - \lambda_i)(\lambda_k - \lambda_j)} dt \\
= \sum_{i<j<k} \left( \frac{G(\lambda_j, \lambda_k)}{\lambda_j - \lambda_i} - \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_j} \right) \frac{1}{\lambda_k - \lambda_i} dt.
\]

If \( G(x, x) = 2g^2(x)h^2(x) \) is convex, then obviously the expression under the last sum and \( A^{(5)} \) is non-positive. When \( G(x, x) \) is \( C^{1,1} \) (i.e., \( |G'(x, x) - G'(y, y)| \leq C|x - y| \)) then it is bounded by \( C \) and \( |A^{(5)}(t) - Kt| \leq C t \).

Since finite-variation part of \( U \) is finite whenever \( t \) is bounded, applying McKean argument (see Refs. 21 and 22) we obtain that \( U \) cannot explode in finite time with positive probability and consequently \( t = \infty \) a.s.

\[\square\]

Remark 2: Note that if \( p = 2 \), then the assumptions on \( g^2h^2 \) can be dropped since in that case \( dA^{(3)} = 0 \).

In the modern theory of particle systems it is important to consider and to study \( \beta \)-versions of a particle system given by the SDEs system (3.2), i.e., the solutions of the SDEs system

\[
d\lambda_i = 2g(\lambda_i) h(\lambda_i) d\nu_i + \beta \left( b(\lambda_i) + \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} \right) dt, \quad \beta > 0. \tag{3.14}
\]
Note that the system (3.14) is for \( \beta \neq 1 \) no longer of the form (3.2), because \( \beta G(x, y) \neq g^2(x)h^2(y) + g^2(y)h^2(x) \). However, we have the following.

**Corollary 1:** Let \( \Lambda = (\lambda_i)_{i=1, \ldots, p} \) be a process starting from \( \lambda_1(0) < \ldots < \lambda_p(0) \) and satisfying (3.14) with functions \( b, g, h : \mathbb{R} \to \mathbb{R} \) such that \( b, g^2, h^2 \) are Lipschitz continuous and \( g^2h^2 \) is convex or in class \( C^1 \). If \( \beta \geq 1 \), then the first collision time \( \tau \) is infinite a.s.

**Proof:** The proof is similar to the proof of Theorem 5, with the decomposition \( dU = dM + dA^{(1)} + dA^{(2)} + dA^{(3)} \) given by

\[
\begin{align*}
    dM &= 2 \sum_{i < j} g(\lambda_i)h(\lambda_i)dv_i - g(\lambda_j)h(\lambda_j)dv_j, \\
    dA^{(1)} &= \beta \sum_{i < j} \frac{b(\lambda_i) - b(\lambda_j)}{\lambda_j - \lambda_i} dt, \\
    dA^{(2)} &= 2 \sum_{i < j} \frac{(g^2(\lambda_j) - g^2(\lambda_i))(h^2(\lambda_j) - h^2(\lambda_i))}{(\lambda_j - \lambda_i)^2} dt + 2(1 - \beta) \sum_{i < j} \frac{G(\lambda_i, \lambda_j)}{(\lambda_j - \lambda_i)^2}, \\
    dA^{(3)} &= \beta \sum_{i < j} \frac{1}{\lambda_j - \lambda_i} \sum_{k \neq i, j} \left( \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} - \frac{G(\lambda_j, \lambda_k)}{\lambda_j - \lambda_k} \right) dt.
\end{align*}
\]

The estimates of \( M, A^{(1)}, A^{(3)} \) and of the first term of \( A^{(2)} \) are identical as in the proof of Theorem 5. The term \( 2(1 - \beta) \sum_{i < j} G(\lambda_i, \lambda_j) \) is less or equal 0 for \( \beta \geq 1 \), so \( A^{(2)} \) cannot explode to \( +\infty \) and neither can \( U \).

