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1 Introduction to differential equations
In an amazing way that many philosophers have wondered about, mathematics is the
language that describes the laws of nature and the entire universe. It is truly amazing
howmuchwehave learned about theworld fromexperiments and the physical theories
that try to justify the results of these. Since the dawn of his history, man has tried to
learn as much as possible about the world around him. To this end, he carried out
experiments that evolved along with our development: from the "simple" striking of
stones to collisions of subatomic particles in accelerators. Each time he was driven by
curiosity and a desire to know.

When we look up from the book, we see that everything changes around us. The
world is ruled by changes that happen both in time and in space. The hands on the
clock rotate telling us that time is inexorably flowing and our room is in a mess. Huge
amounts of water molecules in our mug collide with each other pulling the flavour out
of the tea leaves. These leaveswere once found on a tree that, thanks to photosynthesis,
was able to convert the life-giving energy of the sun into nutrients that it built into
its structure and grew from the seed. It was watered with water coming from the
precipitation of small droplets suspended in the atmosphere torn by turbulent winds,
temperature and pressure differences. The Sun, which supplies the entire planet with
enormous amounts of energy of unprecedented quality, is in fact a huge fusion reactor
in which, thanks to enormous temperatures, the lighter elements are combined into
heavier1. Stars such as the Sun are formed by the collapse of interstellar material by
gravity, which, though weak at small scales, dictates what the ever-evolving large-
scale structure of the universe should look like. But the dynamics is not over: the
universe is constantly expanding 2 And the pace of this expansion does not slow down
rather accelerates! And since everything is expanding, seen „backwards” it must have
contracted and one day there had to be a beginning - the Big Bang, in which space-
time was created, and shortly after that the particles that we are made of. Everything
changes and the differential equations are a natural mathematical description of these
changes. We will deal with them later in the lecture. All major physical theories are
formulated with differential equations, and it is very rewarding to know at least some
of them.

The historical origin of differential equations lies in the works of Newton and Leib-
niz. Newton’s results on ODEs were usually a side product of his development of
Calculus. In particular, he solved several equations of the form y ′ = f(x, y) by the
use of infinite series. On the other hand, Leibniz developed some general methods
for studying differential equations such as separation of variables, and an algorithm
of solving linear equations. Then, the Bernoulli brothers: Jakob and Johann came and
introduced further contributions such as the brachistochrone problem and formulat-
ing many problems in mechanics in terms of differential equations. Johann introduced
what is today known as Bernoulli equation which we will solve in the sequel. A son

1Solar energymainly comes from the fusion of hydrogen into helium. Heliumhas the highest binding
energy among other elements, which is released during the fusion process and reaches us after some
time. In other words: two hydrogen atoms weigh more than one helium atom - something has got to
happen with the excess energy.

2More precisely: the distance between any two points increases with time.
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of Johann, Daniel, developed partial differential equations and was the discoverer of
the famous Bernoulli’s Law in fluid mechanics (that today is widely used). One of the
most fruitful results concerning differential equations were obtained further by Euler
who was responsible for integrating factors, exact equations, power series solutions,
equations for inviscid flow, and Euler numericalmethod to name only a few. After that,
Lagrange made very important discoveries such as method of variation of parameters,
variational calculus, general theory of linear equations, and partial differential equa-
tions. Almost any famous mathematician made some important contributions in dif-
ferential equations or their applications. In the nineteenth century the focus switched
to PDEs and theoretical aspects of them. Twentieth century brought further advance-
ments in these fields along with a explosion of various numerical methods (with the
advent of the computer) and dynamical systems. Today, differential equations are one
of the most investigated and used fields in mathematics and its applications.

1.1 Literature
There are many very good textbooks on ordinary differential equations. We state only
some of them.

• Elementary textbooks

– Boyce, diPrima -ElementaryDifferential Equations and BoundaryValue Problems
– Tenenbaum - Ordinary Differential Equations

• Advanced monographs on theory

– Hartman - Ordinary Differential Equations
– Coddington, Levinson - Theory of ordinary Differential Equations

The lecture will be completely self-sufficient, however, it is always good to broaden
the understanding by reading through different textbooks.

1.2 Basic definitions and concepts
Differential equation is any relationship that binds an independent variable, its function,
and derivatives of the latter. In the following, we deal withmotivations, intuitions, and
the practical meaning of differential equations. There is a huge and beautiful theory
of equations where problems such as the existence of solutions, their uniqueness and
regularity are studied (see eg []). We will mainly focus on solving and applying
differential equations to describe phenomena in nature, technology, and everyday life.

