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Abstract 

 

Cyclic pursuit problems’ internal symmetry enables statement of problem 

conditions in a very compact form. Laplace transform allows for solving linear 

differential equations in a short and ‘elegant’ way. This essay combines both of them by 

answering the research question: What are the trajectories of mice pursuing one 

another in a regular polygon and how does properties of Laplace transform allow one to 

solve this problem? 

In the beginning the mice problem is introduced in the simplest regular polygon 

(equilateral triangle). Parametrization and initial analysis is performed – this leads to 

formulation of a system of two linear differential equations. 

The need of method of solving the system of differential equations introduces 

the reader to the next part of the essay, where the Laplace transform of real variable 

functions is defined and its properties are investigated – linearity, transforms of 

derivatives (complete proof included) and Lerch theorem (uniqueness of transforms) 

among others. A table of Laplace transforms of a number of useful functions is 

presented (some of the results are derived in given examples). Instances of application 

of the transform to solving differential equations are also given.  

Subsequently, already introduced methods are applied to solving the previously 

stated system of linear differential equations – the trajectories of mice in an equilateral 

triangle are found explicitly. The generalization of the solution is presented afterwards. 

Solution of a general system of equations results in explicit parametric equations of 

mice trajectories in a regular n-polygon, examples of solutions are presented in form of 

graphs.  

Analysis of usefulness of Laplace transform in solving the problem is presented 

– the key properties identified are: mapping linear differential equations of order one 

into linear algebraic equations and uniqueness of transforms (guaranteeing uniqueness 

of solutions). Remarks on potential further research and possible alternative 

parametrization are added.   

  

 

Word count: 295 
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I. Introduction 

 
Pursuit problems, where pursued moved along a straight line, were studied by 

Leonardo da Vinci and the general case was analysed by P. Bouger in 1732. Cyclic 

pursuit problems (also known as mice, bugs, missiles, dogs, ships problems) have an 

appealing internal symmetry. The mice problem can be traced back to H. Brocard and 

was popularized by H. Steinhaus. In the form of the problem adapted in this paper, mice 

are placed in the vertices of a regular polygon and each mouse chases its nearest right-

hand neighbour. Analysis of the positions of pursuer and pursued subject leads to 

formulation of a system of differential equations.  

Laplace transform is an example of the integral transform, which has been 

developed by a mathematician and astronomer Pierre-Simon Laplace1 in his work on 

probability theory. Laplace transform has various applications – it is used in 

probability, signal analysis, solving electrical circuits, solving linear differential 

equations and their systems among others - it is recognized as a useful tool in physics 

and engineering. See [1].  

This essay aim is a short introduction to Laplace transforms method of solving 

linear differential equations and its application to solving mice pursuit problem. My 

research question is: What are the trajectories of mice pursuing one another in a regular 

polygon and how does properties of the Laplace transform allow one to solve this 

problem? 

  

                                                        
1 Pierre-Simon Laplace was a french mathematician, astronomer and physicist, who is one of authors of Probability theory. Laplace  

also formulated Laplace equation and developed Laplace transform. He lived from 23rd March 1749 to 5th March 1827.   
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II. Introduction of the mice problem 

 

For initial analysis let’s chose a particular regular polygon – e.g. an equilateral 

triangle (the ‘simplest’ regular polygon). Mice are placed in vertices of the triangle 

(facing interior of the polygon). Let’s assume that the mice speeds are equal – we 

assume that the mice behave in a ‘symmetrical’ way, i.e. in the same way with respect to 

their (symmetrical) position in the polygon and each mouse chases its nearest right-

hand neighbour.  

 

Let   ( )  (  ( ),   ( )) represent the position of mouse no. 1 at time    , where 

  ( )     and we choose   ( , ). In a similar way   ( ) is a position of mouse no. 2 

with initial condition   ( )     and we choose   ( , ). Similarly,   ( ) is a position 

of mouse no. 3 with initial condition   ( )     where   (
 

 
,
√ 

 
) as we choose the 

length of triangle’s side as our unit. Mice positions (after some time) are symmetrical. 

See the figure below. 