**Remark 3:** The condition \( \beta \geq 1 \) is optimal in Corollary 1. It is known (Refs. 16 and 26) that the Dyson Brownian motion defined as a solution of the SDEs system

\[
dY_i = dv_i + \beta \sum_{k \neq i} \frac{1/2}{Y_i - Y_k} dt, \quad i = 1, \ldots, p
\]

has collisions for \( \beta < 1 \). Note that taking \( g(x) = 1/2, h(x) = 1, b(x) = 0 \), and \( \beta = 1 \) the Dyson SDEs system is of the form (3.2) and a general Dyson SDEs system is the \( \beta \)-version of the \( \beta = 1 \) case.

Observe that Theorem 5 holds also in the complex case. The \( \beta \)-version of Eq. (3.9) is defined by

\[
d\lambda_i = 2g(\lambda_i)h(\lambda_i)dv_i + \beta \left( b(\lambda_i) + 2 \sum_{k \neq i} \frac{G(\lambda_i, \lambda_k)}{\lambda_i - \lambda_k} \right) dt. \tag{3.15}
\]

**Corollary 2.** Under the hypotheses of Theorem 5, the solutions of the SDEs system (3.9), i.e., the eigenvalues of the process \( X_t \) on \( \mathcal{H}_p \), verify \( \tau = \infty \) a.s. It is also true for their \( \beta \)-versions (3.15) with \( \beta \geq 1 \).

**Proof:** Note that the system (3.9) is equal to the system (3.14) with the same \( g \) and \( h \), \( h/2 \) instead of \( b \), and \( \beta = 2 \). \( \square \)

---

**D. Spectral matrix Yamada-Watanabe theorem**

**Theorem 6:** Consider the matrix SDE (3.1) on \( \mathcal{S}_p \),

\[
dX_t = g(X_t)dB_t h(X_t) + h(X_t)dB_t^T g(X_t) + b(X_t)dt,
\]

where \( g, h : \mathbb{R} \to \mathbb{R} \) and \( X_0 \in \tilde{\mathcal{S}}_p \). Suppose that

\[
|g(x)h(x) - g(y)h(y)|^2 \leq \rho(|x - y|), \quad x, y \in \mathbb{R}, \tag{3.16}
\]

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 156.17.33.187 On: Fri, 06 Nov 2015 08:33:52
where $\rho: (0, \infty) \to (0, \infty)$ is a Borel function such that $\int_0^\rho \rho^{-1}(x)dx = \infty$, that the function $G(x, y) = g^2(x)h^2(y) + g^2(y)h^2(x)$ is locally Lipschitz and strictly positive on $\{x \neq y\}$ and that $b$ is locally Lipschitz. Then, for $t < \tau$, the pathwise uniqueness holds for the eigenvalue and eigenvector processes of $X_t$, solutions of the SDEs system (3.2) and (3.3).

Remark 4: The hypothesis in Theorem 6 on the strict positivity of $G(x, y)$ off the diagonal $\{x = y\}$ is equivalent to the condition that $g$ and $h$ have not more than one zero and their zeros are not common.

Remark 5: In the matrix SDE (3.1), the functions $g$ and $h$ appear only in the martingale part, whereas in Eqs. (3.2) and (3.3) they intervene also in the finite variation part. That is why a Lipschitz condition on the symmetrized function $g^2 \oplus h^2$ cannot be avoided in a spectral matrix Yamada-Watanabe theorem on $S_p$.

Proof: We diagonalize $X_0 = h_0\lambda_0h_0^T$. We will show that Eqs. (3.2) and (3.3) have unique strong solutions when $\Lambda_0 = \lambda_0$ and $H_0 = h_0$. The functions

$$b_i(\lambda_1, \ldots, \lambda_p) = b(\lambda_i) + \sum_{k \neq i} G(\lambda_i, \lambda_k) \overline{\lambda_i - \lambda_k},$$

$$c_{ij}(\lambda_1, \ldots, \lambda_p, h_{11}, h_{12}, \ldots, h_{pp}) = \delta_{ij} h_{1k} \sqrt{G(\lambda_j, \lambda_k)},$$