The concept of a differential equation is very broad, and it is impossible to study
the entire class at once. A very natural classification is thus needed.

• According to the number of independent variables.
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– Ordinary Differential Equations (ODEs). They involve only one independent
variable and we can write them in the form

F
(
x, y(x), y ′(x), y ′′(x), ..., y(n)(x)

)
= 0, (1.1)

where F is a given scalar of vector function, y = y(x) is the dependent
varibale, that is the sought function of x. For example, F(a, b, c) = ab − c
yields y ′(x) = xy(x) in a compact form3. In applications the independent
variable is usually taken to be the time (in initial value problems) and space
(in boundary value problems).

– Partial Differential Equations (PDEs). They involve two or more independent
variables. They can be written as

G

(
x1, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn
, ...,

∂2u

∂x1∂x2
, ...

)
= 0, (1.2)

where u = u(x1, ..., xn) is the sought function. The arguments of G can
include all partial derivatives of u of any order. Here, we interpret the
independent variables as time t, and spatial coordinates x, y, and z. Almost
all equations ofmathematical physics are partial since they describe changes
in space and time.

• According to the order of the highest derivative.

• According to linearity.

– Linear equations. They are these equations that can be written in a form

Ly = f, (1.3)

where L is a linear operator4 acting on a space of differentiable functions, and
f is a given function (representing external sources). In the case of ordinary
equations the above is equivalent to

Ly(x) = an(x)y
(n)(x) + an−1y

(n−1)(x) + ...+ a1(x)y
′(x) + a0y(x). (1.4)

Each of the points of the above classification can be combined with the others, thus
we can speak of, for example, a second-order linear ordinary equation or a first-order.
Very often this classification is directly related to the difficulty of equations: partial
equations are usually more difficult to study than ordinary equations, nonlinear equa-
tions are more difficult than linear equations, and higher order equations are more
troublesome to solve than first order equations. Of course there are exceptions to this
rule. With the development of science, people began to study more and more diffi-
cult equations, because they also encountered more and more complex phenomena.
Nowadays we know practically everything about linear equations - increasingly more
research is being aimed towards nonlinear equations.

3Check whether you understand this clearly.
4Recall that L is linear when L(αy+ βz) = αLy+ βLz for scalars α and β and vectors y and z.
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At this point, one should also pay attention to a rather non-obvious thing for
some readers - we are not able to provide a solution in the form of a combination of
elementary (or even special) functions for each equation. A similar situation occurs
with polynomials. We can find all the roots of polynomials of degree four or less. For
higher degrees, there are no longer the general formulas. In the case of differential
equations, the situation is even more complicated. However, such difficulties were
and are fuel for new ideas and mathematical methods. First of all, we are often able
to prove that the solution of the equation exists and is unique (often very difficult).
Although we do not know the exact form of the solution, we do know that it exists.
This is very valuable knowledge. Using a number of ingenious techniques, we can also
find features of this unknown solution, such as asymptotic behaviour for small or large
parameters, estimates, and general form. We are also able to implement numerical
methods, thanks to which we will know the exact shape of the solution for parameters
that interest us. Thanks to numerical solutions of differential equations, we are able
to simulate a lot of phenomena ranging from vibrations of bridges and buildings,
development of bee colonies, galactic collisions to the development of the structure of
the universe. In this lecture, we are going to talk about basic equations that can usually
be solved analytically. Thanks to this, we will develop an intuition that will be used to
study more complicated phenomena.

A good news is also the fact that usually, we meet equations that have not higher
order than two (however, there are important equations of third or forth order). The
reasons of this are hidden in physics where we frequently use Newton’s Second Law
of Dynamics or similar mechanical principles.

1.3 Examples
In this section we will see many examples of equations found in various areas of life
and science. These examples, of course, can be multiplied infinitely, but here are either
very fundamental equations or those that illustrate the use of their particular class for
modelling real phenomena. We will meet some of these equations later in the lecture
and present their discussion and derivation there.

Example. (Bacterial evolution, radioactive decay). All these phenomena can be described
using one differential equation (very often we will suppress writing the independent
variable)

y ′ = ky, (1.5)

where k is a constant. This equation describes the size of y (population size, amount
of radioactive element), which changes at rate proportional to its value. The constant k
in the case of decay is negative because y decreases. For bacteria, the constant k can
be either positive (proliferation) or negative (extinction). This is a first-order ordinary
linear equation.