 

Figure 1. Triangle in which mice chase each other.2 

 

                                                        
2 The figures are obtained by means of  free software GeoGebra 4.2.19.0 . 
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From the symmetry of the system it may be concluded that the relation between the 

position of mouse no. 1 and mouse no. 2 may be represented by means of the following 

transformations: 

  ( ) rotated 
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

so 

(  ,   )   (  )
(  

 
 , 

(  ,   ))   

 (     
 

 
       

 

 
 ,      

 

 
       

 

 
 )   

 ( 
 

 
   √ 

 
    , √

 

 
   

 

 
  ),    

where    represents rotation3  by angle   around origin and   ⃗  stands for translation4 

by vector   . 

 

Vector   ⃗⃗⃗⃗ ( )      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ( ) (see Figure 1) represents the direction of the movement of 

mouse no. 1 (as it chases mouse no. 2) at time    , hence it is tangent to the path of 

mouse no. 1 at   ( ) so its gradient is the gradient of the path in   ( ): 

   

   
 

   

   
 

  ( )    ( )

  ( )    ( )
 

√ 
 
  ( )   

 
  ( )

  
 
 
  ( )  √ 

 
  ( )

   .                                                    ( ) 

Moreover we can notice that 

   

   
 

   

  
   

  

 
√ 
 
  ( )   

 
  ( )

  
 
 
  ( )  √ 

 
  ( )

  , 

so a5 solution may be obtained by solving the following system of equations, 

{
 
 

 
    

  
 √ 

 
  ( )  

 

 
  ( ) ,     

   

  
   

 

 
  ( )  √ 

 
  ( )  ,

                                                                                            ( ) 

which is a system of linear differential equations of order one. 

 

 

 

                                                        
3 See Appendix A1 for description of rotations in number-plane. 

4 See Appendix A2 for description of translations in number-plane. 
5 The ‘a’ means a possible solution but from the statement of the problem we deduce defined behaviour of the mice (at each 

moment mouse ‘knows what to do’ which leads to a conclusion that a solution will be the unique one) i.e. we postulate existence of 
unique solution to this problem. 
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In order to solve the problem one may use the Laplace transform, which (among other 

applications) allows solving differential equations. Therefore the purpose of this essay 

is also to introduce the reader to the Laplace transform and show him or her how the 

use of this mathematical tool allows solving the mice problem.  
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III. The Laplace transform and its properties 

 

Definition 1.  

In this paper we will consider the Laplace transform that maps a real6 function  ( ) of 

real variable t  into a corresponding real function  ( ) of real variable s defined by  

 

 ( ( ))   ( )  ∫  ( )  st
 

 

  , 

 

so it is an example of a integral transform;  ( ) is appropriately defined if and only if 

the integral is convergent. When the integral is divergent and then there is no Laplace 

transform defined for a function. See [7]. 

The notation  ( ( )) is used to represent the Laplace transform of function 

 ( ) , the resulting function being   ( ). The domain of the resulting function’s 

independent variable   is chosen appropriately so that the integral of Laplace 

transform is convergent (if possible). The usual use of t as an independent variable of 

function  ( ) is due to the transform’s roots from physics – t denoting time.  See [8]. 

 

Example 1.  

Let’s consider a very simple example of Laplace transform of  ( )   :  

 ( ( ))   ( )   ( )  ∫     st  
 

 

    
   

∫   st  
 

 

  . 

Now let’s consider following cases. 

i) If     

    
   

∫   st  
 

 

     
   

∫    
 

 

    . 

So, for     integral is divergent and thus the Laplace transform is undefined.  

ii) If     

   
   

∫   st  
 

 

     
   

[  
 

 
   st]|

 

 
  

   
 

 
    
   

[  s    ]  {
  

 

 
 (    )   ,         

  
 

 
 (     )  

 

 
,         

  
. 

 

                                                        
6 We will focus on real functions, however, in general, the Laplace transform maps functions of complex variables. 
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So, for     the integral defining Laplace transform is divergent, so the transform is 

undefined there; for     Laplace transform of  ( )    exists and is equal to 
 

 
 . Hence, 

Laplace transform of  ( )    is well defined for   ( , ):  ( )   

 
 . 

 

Example 2. 