$$d_{ij}(\lambda_1, \ldots, \lambda_p, h_{11}, h_{12}, \ldots, h_{pp}) = \frac{1}{2} h_{ij} \sum_{k \neq j} G(\lambda_j, \lambda_k) \overline{(\lambda_k - \lambda_j)^2}$$

are locally Lipschitz continuous on $D = \{0 \leq \lambda_1 < \lambda_2 < \ldots < \lambda_p\} \times [-1, 1]^r$, $r = p^2$. Thus, they can be extended from the compact sets

$$D_m = \{0 \leq \lambda_1 < \lambda_2 < \ldots < \lambda_p < m, \lambda_{i+1} - \lambda_i \geq 1/m\} \times [-1, 1]^r$$

to bounded Lipschitz continuous functions on $\mathbb{R}^{p^2}$. We will denote by $b_i^m$, $c_{ij}^m$, and $d_{ij}^m$ such extensions for $m = 1, 2, \ldots$.

We consider the following system of SDE (recall that $\beta_{kj} = \beta_{jk}$):

$$d\lambda_i^m = 2g(\lambda_i^m)h(\lambda_i^m)d\nu_i + b_i^m(\Lambda^m)dt, \quad i = 1, \ldots, p,$$

$$dh_{ij} = \sum_{k \neq j} c_{ij}^m(\Lambda^m, H) d\beta_{kj}(t) + d_{ij}^m(\Lambda^m, H) dt, \quad 1 \leq i, j \leq p.$$

Since $|g(x)h(x) - g(y)h(y)|^2 \leq \rho(|x - y|)$ and $\int_0^\rho \rho(x)^{-1}dx = \infty$, by Theorem 2 with $q = \frac{3}{4}p(p - 1)$, we obtain that there exists a unique strong solution of the above-given system of SDEs. Using the fact that $D_m \subset D_{m+1}$, $\lim_{m \to \infty} D_m = D$ and the standard procedure we get that there exists a unique strong solution $(\Lambda_t, H_t)$ of the systems (3.2) and (3.3) up to the first exit time from the set $D$. This time is almost surely equal to $\tau$, the first collision time of the eigenvalues.

Theorems 6 and 5 imply the following global strong existence result for eigenvalues and eigenvectors of a matrix SDE on the space $S_p$.

Corollary 3: Suppose that $b, g^2, h^2$ are Lipschitz continuous, $g^2h^2$ is convex or in class $C^{1,1}$ and that $G(x, y)$ is strictly positive on $\{x \neq y\}$. Then the system of SDEs (3.2) and (3.3) for eigenvalue and eigenvector processes of the matrix process on $S_p$, given by (3.1) admits a unique strong solution on $[0, \infty)$.

Proof: Recall that if a non-negative function $F$ is Lipschitz continuous, then $\sqrt{F}$ is $1/2$-Hölder continuous. Observe that if $g^2$ and $h^2$ are Lipschitz continuous, then $g^2h^2$ is locally Lipschitz and $gh$ is $1/2$-Hölder. Thus (3.16) is verified and Theorem 6 applies on $[0, \tau)$. By Theorem 5, $\tau = \infty$ almost surely. \qed
Remark 6. Theorem 6 and Corollary 3 establish the pathwise uniqueness and strong existence of eigenvalue and eigenvector processes $\Lambda_t$ and $H_t$ of the process $X_t$. It is an open question whether the pathwise uniqueness and strong existence hold for the matrix SDE (3.1) itself. Note that the process $X_t$ takes values in the space $S_p$ of dimension $p(p + 1)/2$, whereas the Brownian matrix in the SDE (3.1) contains $p^2$ independent Brownian motions. Thus, we have a redundance phenomenon in the matrix SDE (3.1). The SDEs system (3.2) and (3.3) for $(\Lambda_t, H_t)$ has the advantage to be non-redundant, because it contains exactly $p(p + 1)/2$ independent Brownian motions.

In the light of Theorem 6 and Corollary 3, it is natural to conjecture the pathwise uniqueness and strong existence for the matrix SDE (3.1) itself. Note that the pathwise uniqueness and strong existence hold for the matrix SDE (3.1) contains $p^2$ independent Brownian motions. Thus, we have a redundance phenomenon in the matrix SDE (3.1). The SDEs system (3.2) and (3.3) for $(\Lambda_t, H_t)$ has the advantage to be non-redundant, because it contains exactly $p(p + 1)/2$ independent Brownian motions.