Example. (Newton’s Second Law) This is the most important equation of classical me-
chanics. According to Newton’s Second Law of Motion, the net force on a body is
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proportional to the acceleration. Mathematically, we can write it as 5

m
d2x

dt2
= F

(
t, x,

dx

dt

)
, (1.6)

where m is the mass of the body, x = x(t) is its position 6 and F is the resultant force.
Note that this force can depend on both time and position as well as the speed of the
particle itself. We can immediately say that the above equation is an ordinary equation
of the second order. The linearity (or lack thereof) depends on the form of the resultant
force F. Let us consider some well-known special cases.

• Law of inertia. If the net force is equal to zero, i.e.

m
d2x

dt2
= 0, (1.7)

we have after a simple integration

m
dx

dt
= p, (1.8)

where p is the integration constant (themomentum). Therefore, the velocity does
not change. Furthermore, we can integrate once again to obtain

x(t) =
p

m
t+ x0, (1.9)

where we introduced another integration constant representing the initial posi-
tion of the body. Therefore, we have proved that if there are no forces acting on
the particle, it moves with a uniform velocity.

• Constant net force. In the case of constant Fwe have

m
d2x

dt2
= F, (1.10)

which can be integrated twice to have

x(t) =
at2

2
+ v0t+ x0, (1.11)

wherewe have put a := F/m. Here, v0 jest is the initial velocity while x0 initial po-
sition. This formula states that under a constant net force the particle accelerates
uniformly with acceleration F/m.

5This is an equation that describes a particle (material point) moving in one dimension. Further
generalizations are of course possible.

6Recall that if x(t) is the position of the particle in time t then dx/dt is its velocity, and d2x/dt2 the
acceleration.
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Newton’s equation can yield many more interesting objects to investigate and sim-
ulate and we will meet it many times.

Example. (Linear oscillator) Let the position of an oscillating particle be denoted by
x = x(t). Then if the damping of the medium is proportional to the speed, the
following equation describes the evolution

d2x

dt2
+ 2β

dx

dt
+ω2

0x = f, (1.12)

where β is damping coefficient, ω is the anglar frequency of oscillations, and f is the
external force. This is the archetypal equation modelling oscillations that can be found
anywhere some periodic movement occurs. It is a linear ordinary differential equation
of second order and constant coefficients.

Example. (Predator-Prey Model.) Consider two populations, one of which we will call
predators (eg foxes) and denote its number at time t by P(t). The second population
consists of prey (e.g. hares) with number O(t). We are interested in the dynamics
of the development of these two groups of animals in the case of mutual existence
in a certain area. This is very important from the point of view of ecology, because
knowing both numbers at some point we would like to know the composition of both
populations at later times. In this way, we could predict whether populations would
remain in equilibrium or whether one of themwould die out. The simplest interaction
model was derived by Lotka and Volterra and can be formulated using the following
system of differential equations

dO

dt
= aO− bOP,

dP

dt
= −cP + dOP,

(1.13)

where a, b, c, and d are positive constants. We will discuss the above model in detail
later in the lecture. Note that nowwe have two coupled nonlinear ordinary differential
equations of the first order.

Example. (Friedmann’s equations) In the first half of the 20th century, Friedmann devel-
oped a system of equations to describe the dynamics of the expansion of the universe
that follow from General Relativity. For a long time, the concept that the geometry
of the entire cosmos could change over time was unacceptable to most physicists. It
was only Hubble’s discovery that distant galaxies were "fleeing" from us at speeds
proportional to their distance (Hubble’s law) that broke the Aristotelian dogma of the
unchanging universe. Friedmann’s equations describing the dynamics of the universe
have the form 

(
1

a

da

dt

)2
+
k

a2
=
8πG

3
ρ,

dρ

dt
=
3

a

da

dt
(ρ+ p) ,

(1.14)
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where a = a(t) is the scale factor determining how the distances between two points
change and ρ = ρ(t) is the matter-energy density in the universe. The above two non-
linear ordinary equations, together with the algebraic state equation p = p( rho), give
us a well-defined system in which the constant k = −1, 0, +1 describes the curvature
of the universe (open, flat, closed). So far, many experiments indicate that the universe
is flat with a relative error of only a fraction of one percent.

Example. (Travelling wave equation) Imagine a pollution coming from the factory chim-
ney. It is extremely important to recognize the distance to which these pollutants will
spread over a given time. If we assume that the diffusion phenomenon is negligible
here, the contaminant density ρ = ρ(x, t) at a point in space x ∈ R3 and time t > 0 is
given by7

dρ

dt
+ div (vρ) = 0, (1.15)

where v = v(x, t) is the wind velocity vector. It is a linear partial differential equation
of the first order.