Let’s consider Laplace transform of a  ( )     
. 

 e begin with  

 (   
)  ∫    

   st  
 

 

 ∫     st  
 

 

   , 

as (   st)    when     for any real s, 

so Laplace transform of  ( )      
 is undefined.  

 

The two examples presented show that Laplace transform is not always (not for any 

 ( )) well defined. That implies a need of specifying some restrictions to  ( ) to 

guarantee existence of its Laplace transform. An example of such a set of restrictions is:  

 

f(t) together with it’s   ( ) is continuous for     [ , );    (O1) 

f(t)    for     (  ,  );        (O2) 

f(t) is a function of exponential order of  s  i.e.:      

             ,     ,    [ ,   )  | ( )|            (O3) 

 

Function  ( ) of real variable t is called original when it satisfies the above conditions.          

See [2]. 

 

In Example 1 we considered  ( )    which satisfies (O1); (O2)- if truncated 

appropriately and (O3):  

| ( )|           , where    ,      , for    [ ,   )   

and its transform was well defined for        . 

 

The function considered in Example 2 does not satisfy (O3) as t  exceeds     for large t, 

for any given    if t is large enough.  

Conditions (O1), (O2) and (O3) sufficiency is guaranteed by the following theorem. 
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Theorem 1 (Convergence of the Laplace transform of originals). 

If  ( ) satisfies (O1), (O2) and (O3) then  ( ( ))   ( ) is well defined (the 

improper integral defining the transform is convergent) for     . 

 

Proof of Theorem 1. 

Let’s consider 

∫| ( )|

 

 

           ∫| ( )       |

 

 

    . 

 a ing  ( )  | ( )      |  and using (  )we have 

   ( )   | ( )      |   | ( )|                      (   s)   ( ). 

 

Moreover, for    s, we have     s    and we obtain 

 ∫  ( )    ∫    (   s)       
   

∫   (   s)  

 

 

 

 

 

 

    
   

 
 

   s
[  (   s)]|

 

 
  

 

  
 

   s
     

   
[  (   s)    ]   

 

   s
[     ]  

 

    
 ,  

so it is a convergent integral for    s . 

 

 ence by Comparison  est for improper integrals 

∫| ( )      |   

 

 

is convergent, 

thus 

∫  ( )  

 

 

    dt  is absolutely convergent , 

so it is also convergent from  bsolute Convergence  heorem.              
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Example 3. 

Let’s consider one more simple example to demonstrate Theorem 1 in action:                

 ( )  {
 ,       

   ,    
 , truncated version of  ( )     . This function satisfies (O1), (O2) 

and (O3) with e.g.:    ,     , so  ( ) is well defined for       . 

Indeed, 

 (  t)  ∫   t    st  
 

 

    
   

∫  t(  s)  
 

 

     
   

[ t(  s)  
 

  s
]|

 

 

  

 
 

  s
     
   

[  (  s)    ]   
 

  s
     
   

(  (   ))  
 

    
 

   
       

 

   
   

 

   
 , 

for    . 

 

Example 4. 

Let’s consider a more complicated example  ( )     (  ),where    , truncated 

according to (O2). This function also satisfies (O1)-(O3) with e.g.:    ,     , so 

 ( ) is well defined for       , although the derivation of its formula is quite 

complicated. 

First, the indefinite integral  ( )     (  )  e st will be calculated: 

  ∫    (  )    st   |
     st          

     s  st       
 

 
     

| = 

    st  
 

 
       s  

 

 
∫  st          |

     st          

     s  st     
 

 
     

|   

    st  
 

 
        

 

 
(  st  

 

 
       

 

 
∫  st          )   

    st  
 

 
        

 

              
  

  ∫  st            

    st (
 

 
       

 

        )  
  

       , 

so 

 (  
  

  )     st (
 

 
       

 

         )  , 

which yields 

   
   st ( 

 
        

        )

(    

  )
 , 

and finally 

∫   (  )         
   st(               )

     
 C   . 
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To calculate  ( ) we will use a  tric    

 (     )  ∫    (  )    st  
 

 

 ∑   

 

   

, where    ∫    (  )    st  
   

  
 

(   )  
  
 

 . 

