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Introduction
This talk is about a 1-D di�usion of moisture in building materials (such as
siliceous brick).

� By u(x , t) we denote the moisture
concentration at x at time t.

� We consider the following initial-boundary
conditions:

u(0, t) = C , u(x , 0) = 0.

� Self-similarity - a characteristic feature of
di�usion in our experiment. Moisture
concentration u(x , t) can be drawn on a
single curve [1]:

u(x , t) = U(η), η = x/
√
t,

for U(0) = C i U(∞) = 0.
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Nature is tricky (and thus very interesting)!

� As it turns out and nobody exactly knows why but the di�usion not
always behaves as we are used to.

� In a number of experiments (ex. [2-4]) the so-called Boltzmann scaling
η = x/t1/2 is not observed.

� A more appropriate and accurate is the anomalous di�usion scaling
(Figure from [2])

u(x , t) = U(η), η = x/tα/2, 0 < α < 2.
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How to describe this mathematically?

� The classical di�usion equation does not work: for our initial-boundary
conditions it possesses the x/

√
t scaling.

� In [2,4] the following modi�cation of the constitutive equation has been
proposed

q = −D(u)

(
∂u

∂x

) 1
α−1

.

Result: very complicated equations and average �tting accuracy.

� As it turned out, a more appropriate is to model this phenomenon by an
equation with fractional derivative (see [5-7])

∂αu

∂tα
=

∂

∂x

(
D(u)

∂u

∂x

)
.

We obtain the sought scaling x/tα/2 with very small �tting errors.
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Fractional derivative!?
� We will be using the following de�nition of the fractional derivative (α is

not necessarily a fraction).

� The Riemann-Liouville fractional derivative of order α with respect to
time is de�ned by the formula

∂αu

∂tα
(x , t) =

1

Γ(n − α)

∂n

∂xn

∫ t

0

(t − s)n−α−1u(x , s)ds,

where n = [α] + 1.

� This derivative has all the properties that can be expected by a
generalization of derivation, for ex.

dα

dxα
xβ =

Γ(β + 1)

Γ(β − α + 1)
xβ−α

for β > −1. Additionally, it reduces to the ordinary derivative for α→ k ,
k ∈ Z.
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Our problem: can we say something analytical about
the nonlinear anomalous di�usion?

� All the previous results concerning anomalous di�usion in porous media
consist mainly of numerical solutions of the fractional di�erential
equations (which is far from trivial!).

� We have managed to �nd some approximations of the solutions of the
nonlinear anomalous di�usion equation. These approximations have a
very simple, analytical form.

[8] �.Pªociniczak, H.Okrasi«ska-Pªociniczak, Approximate self-similar solutions to a

nonlinear di�usion equation with time-fractional derivative, Physica D 261 (2013),
85�91

[9] �.Pªociniczak, Approximation of the Erdelyi-Kober fractional operator with

application to the time-fractional porous medium equation, SIAM Journal of Applied

Mathematics, under review
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Overview of our method
� Model: anomalous di�usion equation with di�usivity D(u) = D0u

m (in
nondimensional form)

∂αu

∂tα
(x , t) =

∂

∂x

(
um(x , t)

∂u

∂x
(x , t)

)
, 0 < α < 1,

with initial-boundary conditions u(0, t) = 1, u(x , 0) = 0. Remark: With
these conditions it does not matter whether we use R-L or Caputo
version of the fractional derivative.

� We seek for a self-similar solution u(x , t) = U(η), where η = x/tα/2. We
obtain an ordinary integro-di�erential equation

d

dη

(
Um(η)

d

dη
U(η)

)
=

[
(1− α)− α

2
η
d

dη

]
I 0,1−α− 2

α

U(η),

with U(0) = 1 and U(∞) = 0, where the integral operator is of the
Erdelyi-Kober type

I a,bc U(η) :=
1

Γ(b)

∫ 1

0

(1− z)b−1zaU(ηz
1
c )dz .
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Overview of our method cont'd

� Theorem

For analytic U and a > −1, b > 0, c > 0 we have the following

representation

I a,bc U(η) =
∞∑
k=0

λkU
(k)(η)

ηk

k!
,

where λk =
∑k

j=0

(
k
j

)
(−1)k−j

Γ(a+ j
c +1)

Γ(a+b+ j
c +1)

.

Moreover, we have an asymptotic expansion when k →∞

λk ∼ (−1)k
c

Γ(b)

∞∑
n=0

(
b − 1

n

)
(−1)nΓ (c(a + n + 1))

(
1

k

)c(a+n+1)

.

� The series converges very fast, especially for η close to 0. Let us use it!
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Overview of our method cont'd

� If it happens that U is not analytic, we can hope that the �rst terms in
the expansion of the E − K operator will give us a decent approximation.

� Let us use it for our main equation. We obtain

(UmU ′)′ =
1

Γ(1− α)
U −

(α
2
λ0 − λ1

)
ηU ′,

Now we have an ordinary di�erential equation, though nonlinear.

� Being lead by physical intuition and previous results on the classical case
we can expect that there exists such η∗ for which U(η) = 0 for η ≥ η∗.

� Now, our conditions transform into U(0) = 1 and U(η∗) = 0.

� Problem: we do not know η∗ which gives us a free boundary problem.
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Overview of our method cont'd

� To proceed we use an idea introduced in [10]. We make a substitution

U(η) =
(
m(η∗)2y(z)

) 1
m , z = 1− η

η∗
.

� Now, the equation is

1

m
y ′2 + yy ′′ =

1

Γ(1− α)
y +

1

m

(α
2
λ0 − λ1

)
(1− z)y ′.

with initial conditions y(0) = 0 and y ′(0) = α
2
λ0 − λ1.

� The condition for the derivative is obtained from the structure of
equation.

� When we know y we can very easily obtain the front position:
η∗ = 1/

√
my(1).

� As it turns out, the Taylor series for y converges very quickly.
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Overview of our method cont'd
� When we take a few �rst terms in the Taylor series for y(z) =

∑∞
i=1 aiz

i

we obtain (in original variables)

U1(η) = (1− η/η∗1)
1
m

U2(η) = ((1− η/η∗2) (1−ma2η
∗
2η))

1
m ,

where ai can be determined, for ex. a1 = y ′(0) = α
2
λ0 − λ1. The rest ai

are much complicated.
� Additionally, we can calculate the cumulative moisture intake

Ii (t) :=

∫ ∞
0

ui (x , t)dx =

∫ ∞
0

Ui

( x

t
α
2

)
dx = t

α
2

∫ η∗

0

Ui (η)dη.

We have

I1(t) =
m

m + 1
η∗1t

α
2 ,

I2(t) =
m

m + 1
η∗2 2F1

(
− 1

m
, 1; 2 +

1

m
;

a2
a1 + a2

)
t

α
2 .
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Numerical results
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Figure : On the left: front position η∗(t) (zig-zag) and its approximation
η∗3 (t) = η∗3 t

α/2 (smooth line). On the right: cumulative moisture (solid line) and
approximations I1 (dashed line) i I2 (dot-dashed line). Here, α = 0.95 and m = 2.
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Numerical results cont'd
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Figure : Fitting U3 with experimental data from [2]. On the left: a self-similar
pro�le; an the right: time evolution. Here α = 0.855, C = 0.71 m3/m3, m = 6.98,
D0 = 5.36 mm/s0.855.
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