Example. (Potential.) A potential u = u(x, y, z) of a gravitational (electrostatic) field in
some region in space is described by the Poisson’s equation8

− ∆u = ρ, (1.16)

gwhere ρ = ρ(x, y, z) is the density of mass (electrostatic charge) being the source of
the field. In the vacuum, that is when ρ ≡ 0, we obtain the Laplace’s equation

∆u = 0. (1.17)

Laplace’s equation also describes the steady-state temperature distribution or the ve-
locity field of certain flows (for ex. water waves) . Its solutions are called harmonic
functions. Both Laplace’s and Poisson’s equations are second-order linear partial equa-
tions.

Example. (Heat equation) Heat conduction is some region in space is given by the
following equation

∂u

∂t
= α2∆u, (1.18)

where α is the thermal diffusivity (here assumed constant) that characterises the
medium. The sought function u = u(x, t) is the temperature at a point x ∈ R and
time t > 0. Interestingly, the equation of the same form describes the diffusion phe-
nomenon. Moreover, under a seemingly small modification the heat equation becomes
the fundamental relation of non-relativistic quantummechanics - Schrödinger’s equation

ih̄
∂Ψ

∂t
= −

h̄2

2m
∆Ψ+ V(x, t)Ψ, (1.19)

7The divergence of a vector u = (u1, u2, u3) is defined as div u := ∂u1

∂x
+ ∂u2

∂y
+ ∂u3

∂y
.

8The Laplacian ∆ of a function u = u(x, y, z) is defined by ∆u := ∂2u
∂x2

+ ∂2u
∂z2

+ ∂2u
∂z2

.
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where Ψ = Ψ(x, t) is the complex wave function, which the absolute value squared de-
scribes the probability of finding a particle of massm at a point x ∈ R3 and time t > 0.
Moreover, h̄ is the reduced Planck’s constant, and V = V(x, t) is the force potential.

Example. (Wave equation) Let u = u(x, t) describes a deflection at x of a guitar string at
time t > 0. Then,

∂2u

∂t2
= c2

∂2u

∂x2
, (1.20)

where c is the wave speed. In higher dimensions we have

∂2u

∂t2
= c2∆u. (1.21)

For example: in two dimensions, this equation describes the vibrations of a drum and
it is also a first approximation of the behaviour of sea waves. In three dimensions,
the solution to the wave equation describes acoustic or electromagnetic waves. Wave
phenomena are found in almost every field of physics, therefore a careful analysis of
the above equation is extremely important.

Example. (Navier-Stokes equations) At the end of our review, let us take a look at one
of the most important differential equations in physical mathematics, the research of
which is still very active and the equation itself is used to describe the enormous variety
of phenomena in nature 9. The Navier-Stokes equation describes the flow of a fluid,
understood as a continuum 10. Fluids can be liquids, gases and solids - what matters is
the scale on which we consider the movement. The Navier-Stokes equation describes
the dynamics of the velocity field u(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)), that is
the velocity of a fluid particle at (x, y, z). For a incompressible fluid we haveρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p+ µ∆u+ f,

∇ · u = 0,
(1.22)

where ρ is the density, p the pressure, µ viscosity, and f describes all forces acting on
the volume of the fluid (for ex. gravity))11. The Navier-Stokes equation has actually
four components: each for a different component of the fluid velocity vector and the
continuity equation stating that the field u is divergenceless. Apart from the velocity
field, there is a fourth unknown in the equation - the pressure p, and having four partial
differential equations makes the problem well-posed.

Solving the Navier-Stokes equation is difficult: both analytically and numerically.
The main reason for this is the non-linear convection component (u · ∇)u, which is
responsible, inter alia, for the phenomenon of accelerating the flow along with the
change of the geometry of the medium. The Navier-Stokes equation is a nonlinear,
partial, second order equation.

9One of the Millennium Prize problems concerns the Navier-Stokes equation.
10Continuum is an averaging of molecular movements over volumes on the appropriate scales.
11The nabla operator (from Greek "harp") is defined as ∇ :=

(
∂
∂x
, ∂
∂y
, ∂
∂z

)
. Therefore, the gradient of f

can be written as ∇f, the divergence of u as∇ · u, and the rotation ∇× u.
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2 First order equations
In this chapter, wewill familiarize ourselves with the basic types of first-order ordinary
differential equations, which we can generally write as12

y ′(t) = f(t, y(t)), t0 < t < T. (2.1)

From the very beginning, we will meet examples of applications of the discussed
equations for modelling real phenomena. Although we will talk about very simple
models, they are often quite accurate and constitute the foundation for building more
complex descriptions of reality.