In the light of Theorem 6 and Corollary 3, it is natural to conjecture the pathwise uniqueness and strong existence for the matrix SDE (3.1). Otherwise, the most precise description of the matrix process $X_t$ would be given by the SDEs for its eigenvalue and eigenvector processes (3.2) and (3.3) and not by the matrix SDE (3.1), despite its simplicity and because of the redundance described above.

IV. APPLICATIONS

A. Noncolliding particle systems of squared Bessel processes

In a recent paper by Katori and Tanemura,17 particle systems of squared Bessel processes $BESQ^{(\nu)}$, $\nu > -1$, interacting with each other by long ranged repulsive forces are studied. If there are $N$ particles, their positions $X_{i}^{(\nu)}$ are given by the following system of SDEs, see Ref. 17, p. 593,

$$
dX_{i}^{(\nu)}(t) = 2\sqrt{X_{i}^{(\nu)}(t)}dB_{i}(t) + 2(\nu + 1)dt + 4X_{i}^{(\nu)}(t)\sum_{j\neq i}\frac{dt}{X_{i}^{(\nu)}(t) - X_{j}^{(\nu)}(t)}
$$

$$
= 2\sqrt{X_{i}^{(\nu)}(t)}dB_{i}(t) + 2(\nu + N)dt + 2\sum_{j\neq i}\frac{X_{i}^{(\nu)}(t) + X_{j}^{(\nu)}(t)}{X_{i}^{(\nu)}(t) - X_{j}^{(\nu)}(t)}dt, \ i = 1, \ldots, N
$$

with a collection of independent standard Brownian motions $\{B_{i}(t), i = 1, \ldots, N\}$ and, if $-1 < \nu < 0$, with a reflection wall at the origin. Theorem 4 implies that the processes $X_{i}^{(\nu)}(t)$ are the eigenvalues of a complex Wishart (or Laguerre) process, with shape parameter $\delta = \nu + N$, see the end of Sec. III B. It may be also seen as a $\beta$-version of the real Wishart eigenvalue process, with $\beta = 2$.

Theorem 7: The system of SDEs for a particle system of $N$ squared Bessel processes $BESQ^{(\nu)}$, with $0 \leq X_{i}^{(\nu)}(0) < X_{2}^{(\nu)}(0) < \ldots < X_{N}^{(\nu)}(0)$ admits a unique strong solution on $[0, \infty)$ for $\nu \geq -1$.

Proof: Like for a Squared Bessel process on $R^{+}$, one must start with the following system of SDEs:

$$
dY_{i}^{(\nu)}(t) = 2\sqrt{|Y_{i}^{(\nu)}(t)|}dB_{i}(t) + 2(\nu + N)dt + 2\sum_{j\neq i}\frac{|Y_{i}^{(\nu)}(t)| + |Y_{j}^{(\nu)}(t)|}{Y_{i}^{(\nu)}(t) - Y_{j}^{(\nu)}(t)}, \ i = 1, \ldots, N,
$$

which is well defined on $R^{N}$ up to the first collision time $\tau$. We suppose that $0 \leq Y_{1}^{(\nu)}(0) < Y_{2}^{(\nu)}(0) < \ldots < Y_{N}^{(\nu)}(0)$. It follows from Corollary 2 that the collision time for the processes $Y_{i}^{(\nu)}(t)$, $i = 1, \ldots, N$ is $\tau = \infty$ a.s.

First suppose that $\nu > -1$. Theorem 2 applied to the last system, with a standard use of localization techniques as in the proof of Theorem 6, gives the existence of a pathwise unique strong solution $Y_{i}^{(\nu)}(t)$. It remains to show that $Y_{1}^{(\nu)}(t) \geq 0$ for all $t > 0$.