We get 

   ∫    (  )    st  

  
 

 

 [  
 

         st(             )]|
 

  
 

  

   
 

     [ 
    

        ]  
 

     (    
 

   
 )  , 

   ∫    (  )    st  

  
 

  
 

 [  
 

         st(             )]|
  
 

  
 

  

   
 

     [ 
    

     
 

   
   ]  

 

     ( 
  

   
   

  
   
 ) , 

and, generally 

    ∫    (  )    st  
  

  
 

(   ) 
  
 

 [  
 

         st(             )]|
(   ) 

  
 

  
  
 

  

   
 

     [ 
   

  
 

 
    

 (   ) 
  
 

 
  ]  

 

     ( 
     (   )

   
  

    
 ) . 

 

Having obtained general formula of   , we are able to evaluate sum of the following 

series:  

∑        
   

∑       
   

(                  )  

 

   

 

   

 

 
 

          
   

((    
    

 )  ( 
    

   
    

 )  ( 
    

   
    

 )   

 ( 
 (   )   

   
     

 ))   

 
 

         
   

(   
     

 )  
 

     
(   )  

 

      , 

for    . 

 

Finally we arrive with  

 (     )   ( )  
 

     
 for       . 
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More results of a Laplace transforms of some basic functions are shown in a table 

below. See [2] 

 

Function Transform 

1 
 

 
 

   
  

    
 

    
 

   
 

       
 

     
 

       
 

     
 

      
  

(   )   
 

         
 

(   )    
 

           
   

(   )    
 

√  
√ 

  
 
 

 

 
Table 1. Functions and their Laplace transforms. 

 

Using the above table one can easily transform functions as it is presented in the next 

example. 

 

Example 5. 

Let’s consider 

 ( ( ))   (  t      )  
   

(   )    
, as stated in the  able  . 

 

A direct consequence of the definition of the Laplace transform as integral is its 

linearity7.  

For  ( ) and  ( ) satisfying O1, O2 and O3, then:  

 ( ( )   ( ))   ( ( ))   ( ( ))     (additivity) 

 (  ( ))     ( ( ))       (homogeneity) 

                                                        
7 Due to linearity of integrals. 
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Basing on linearity of the Laplace transform we can more effectively derive the Laplace 

transforms of linear combinations of basic functions. This is demonstrated in the 

following example. 

 

Example 6. 

Let’s consider  ( )      (  )     t   , so 

 ( ( ))   (    (  )     t   )    (   (  ))    (  t)    ( )   

   
 

     
   

 

   
   

 

 
 

 

    
 

 

   
 

 

 
 . 

 

We end this chapter with a theorem, which plays a crucial role in applying Laplace 

transform techniques in solving differential equation. Theorem resolves the question of 

the uniqueness of Laplace transforms.  

 

Theorem 2 (Uniqueness of Laplace transform). 

Distinct continuous functions on [ , ) have distinct Laplace transforms. See [6]. 

 

 he result is  nown as Lerch’s theorem, it means 

 ( ( ))   ( ( ))   ( )   ( ) . 
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IV. The Laplace transform of derivatives. 

 

The Laplace transform of derivative plays a key role, when it comes to differential 

equations of any kind. In order to proceed with Laplace transform of derivatives some 

crucial lemma is needed.  

 

Lemma 1. 

If  ( ) satisfies (  ), (  ) and (  ) and      then    
   

( ( )  st)   .  

 

Proof of Lemma 1. 

From (O3)  

| ( )|        , 

so 

        ( )       , 

which gives 

        st   ( )  st         st , 

and 

    (   s)   ( )  st     (   s).  

 

We know that    s    (since     ) so,    
   

  (   s)     .  

Therefore    
   

   (   s)   , therefore both boundaries (lower and upper) converge: 

   
   

(    (   s))         ,  

   
   

(   (   s))        , 

so, by squee e theorem,    
   

  ( )  st    . 

Now let us use Lemma 1 to derive the Laplace transform of first-order derivative of an 

original. 

 

Lemma 2 (Laplace transform of first derivative). 

Let  ( ) be differentiable and satisfy (O1), (O2) and (O3) and   ( ) exist, then  

 

 (  ( ))    (  ( ))   ( ) .  
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Proof of Lemma 2. 