2.1 Direction fields
The analysis of differential equations usually begins with looking at its form and
assessing the most information that can be gathered without even solving it. This is
very useful when an explicit solution is not available. There are many methods of
doing that and they frequently rely on analyst’s experience. The simplest of them is to
utilize the direction field.

Definition 1. Let F(t, y) = 0 be the implicit equation defining a curve satisfying (2.1). Then,
the graph of each such curve is called the integral curve of the equation (2.1). Moreover, the
family of all such curves is called the direction field (or slope field).

To understand the definition we just have to look at the ODE. The equation
y ′ = f(t, y) is a rule that assigns a slope of a curve to a point in the (t, y) space.
That is, f(t, y) is the slope of a curve that is a solution of our ODE. Choosing different
points we can draw a vector (1, f(t, y)) at each such point and obtain an approximation
of the direction field of the ODE. This is very useful because without even solving the
equation we get an overall glimpse of the shape and behaviour of the solutions. We
will illustrate this concept on several examples.

Example. Let us draw the direction field for y ′ = y − 1. We immediately see that
f(t, y) = y − 1 and hence the slope is zero for y = 1. That is, one of the solutions is
a constant equal to 1. The slope does not depend on x and thus, the direction field is
symmetric with respect to y = 1. For example, when y = 2 we have y ′ = 1 and the
tangent at y = 0 has the slope y ′ = −1. The slope grows linearly when we move away
from the critical line.

The overall drawing is presented on Fig. 1. We immediately can see that the integral
curves either increase (for y > 1), are constant (for y = 1) or decrease (for y < 1). In
the first and third case, they move away from the critical line. Note how much we can
tell about solutions without solving the equation.

Example. Now, suppose we would like to investigate y ′ = t + y. The direction field
is not nontrivial for both coordinates. A good starting point of drawing the direction

12In almost every case the general form (1.1) can, at least in principle, be inverted to obtain a expression
for y ′.
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Figure 1: A direction field for y ′ = y− 1.

12



-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

2

t

y

ⅇt - t - 1

- t

- t - 1

- t - 2

Figure 2: A direction field for y ′ = y+ t.

field is finding the isoclines, that is curves of constant slope

y ′ = c ⇐⇒ f(t, y) = c. (2.2)

Here, we have y = c − t, that is the isoclines are straight lines. Therefore, thanks to
that we can quickly draw many tangents since we know that they have the same slope
at these lines. This is exemplified on Fig. 2.

We will generalize this graphical method in further studies. It becomes indispens-
able in analysis of systems of equations.

2.2 Separable equations
We will start our review of the most frequent first order differential equations with
separable equations. These, usually are nonlinear, however, thanks to their simple
structure can be integrated and studied.

Example. (Malthus (exponential) model of population growth) Consider a bacterial pop-
ulation that has an unlimited food supply and environmental opportunities to grow.
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We are only interested in the dynamics of population development - we will not try to
describe their spatial distribution. Let y = y(t) denote the population size at time t.
Note that we will build a model with continuous time dependence to take advantage
of the possibilities offered by calculus. There are also discrete time models where
difference equations are considered instead of differential equations. Some of them
harbour rather interesting phenomena. However, the most useful ones are these in
which we can use derivatives.

Let us fix a very short time ∆t and consider the increase of bacteria in an interval
[t, t+ ∆t]

population increase between t and t+ ∆t = y(t+ ∆t) − y(t). (2.3)

Since bacteria proliferate by division and their development possibilities are unlimited,
their growth rate should be proportional to their number at a particular time since each
member can divide itself13. Moreover, the longer the [t, t+ ∆t] interval is, the bacteria
can make more divisions in it. So the formula for an increase is

y(t+ ∆t) − y(t) = k∆t y(t), (2.4)

where k = k(t) > 0 is a proportionality factor that can change in time and depends
on the units chosen and bacterial species14. For example, during the increased solar
or chemical activity, some bacteria can multiply faster than without these feedbacks.
This could be modelled by prescribing an appropriate form of k(t).

Dividing by ∆t and taking the limit ∆t→ 0we get the differential equation

y ′ = k(t)y. (2.5)

This is the Malthus model describing population dynamics (not only bacterial).