Denote

$$
b_{1}(t) = \nu + N + \sum_{j\neq 1}\frac{|Y_{1}^{(\nu)}(t)| + |Y_{j}^{(\nu)}(t)|}{Y_{1}^{(\nu)}(t) - Y_{j}^{(\nu)}(t)}.
$$
We define two stopping times
\[ \vartheta = \inf\{t > 0 \mid Y_1^{(\vartheta)}(t) < 0\}; \]
\[ \kappa = \inf\{t > \vartheta \mid b_1(t) = 0\}. \]
Suppose that \( P(\vartheta < \infty) > 0 \). Then there exists \( T > 0 \) such that \( P(\vartheta < T) > 0 \). As \( Y_1^{(\vartheta)}(\vartheta) = 0 \) and \( b_1(\vartheta) = \nu + N - (N - 1) = \nu + 1 > 0 \), we see that if \( \vartheta < \infty \), then \( \kappa > \vartheta \).

It follows from Ref. 25, Lemma 3.3, p. 389 that the local time \( L^0(Y_1^{(\nu)}) = 0 \). Using Tanaka’s formula, VI (1.2) we obtain for \( t \geq 0 \),
\[
E(Y_1^{(\nu)}((\vartheta + t) \wedge \kappa \wedge T))^- = -E \int_{\vartheta \wedge T}^{(\vartheta + t) \wedge \kappa \wedge T} 1_{|Y_1^{(\nu)}(s)| \leq 0} dY_1^{(\nu)}(s)
\]
\[ = -2E \int_{\vartheta \wedge T}^{(\vartheta + t) \wedge \kappa \wedge T} 1_{|Y_1^{(\nu)}(s)| \leq 0} b_1(s) ds \leq 0. \]

In the last inequality, we used the fact that \( b_1(s) > 0 \) when \( \vartheta \leq s < \kappa \). Thus,
\[ Y_1^{(\nu)}((\vartheta + t) \wedge \kappa \wedge T) \geq 0 \]
for \( t > 0 \) which contradicts the definition of \( \vartheta \). We deduce that \( \vartheta = \infty \) almost surely.

In the case \( \nu = -1 \), let \( T_0 = \inf\{t > 0 \mid Y_1^{(\nu)}(t) = 0\} \). Observe that if \( T_0 < \infty \), then \( b_1(T_0) = 0 \). Define \( Y_0^{(\nu)}(t) = Y_1^{(\nu)}(t) \) when \( t < T_0 \) and \( Y_0^{(\nu)}(t) = 0 \) when \( t \geq T_0 \). Then \( (Y_0^{(\nu)}, Y_2^{(\nu)}, \ldots, Y_N^{(\nu)}) \) is a solution of the same SDE system as \( (Y_1^{(\nu)}, Y_2^{(\nu)}, \ldots, Y_N^{(\nu)}) \). Consequently, by Theorem 2, we have \( Y_1^{(\nu)} = Y_0^{(\nu)} \geq 0 \).

**B. Wishart stochastic differential equations**

Wishart processes on \( \mathbb{S}^T_p \) are matrix analogues of Squared Bessel processes on \( \mathbb{R}^+ \). Wishart processes with shape parameter \( n \) (which corresponds to the dimension of a BESQ on \( \mathbb{R}^+ \)) are simply constructed as \( X_t = N^T_t N_t \), where \( N_t \) is an \( n \times p \) Brownian matrix. Let \( \alpha > 0 \) and \( B = (B_t)_{t \geq 0} \) be a Brownian \( p \times p \) matrix. We write \( \sqrt{X_t} \) in the spectral action sense of \( g(X_t) \) with \( g(x) = \sqrt{x} \), explained in (1.1). \( \sqrt{X_t} \) is the symmetric matrix such that its square equals \( X_t \). The Wishart stochastic differential equation for a Wishart process with a shape parameter \( \alpha \) is
\[
\begin{align*}
\left\{ 
&dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt \\
&X_0 = x_0.
\right. 
\end{align*}
\]
It was introduced by Bru"{u} by first writing the SDE for \( X_t = N^T_t N_t \) and next replacing the parameter \( n \) by \( \alpha \). It was shown in Ref. 3 that if \( x_0 \in \mathbb{S}^T_p \) and \( \alpha > p - 1 \), then there exists a unique weak solution of (4.1). Also according to Ref. 3, the conditions \( \alpha \geq p + 1 \) and \( x_0 \in \mathbb{S}^T_p \) imply that (4.1) has a unique strong solution. We reinforce considerably these results.