 (  ( ))   ∫   ( )  st  
 

 

    
   

∫   ( )  st  
 

 

 |
     ( )     st

    ( )       s  st|   

     
   

([  ( )  st]| 
   ∫  ( )  st  

 

 

)    

    
   

([ ( )  s   ( )    ]    ∫  ( )  st  
 

 

)   

    ( )   ∫  ( )      
 

 

    (  ( ))   ( ) . 

 

Example 7. 

Let    ( ) and  ( ( ))   ( ), then 

 (   ( )   ( )    )   

   (  ( ))    ( ( ))    ( )   

    ( )   ( )   ( )    
 

    

 (    ) ( )   ( )  
 

   . 

 

Having calculated the Laplace transform of the first derivative we may use it to derive 

Laplace transform of the second derivative.  

 

Lemma 3 (Laplace transform of second derivative). 

Let  ( ) satisfy (O1), (O2) and (O3) and  ( ) be differentiable twice, then  

 (   ( ))     ( ( ))    ( )    ( ) . 

 

Proof of Lemma 3. 

By Lemma 2 we get 

 (   ( ))    ((  ( )) )    (  ( ))    ( )   

 (  ( ( ))   ( ))    ( )     ( ( ))    ( )    ( ) . 

 

Lemmas 2 and 3 reveal a pattern and one could conjecture general formula for the 

Laplace transform of nth-order derivative that we will prove by means of mathematical 

induction. 
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Theorem 3 (Laplace transform of the nth-order derivative). 

If  ( ) is differentiable n times and satisfies (O1), (O2) and (O3), then  

 ( ( )( ))     ( ( ))  ∑    

   

   

 (   )( ) .                                                            ( ) 

 

Proof of Theorem 3. 

Mathematical induction over   will be used. Let’s introduce proposition  ( )  

 ( )      ( ( )( ))     ( ( ))  ∑    

   

   

 (   )( ) . 

I. For     

    ( )   ( ( )( ))   (  ( ))    (  ( ))   ( )      ( ) ,  

by Lemma     ( ) is true.  

 

II.  We will prove that for any given      

 ( )                 ( ( )( ))     ( ( ))  ∑    

   

   

 (   )( ) , 

    

 (   )            ( (   )( ))       ( ( ))  ∑       

     

   

 (   )( )  . 

 roof of     
 

    (   )   ( (   )( ))   ([  ( )]( ))   

    (  ( ))  ∑    

   

   

(  )(   )( )   

   (  ( ( ))   ( ))  ∑    

   

   

 ( )( )   

      ( ( ))     ( )  ∑    

   

   

 ( )( )   

      ( ( ))  ∑    

   

   

 ( )( )                           |changing counter      | 

      ( ( ))  ∑    (   )

     

   

 (   )( )      (   ) 
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so  ( ) implies  (   ) is true .        

From I, II and Mathematical Induction Principle  ( ) is true for any given     .   
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V. The Laplace transform and its application to solving 

linear differential equations. 

 

Theorem 2 and Theorem 3 open up the possibility to deal with the Laplace transform as 

a tool for solving linear differential equations. 

 

General form of a linear differential equation of the  -th order is 

 ( )( )      ( )   (   )      ( )     ( )    ( )    ( )    ( )   ( )   ( ), 

where   ( ),  ( ) are functions of t . See [2]. 

 

An example of differential equation is  

    ( )         ( )  √   ( )     ( )            ,  

which is an example of a linear differential equation of third order.  

 

Example 9. 

This example demonstrates how the Laplace transform is used to solve differential 

equations.  

For instance, let’s consider the following equation 

  ( )    ( )          ,   nowing that  ( )   . 

As Laplace transforms of equal functions are equal 

 (  ( )    ( ))   (       ).    

From linearity we get 

 (  ( ))     ( ( ))   (       ). 

From Table 1 

 (  ( ))     ( ( ))  
   

(   )     .  

Now, by means of Theorem 3 

  ( )   ( )    ( )  
   

(   )     . 

We know that f( )   , so 

 ( )(   )  
   

(   )     , 

hence 

 ( )  
 

(   )     , 
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and again from Table 1 

 ( ( ))   (       ) , 

by Theorem 2 we get 

 ( )           . 