We would like to find a systematic way to solve (2.5) and similar equations. Of
course, y ≡ 0 is one of the solutions. However, we would like to obtain something less
trivial. It turns out that there is a algorithmic way to deal with a fairly wide class of
first-order equations.

Definition 2. A separable equation is a first order equation that can be written in a form

y ′(t) = f(y)g(t), (2.6)

where f and g are given functions of a single variable.

We can see that (2.5) is a separable equation with f(y) = y and g(t) = k(t). There
is a systematic method for solving equations of the form (2.6) that uses their structure.
As the name of the equation indicates, youmust first separate the variables, i.e to write

1

f(y(t))
y ′(t) = g(t). (2.7)

13This is because we assume that the increment ∆t is small. In fact, the change in the number of
bacteria in the interval under consideration should be proportional to the mean value of y in [t, t+∆t],
because y may be different at each time. However, using the mean value theorem for the integrals and
the continuity of y gives us the same result as our simplified assumption.

14We have made the tacit assumption here that bacteria do not die over time. If it were the case, we
would add a negative term into the increment.
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Note that the case when f can vanish has to be treated independently. Next, integrate
with respect to t ∫

1

f(y(t))
y ′(t)dt =

∫
g(t)dt. (2.8)

We can now see that after a substitution z = y(t), we have dz = y ′(t)dt and finally∫
dz

f(z)
=

∫
g(t)dt. (2.9)

We have thus obtained an algebraic equation (usually implicit )that determines the
functional relationship between y and t. In some cases, we are able to calculate both
of the integrals in (2.9) and find y = y(t) or t = t(y). Note that, it is very important to
always remember that here we are dealing with indefinite integrals and thus they are
families of primitive functions differing by a constant.

Mnemonic
Inpractice, separable equations are solved in a littlemodifiedandeasy to remember
way. First, we use Leibniz notation for the derivative to rewrite (2.6) as

dy

dt
= f(y)g(t). (2.10)

Then, we separate the variables (note that we treat dy and dt as numbers!)

dy

f(y)
= g(t)dt. (2.11)

And finally, add integrals ∫
dy

f(y)
=

∫
g(t)dt. (2.12)

Note that treating dy/dt as a quotient of two numbers has to be understood as a
change of variables inside the integral as we did before. This useful fiction is easy
to remember and quickens the calculations.

Example. (Malthus model cont’d) Let us write (2.5) in a form

dy

y
= k(t)dt, (2.13)

which immediately can be integrated to obtain∫
dy

y
=

∫
k(t)dt. (2.14)

That is, since y is positive

lny(t) =
∫
k(t)dt. (2.15)

or
y(t) = e

∫
k(t)dt. (2.16)

15



t

y(t)

Figure 3: Different curves satisfying (2.17).

For example, in the important case of constant kwe have
∫
k(t)dt = kt+C and, hence,

y(t) = Dekt, (2.17)

where we have denoted D := eC. This is the famous exponential model of population
dynamics which was pioneered by Thomas Malthus in the end of eighteenth century.
We see that bacteria (or any other living species) grow exponentially in the complete
abundance of needed resources. This model is also very accurate for describing people
growth in initial stages after wars or other cataclysms.

The obtained family of curves (2.17) is indexed by the unknown integration constant
D. Therefore, the general solution of our equation constitute an infinite set of curves.
We can choose a particular one that satisfy a given condition. To this end, suppose that
initially we have measured that y(0) = y0. Then,

y0 = y(0) = De
0·k = D, (2.18)

and finally,
y(t) = y0e

kt. (2.19)

The exemplary plot of this solution is depicted on Fig. 3.
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Definite integration
The integrals in (2.8) can also be definite and many times this is convenient∫ t

t0

1

f(y(τ))
y ′(τ)dτ =

∫ t
t0

g(τ)dτ, (2.20)

which, after substitution z = y(t) leads to∫y(t)
y(t0)

1

f(z)
dz =

∫ t
t0

g(τ)dτ. (2.21)

Now, the integration constant is incorporated into the integral. For example, the
integral in the Malthus model for constant kwould be∫y(t)

y0

dy

y
=

∫ t
0

kdt → ln y(t)
y0

= kt, (2.22)

which mediately gives (2.17).

Since we have learned about solutions to some differential equations, it is time to
define them rigorously.

Definition 3. A solution of a differential equation is any sufficiently smooth curve {(t, y(t)) :
t ∈ [t0, T ]} identically satisfying it.