Our methods apply to the following matrix stochastic differential equation:
\[
dY_t = \sqrt{|Y_t|} dB_t + dB_t^T \sqrt{|Y_t|} + \alpha I dt, \tag{4.2}
\]
where \( \alpha \in \mathbb{R} \), \( Y_0 = y_0 \in \mathbb{S}_p \), and \( |Y_t| \) is defined in the spectral action sense of \( f(Y_t) \) with \( f(x) = |x| \), explained in (1.1).

We have \( g(x) = \sqrt{|x|} \), \( h(x) = 1 \), and \( G(x, y) = |x| + |y| \) for \( x, y \in \mathbb{R} \). These functions satisfy the hypotheses of Theorems 5 and 6.

By Theorem 3, the eigenvalues of the generalized Wishart process \( Y_t \) verify the following system of SDEs:
\[
d\lambda_i = 2\sqrt{|\lambda_i|} d\nu_i + \left( \alpha + \sum_{k \neq i} \frac{|\lambda_i| + |\lambda_k|}{\lambda_i - \lambda_k} \right) dt.
\]
First, using Theorem 5 we obtain the following.
Corollary 4: For $\alpha \in \mathbb{R}$ and $\lambda_1(0) < \lambda_2(0) < \ldots < \lambda_p(0)$, the eigenvalues $\lambda_i(t)$ never collide, i.e., the first collision time $\tau = \infty$ almost surely.

Next, Theorem 6 implies the following.

Corollary 5: The SDEs system for the eigenvalues and eigenvectors (\(\Lambda_t, H_t\)) corresponding to the generalized Wishart SDE (4.2) with $Y_0 = y_0 \in \mathcal{S}_p$ has a unique strong solution on \([0, \infty)\) for any $\alpha \in \mathbb{R}$.

In order to consider Eq. (4.1), we must prove the non-negativity of the smallest eigenvalue of the process $Y_t$, when starting from a non-negative value.

Proposition 1: If $\alpha \geq p - 1$ and $\lambda_1(0) \geq 0$, then the process $\lambda_1(t)$ remains non-negative.

Proof: We argue as in the proof of Theorem 7. \qed

Consequently, using the unicity of solutions in Theorem 6, we obtain the following.

Corollary 6: Consider the Wishart SDE (4.1) with $x_0$ such that $0 \leq \lambda_1(0) < \lambda_2(0) < \ldots < \lambda_p(0)$. Then the corresponding system of SDEs for eigenvalue and eigenvector processes (\(\Lambda_t, H_t\)) has a unique strong solution on \([0, \infty)\) for $\alpha \geq p - 1$.

Remark 7: Bru\textsuperscript{3} showed that for $\alpha > p - 1$ the Wishart processes have the absolutely continuous Wishart laws which are very important in multivariate statistics, see, e.g., the monograph of Muirhead.\textsuperscript{23} The singular Wishart processes corresponding to $\alpha = 1, \ldots, p - 1$ are obtained as $X_t = N_t^T N_t$, where $N_t$ is an $n \times p$ Brownian matrix. Then $X_0 = N_0^T N_0$ has eigenvalue $0$ of multiplicity $p - \alpha$ so $x_0 \not\in \mathcal{S}_p$.