The previously mentioned Theorem 2 guarantees that the solution is unique on [ , ). 

 

Example 10 

Let’s consider following equation 

   ( )      ( )    ( )     ,   

with initial conditions   ( )   , and   ( )   . 

We have                        

 (   ( )      ( )    ( ))   (    ), 

so                         

 (   ( ))     (  ( ))    ( ( ))   ( )   ( ), 

then                          

 (   ( ))     (  ( ))    ( ( ))  
 

 
 

 

   , 

and we get                          

   ( ( ))    ( )    ( )     ( ( ))    ( )   ( ( ))  
 

 
 

 

   . 

We know that  ( )   , and   ( )   , so 

   ( ( ))     ( ( ))   ( ( ))   
 

 
 

 

   , 

then 

 ( ( ))  [       ]  
   

   , 

which yields                          

 ( ( ))  
   

    (       )
 . 

The result needs to be simplified into partial fractions in order to identify the original 

functions. So 

   

    (       )
 

   

     (   ) 
 

 

 
 

 

  
 

 

   
 

 

(   ) 
  

    

   
      

(   ) 
  

 
(    ) (   )  (      )   

   (   ) 
 

                                 

   (   ) 
  

 
(   )    (         )   (    )   

   (   ) 
  , 
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which leads to 

{

      ,                 
            ,

       ,              
     .                        

  

Solving the above we get  

A=3, B=1, C=–3, D=2 . 

Therefore the fraction can be written as follows 

   

    (       )
 

 

 
 

 

   
 

   
 

 

(   ) 
  , 

hence 

 ( ( ))  
   

    (       )
  ( 

 

 
 

 

   
 

   
 

 

(   ) 
)   

   (
 

 
)   (

 

  )    (
 

   
)    (

 

(   ) 
)= 

  (            )  ,   

so, by Theorem 2 

  ( )              . 
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VI. Laplace transform and mice problem 

 

Getting back to the concept of pursuit curve and three-mouse problem, now, thanks 

to Laplace transform we may solve the system of differential equations and derive 

formulas depicting position and movement of mice on a xy-plane in time. See Figure 1. 

 

Getting back to (2)  

{
 
 

 
    

  
 √ 

 
  ( )  

 

 
  ( ),        

   

  
   

 

 
  ( )  √ 

 
  ( ) .  

 

These conditions reflect instantaneous chec ing ‘targets’ positions and adjusting mice’s 

own positions instantly while running.  

For simplicity and legibility of notation let’s put   
√ 

 
,   

  

 
 and  ( ),  ( )for 

  ( ),   ( ). This gives 

{

  

  
   ( )    ( ),                                                                                                               ( )   

  

  
     ( )    ( ),                                                                                                    ( )

    

 

with initial conditions  ( )     and    ( )    . 

 

After taking the Laplace transform of both sides of the equations we arrive with 

  ( )     ( ( ))     ( ( ))    ( )    ( ) , 

  ( )     ( )     ( ( ))     ( ( ))   
 

 
   ( )    ( ) . 

Also since they are interrelated they create a system of equations:  

{
 ( )  (  )   ( )  (   )    ,

 ( )  (   )   ( )  ( )  
 

 
 ,    

   

and also 

{
 ( )  (      )   ( )  (   )    ,

 ( )  (      )   ( )  (   )    
 

 
 .
   

Adding the equations eliminates  ( ) and we get 

  ( )  (   )   ( )  (  )  
 

 
  , 
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which gives 

 ( )  
 

 (   (   ) )
  . 

 

 sing   ( )  (  )   ( )  (   )    and the above solution we can derive  

 ( )  
 ( )  (   )

 
 

   

  (   (   ) )
  . 

Now 

{
 ( )  

   

  (   (   ) )
 ,

 ( )  
 

 (   (   ) )
 .

  
  

 

Partial fractions 

 ( )  
   

  (   (   ) )
 

 

 
 

    

(   )    
  

 
  ((   )    )        

  (   (   ) )
  

 
(   )   (     )  (       )

  (   (   ) )
  . 

It leads to 

{

      ,              
        ,         

 (     )     ,
     

and 

{
 
 

 
      

 

  
  ,                        

        
(     )

     
  ,    

  
  

     
  .                              