Note that the above definition is muchmore general than stating that a function is a
solution. Here, the solution can be implicitly or parametrically given family of curves.
If additional data is given we can define our basic problem to solve.

Definition 4. The initial value problem (or Cauchy problem) is a differential equation
along with a given initial condition{

y ′ = f(t, y),

y(t0) = y0,
t0 ≤ t ≤ T, (2.23)

for a given function f and some fixed constants t0, T , and y0.

Thus, solving the initial value problem consists of finding a family of curves satis-
fying a given equation and then selecting the one that passes through a predetermined
point. The initial condition is called as such because inmany problems time is the phys-
ical interpretation of the independent variable. In this sense, the differential equation
gives the dynamics of ywith y0 at the beginning of the time evolution usually taken to
be at t0 = 0. The theoretical importance of the initial value problem is its uniqueness
(under some suitable assumptions). That is, we have to be certain that equation has
only one solution. If not, we have to be alerted since this may have some important
consequences for our model.

Example. (Skydiver and terminal velocity) A classical problem in mechanics concerns
finding a velocity of a particle falling in a medium with a drag force. This model is a
first approximation of a skydiver jump or falling raindrop.
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Consider a skydiver of massm with position x = x(t) and velocity v = dx/dt that
is being subjected to a constant gravity Fg = mg acting in x-direction and drag force

Fd =
1

2
CdAρv

2 = γv2, (2.24)

where Cd is the shape dependent constant,A its cross sectional area projected onto the
direction of flight, and ρ the density of air. Here, we assume that all of these parameters
are constant, however, much more realistic model would be to assume that ρ depends
on height. Moreover, both Cd and A change when the parachute is being opened and,
thus, we assume that we model the situation when it is closed.

The balance of forces along with Newton’s law gives

m
d2x

dt2
= mg− γ

(
dx

dt

)2
. (2.25)

This is a second order equation, however, there is no x in it, and thus we can use the
velocity

dv

dt
= g−

γ

m
v2, (2.26)

which is a separable equation for the velocity alone. As an initial condition we take

v(0) = 0, (2.27)

since the skydiver stepped out of a plane with zero initial velocity. We can separate
variables, and integrate to obtain ∫

dv

g− γ
m
v2

=

∫
dt. (2.28)

Only one integral is not trivial and can be dealt with by expanding into simple fractions

1

g− γ
m
v2

=
1

2

√
m

γg

 1√
mg
γ

+ v
+

1√
mg
γ

− v

 . (2.29)

We can now perform the integration

∫
dv

g− γ
m
v2

=
1

2

√
m

γg
ln

√
mg
γ

+ v√
mg
γ

− v
+ C, (2.30)

with C the integration constant. Therefore,

1

2

√
m

γg
ln

√
mg
γ

+ v√
mg
γ

− v
+ C = t. (2.31)
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It is convenient to determine the integration constant right now, for v(0) = 0 gives

1

2

√
m

γg
ln

√
mg
γ√
mg
γ

+ C = 0, (2.32)

that is C = 0. Inverting, we obtain√
mg
γ

+ v√
mg
γ

− v
= e2
√

γg
m
t. (2.33)

This algebraic equation can easily be solved for v to yield

v(t) =

√
mg

γ

e
√

γg
m
t − e−

√
γg
m
t

e
√

γg
m
t + e−

√
γg
m
t
=

√
mg

γ
tanh

√
γg

m
t, (2.34)

where we have utilized the known formula for hyperbolic tangent. A plot of the above
is presented on Fig. 4. Most importantly, observe that the velocity approaches the
so-called terminal velocity

vt =

√
mg

γ
, (2.35)

in which gravity balances the drag. This could have been found from the ODE itself
by setting dv/dt = 0 in (2.26). That is, in the situation of equal forces. However, the
analytical solution (2.34) gives us the temporal evolution of the velocity. In particular,
the characteristic time scale

τ =

√
m

γg
, (2.36)

on which the velocity changes significantly. For example

v(τ) = 0.76 vt, v(2τ) = 0.96 vt, (2.37)

that is, after one characteristic time the velocity approaches 76%of the terminal velocity,
while for two such time scales it is greater than 96% of the final velocity.

Further integration of dx/dt = v with x(0) = x0 can let us obtain the explicit form
for the distance travelled

x(t) = x0 + vt

∫ t
0

tanh s
τ
ds = x0 +

m

γ
log cosh t

τ
. (2.38)

We can see that for large t with respect to τ the hyperbolic cosine is approximately
equal to an exponential which gives us an almost uniform motion.
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Figure 4: A plot of the solution of (2.26). Vertical lines denote characteristic times.