Remark 8: An important perturbation of the Wishart SDE (4.1) is the equation for the Wishart process with constant drift $c > 0$, which may be also viewed as a squared matrix Ornstein-Uhlenbeck process

$$dX_t = \sqrt{X_t} dB_t + dB_t^T \sqrt{X_t} + \alpha I dt + cX_t dt, \quad X_0 \in \mathcal{S}_p.$$ \hspace{1cm} (4.3)

This equation has the form (3.1) with $g(x) = \sqrt{x}$, $h(x) = 1$ and $b(x) = \alpha + cx$. By Theorems 5 and 6, the SDEs system for its eigenvalue and eigenvector processes has a unique strong solution with $t \in [0, \infty)$ for any $\alpha \geq p - 1$, $c > 0$ and $0 \leq \lambda_1(0) < \lambda_2(0) < \ldots < \lambda_p(0)$. More general squared matrix Ornstein-Uhlenbeck processes were first studied by Bru\textsuperscript{3} and recently by Mayerhofer et al.\textsuperscript{22} Our spectral strong existence and uniqueness result for (4.3) is not covered by these papers.

Remark 9: The existence and pathwise unicity of strong solutions for the Wishart SDE (4.1) for $\alpha \geq p - 1$ remains an open problem. The difficulty of proving it is related to a redundance in the SDE (4.1), cf. Remark 6. On the other hand, our result on the strong existence and pathwise unicity of eigenvalues and eigenvectors of $X_t$ supports the conjecture of the existence and pathwise unicity of strong solutions for the Wishart SDE (4.1) for $\alpha \geq p - 1$.

### C. Matrix Jacobi processes

Let $0_p$ and $I_p$ be zero and identity $p \times p$ matrices. Define $\mathcal{S}_p[0, I] = \{X \in \mathcal{S}_p | 0_p \leq X \leq I_p\}$. Denote by $\mathcal{S}_p[0, I] = \{X \in \mathcal{S}_p | 0_p < X < I_p\}$ and by $\mathcal{S}_p[0, I]$, the set of matrices in $\mathcal{S}_p[0, I]$ with distinct eigenvalues. A matrix Jacobi process of dimensions $(q, r)$, with $q \wedge r > p - 1$, and with values in $\mathcal{S}_p[0, I]$, was defined and studied by Doumerc\textsuperscript{10} as a solution of the following matrix SDE, with respect to a $p \times p$ Brownian matrix $B_t$.

$$\begin{cases}
    dX_t = \sqrt{X_t} dB_t - T_p - X_t + \sqrt{T_p - X_t} dB_t^T \sqrt{X_t} + (q I_m - (q + r)X_t)dt \\
    X_0 = x_0 \in \mathcal{S}_p[0, I].
\end{cases} \hspace{1cm} (4.4)$$
In Ref. 10, Theorem 9.3.1, p. 135, it was shown that if $q \land r \geq p + 1$ and $x_0 \in \hat{S}_{p}[0, I]$, then (4.4) has a unique strong solution in $\hat{S}_{p}[0, I]$. In the case $q \land r \in (p - 1, p + 1)$ and $x_0 \in \hat{S}_{p}[0, I]$, the existence of a unique solution in law was proved in Ref. 10. Our methods allow one to strengthen the results of Doumerc.

Corollary 7: Let $q \land r \geq p - 1$ and $x_0 \in \hat{S}_{p}[0, I]$. Then the SDEs system for the eigenvalue and eigenvector processes for the matrix SDE (4.4) has a unique strong solution for $t \in [0, \infty)$.

Proof: We apply Theorems 5 and 6 with $g(x) = \sqrt{|x|}$, $h(x) = \sqrt{|1 - x|}$ and $b(x) = q - q + r)x$. Next we prove similarly as in the proof of Theorem 7 that $0 \leq \lambda_1(t) \leq \cdots \leq \lambda_p(t) \leq 1$.