 

 

Hence 

 ( )  
  

     
 
 

 
 

 

     
 

 

(   )    
 

(     )

     
 

 

(   )    
  

 
  

     
 
 

 
 

 

     
 

   

(   )    
 

  

     
 

  

(   )    
 

(     )

     
 

 

(   )    
  

 
  

     
 
 

 
 

 

     
 

   

(   )    
 

  

     
 

  

(   )    
 

(     )

     
 

 

(   )    
  

 
  

     
  ( )  

 

     
  (        )  (

  

     
 

(     )

     
)  

 

(   )    
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  ( )  

 

     
  (        )  

 

     
  (        )   

  (
  

     
   

 

     
    cos   

 

     
    sin    ), 

so 

 ( )  
  

     
   

 

     
    cos    

 

     
    sin    .                          ( ) 

 

For given A and B 

 ( )   
 

 
   

 
    

√ 

 
    √ 

 
   

 
    

√ 

 
  

 

 
 . 

 

The solution for  ( ) may be derived from the previous equation 

  

  
     ( )    ( ), 

which is equivalent to 

 ( )  
    ( )  

  
  

 
 . 

Derivative of  ( ) equals as follows 

  

  
    (           ) , 

hence 

 ( )  
    (

  
        

 
         cos    

 
         sin   )     (           )

 
  

 
  

   

        
  

         cos    
  

         sin       (           )

 
  

 

     

      
   

        (
  

      
     

     )     cos    (
  

      
     

     )     sin   

 
  , 

so 

 ( )  
 

     
   

 

     
          

 

     
         .                         ( ) 

 

For given A and B 

 ( )    √
 

 
   

 
    √ 

 
  

 

 
   

 
    √ 

 
  √ 

 
 . 

 

The trajectory of the movement of the first mouse starting from   ( , ) of a equilateral 

triangle with a side length 1 at time     is determined by the given formula 
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 )). 

 

 

Figure 2 – The trajectory of movement of mouse no. 1. 

 

The trajectory of movement of the other two mice can be derived by rotating the 

trajectory of movement of first mouse (  ,   ) as follows 

  ( ) rotated 
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

  ( ) rotated   
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

this leads to 
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Figure 3 – The trajectory of movement of mouse no. 2. 

 

And the third mouse    
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Figure 4 – The trajectory of movement of mouse no. 3. 

 

We have derived the parametric formulas that determine position of each mice in time: 
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Figure 5 – The trajectories of all three mice. 

 

To generalize solution, let’s consider regular n-polygon           where   ( , ) and 

  ( , ) and let   be the centre of a circumscribed circle (see Appendix B). Using 

notation introduced previously we can observe that  

  ( ) rotated 
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

which leads to 

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  (

  

  
)  (

   
  

 
    

  

 

   
  

 
       

  

 

)(
  

  
)      

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     

 (
     

  

 
      

  

 

     
  

 
      

  

 

)  (
 
 
)   

 (
     

  

 
      

  

 
  

     
  

 
      

  

 

)
.
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Moreover we can notice that 

   

   
 

   

  
   

  

 
    ( )   

  
 

   ( )(   
  
 

  )

  ( )(   
  
 

  )    ( )      
 

  
  , 

so, we get 

{
 
 

 
    

  
    ( )   
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  ) ,                                                                        ( )   
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  )    ( )    

  

 
    .                                                                ( )  

 

 

For simplicity and legibility of notation let’s put         

 
,        

 
   and 

 ( ),  ( ) for   ( ),   ( ). This gives 

{

  

  
   ( )    ( ),         

  

  
     ( )    ( ),

    

 

with initial conditions  ( )     and    ( )    , which is the same as ( ), ( ). So we 

have ( ) and ( ) again: 
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         . 

But for given A and B these simplify now to 
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in a more compact form 
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). 

Reversing our notation simplification we get parametric equations of the position of 

mouse no. 1 for     in regular n-polygon 
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).  
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Now, we will derive equations of the position of the remaining mice. Let’s focus on 

mouse no. k, (     ). We know that  

  ( ) rotated 
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

  ( ) rotated   
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives   ( ), 

and so on, generally 

  ( ) rotated (   )  
  

 
 around ( , ) and translated by     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ gives   ( ). 