D. $\beta$-Wishart and $\beta$-Jacobi processes

Let $\beta > 0$. One calls a $\beta$-Wishart process a solution of the system of SDEs,

$$d\lambda_i = 2\sqrt{\lambda_i}dv_i + \beta \left( \alpha + \sum_{k \neq i} \frac{\lambda_i + \lambda_k}{\lambda_i - \lambda_k} \right) dt. \quad (4.5)$$

The $\beta$-Wishart processes were studied by Demni. In the theory of random matrices and its physical applications, the $\beta$-Wishart processes are related to Chiral Gaussian Ensembles, which were introduced as effective (approximation) theoretical models describing energy spectra of quantum particle systems in high energy physics. Usually, a symmetry of Hamiltonian is imposed and it fixes the value of $\beta$ to be 1, 2, or 4, respectively, in real symmetric, Hermitian and symplectic cases. On the other hand, from the point of view of statistical physics, $\beta$ is regarded as the inverse temperature, $\beta = 1/(k_B T)$, and should be treated as a continuous positive parameter. In this sense, the $\beta$-Wishart systems are statistical mechanics models of “log -gases” (The strength of the force between particles is proportional to the inverse of distances. Then the potential, which is obtained by integrating the force, is logarithmic function of the distance. So the system is called a “log -gas”). For more information on log -gases, see the recent monograph of Forrester.

In Ref. 7, the existence and uniqueness of strong solutions of the SDE system (4.5) was established for $\beta > 0$ and $\alpha > p - 1 + \frac{1}{\beta}$. Lépingle observed the last result in the classical Wishart case $\beta = 1$. Our Theorem 2 and Corollary 1, together with comparison techniques like in the proof of Theorem 7, imply the following result, not covered by results of Demni and Lépingle.

Corollary 8: The SDE system (4.5) with $0 \leq \lambda_1(0) \leq \lambda_2(0) \leq \cdots \leq \lambda_p(0)$ has a unique strong solution for $t \in [0, \infty)$, for any $\alpha \geq p - 1$ and $\beta \geq 1$.

The $\beta$-Jacobi processes $(\lambda_i)$, $i = 1, \ldots, p$ are $[0, 1]^p$-valued processes generalizing processes of eigenvalues of matrix Jacobi processes defined by (4.4),

$$d\lambda_i = 2\sqrt{\lambda_i(1 - \lambda_i)}dv_i + \beta \left( q - (q + r)\lambda_i + \sum_{k \neq i} \frac{\lambda_i(1 - \lambda_k) + \lambda_k(1 - \lambda_i)}{\lambda_i - \lambda_k} \right) dt. \quad (4.6)$$

Indeed, for $\beta = 1$ the formula (4.6) was shown in Ref. 10 and it follows directly from Theorem 3. $\beta$-Jacobi processes were recently studied by Demni in Ref. 8. He showed that the system (4.6) has a unique strong solution for all time $t$ when $\beta > 0$ and $q \land r > p - 1 + 1/\beta$. As an application of Theorem 2, Theorem 5 and the comparison techniques like in the proof of Theorem 7, we improve this result when $\beta \geq 1$.

Corollary 9: The SDE system (4.6) with $0 \leq \lambda_1(0) \leq \lambda_2(0) \leq \cdots \leq \lambda_p(0) \leq 1$ has a unique strong solution for $t \in [0, \infty)$, for any $\beta \geq 1$ and $q \land r \geq p - 1$.

Remark 10: It would be interesting to extend our generalization of the Yamada-Watanabe theorem to the SDEs considered by Cépa-Lépingle.
The Wishart eigenvalue processes are radial Dunkl processes. Existence and unicity problems for SDEs for important classes of radial Dunkl processes were studied by Demni, using Ref. 4.

The natural counterpart of the Dunkl theory in the negatively curved setting is the theory of hypergeometric Laplacians of Heckman and Opdam, connected with the Cherednik operators, which are the analogues of the Dunkl operators in the flat case. The stochastic processes generated by Laplacians of Heckman and Opdam were studied in Ref. 27 and are called Heckman–Opdam or Cherednik processes.

The Jacobi eigenvalues processes being an important example of the radial Cherednik processes, we conjecture that the strong existence and unicity would hold for radial Cherednik processes.

ACKNOWLEDGMENTS

We thank N. Demni, C. Donati, M. Katori, and M. Yor for discussions and bibliographical indications. We are grateful to the referee for his comments that improved the paper. The authors were supported by MNiSW Grant No. N201 373136 and l’Agence Nationale de la Recherche grant ANR-09-BLAN-0084-01.

25 D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Springer, New York, 1999).