Therefore (in matrix-vector notation - see Appendix) 

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  (
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    (   )  

 

   (   )  

 
       (   )  

 

) (
  

  
)      

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   

 (
     (   )  

 
      (   )  

 

     (   )  

 
      (   )  

 

)      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ . 

Since   ( , ) is   and     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     

⃗⃗ ⃗⃗ ⃗⃗  ⃗, we know that (see Appendix part 2) 
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Substitution of   ( ) and   ( ) (and simplification8) leads to 
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which may be expressed in more compact form 
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), 
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       (
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   (    

  

 
  

(    ) 

 
). 

The above equations describe position of mouse no. k in a regular n-polygon at time 

   , if we place the n-polygon           in such a way that   ( , ) and   ( , ). 

 

Graphs of solution of other cases n=5 and n=10 are presented below. 

 
 

                                                        
8 Simplified with a use of CAS  (Computer Algebra System) software (Derive 5.04). 
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Figure 6 – Five mice pursuit problem trajectories. 

 

 

Figure 7 – Ten mice pursuit problem trajectories.  
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VII. Conclusion 

 

Mice pursuing problem, considered firstly in a regular triangle (as a simplest 

case of regular polygon), led us to a system of simultaneous differential equations. 

Thanks to a symmetry of the mice behaviour these were first order linear differential 

equations for   ( )and   ( ) – parametric equations of the mouse no. 1 trajectory.  

An introduction to Laplace transform and some of its properties allowed us to 

solve the system of equations in this case. The key property was presented and proved 

in a Theorem 3 which, when combined with linearity of Laplace transform guarantees 

that Laplace transform maps linear differential equations (systems of linear differential 

equations) into algebraic equations (systems of algebraic linear equations, 

respectively). Moreover equations of first order are mapped into linear algebraic 

equations, so in our case we obtained a system of two linear algebraic equations, 

solution of which gave us Laplace transforms of our unknown functions   ( ) and   ( ). 

Partial fraction decomposition of the results confronted with the table of Laplace 

transforms (Table 1) enabled us to derive explicit formulas for   ( ) and   ( ). The 

(Theorem 2) Lerch’s theorem (another key property for us) guaranteed uniqueness of 

the solutions. The symmetry of the problem allowed us to produce formulas for   ( ), 

  ( ) and   ( ),   ( ).  

Restating the problem in a general form (regular n-polygon case) did not change 

the general pattern of solving process (than s to “elegance” of Laplace transform) 

although the calculations involved were more complicated.  

The mice trajectories turned out to be logarithmic spirals beginning at the 

polygon’s vertices and converging to its centre9. A number of interesting questions 

arises now (for example what are the lengths of the trajectories, what happens when n 

goes to infinity) and some possible improvements are apparent - the centre of polygon 

could be placed in O and one could use constant size polygon (e.g. R=1=radius of a 

circumscribed circle) and complex numbers for parameterization (vertices would be 

roots of 1 and rotation would be just multiplication).  

 

 

 

                                                        
9 A centre of an inscribed and circumscribed circle, mass centre.  
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IX. Appendix 

 

Analytical forms of geometrical transforms used (in this paper): 

A1 

- rotation about ( , ) by directed angle  : 

  ( ,  )  (  ,   )  (           ,            )  

 in position rotation: 

(
  
  

)     (
 
 )  (

         
        

) (
 
 )  (

           
           

) 

where    is the rotation matrix. 

A2 

- translation by vector    (
  

  
) 

        ⃗ ( ,  )  (  ,   )  (    ,     ) 

in position vector rotation: 

     (
  

  )  (
 
 )     (

    

    
)  

 

B 

Derivation of the coordinates of   – centre of circumscribed circle of the regular 

n-polygon. Let’s consider following regular polygon  

 

From the above figure it may be concluded that 

 
 

 
    

 

 
 , which leads to   

 

 
   

 

 
 .  

Therefore,  (
 

 
,
 

 
    

 
) is a centre of an inscribed and circumscribed circle in every 

regular n-polygon, if we place the n-polygon           in such a way that   ( , ) and 
  ( , ). 
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