2.3 Autonomous equations
We will now investigate an important, although seethingly simple, class of first order
equations.

Definition 5. An autonomous equation is an ODE in the form

y ′ = f(y), (2.39)

that is, the right-hand side of the above does not depend on the independent variable.

One of themost important consequences of the above definition is the fact that there
exists a powerful geometrical method of inquiring information about the behaviour of
the solution without solving the autonomous equation. It is based on a very simple
observation that when y is such that f(y) = 0 then, of course, y ′ = 0 at that point.
Therefore, the solution does not change.

Definition 6. A stationary point (or critical point) of the autonomous equation (2.39) is
yc satisfying f(yc) = 0. Furthermore, if f ′(yc) < 0 the point is stable, if f ′(yc) = 0 the critical
point is neutrally stable, and otherwise it is unstable.

The stability of the critical point has a great significance in analysis since it helps us
to draw general conclusions about the behaviour of the solution. To see this, suppose
that yc is a critical point and perturb it by adding a new function ϕ. We can think to
this as a noise acting on a steady-state system described by an ODE. Then,

(yc +ϕ)
′ = f(yc +ϕ). (2.40)
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By expanding the right-hand side into Taylor series at y = yc we have

ϕ ′ = f(yc) + f
′(yc)ϕ+

1

2
f ′′(ζc)ϕ

2. (2.41)

First, since yc is the critical point we have f(yc) = 0. Next, if we assume that ϕ is small
we can truncate the quadratic term. This is done because we would like to investigate
only local properties of the solution near the critical point15. We thus obtain

ϕ ′ = f ′(yc)ϕ, (2.42)

which is a separable equation that we have met before. The solution is

ϕ(t) = Cef
′(yc)t, (2.43)

and it tells us everything. Since ϕ is a perturbation we see that it decays to zero in an
exponential pace when f ′(yc) < 0, that is, if the critical point is stable. Similarly, the
solution moves away the critical point for unstable case. We will shortly see that this is
almost everything we should need to know in order to obtain an accurate information
of the solution. Note also, that the above analysis is only local. The solution can move
away from one critical point and be captured by the other. A complete analysis of all
stationary points is thus needed.

Everything we have said about critical points and stability readily generalizes to
systems of ODEs where it has its most important applications (we will do this in later
sections). However, we will see that this first step serves a lot of modelling in popula-
tion dynamics. For example, we have met the Malthus growth model y ′ = ky which
falls in this class. Another, very important one, is the generalization of it to cope with
limited supplies.

Example. (Verhulst (logistic) model of population growth) Note the major drawback of the
Malthus model of population growth was the assumption of unlimited environmental
supplies. Verhulst fixed that in early nineteenth century by introducing a limited
carrying capacity. Suppose we want to extend Malthus model in the following form

y ′ = g(y)y, (2.44)

that is, when g(y) = k we obtain the exponential dynamics. Here, we would like
to limit the growth rate of the population by appropriately choosing g. The main
assumption is the premise that if the population grows too much, both food and place
to live should become more and more sparse limiting the ability to proliferate. Hence,
for y near some carrying capacity K the growth should slow down, while for small y
the Malthusian dynamics should be appropriate. The simplest f that satisfies these
requirements is a linear function g(y) = r(1− y/K). Therefore,

y ′ = ry
(
1−

y

K

)
, (2.45)

which is called logistic equation. Here, r > 0 is the growth rate, and K > 0. We see that
when y is small comparedwithK the parenthesis is essentially equal to 1 andwe obtain

15Everything here can be made rigorous by, for example, the use of Grönwall’s Lemma.
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the Malthus model. For y ≈ K the parenthesis is close to zero making the derivative
very small. This simple model is a great tool in modelling a number of real-life growth
phenomena: bacterial, plants, animals, and even people!

Although (2.45) can readily be solved using separation of variables, we will show
how to use geometrical analysis in order to analyse it. First, we look for critical points

0 = ry
(
1−

y

K

)
= f(y). (2.46)

The solution of the above is
yc1 = 0, yc2 = K. (2.47)

Therefore, when we start the evolution at either of these points (that is, we choose the
initial condition to be yc) we obtain a constant solution. This makes sense, because
when there are no individuals to replicate the population will not grow. Similarly,
when the carrying capacity is reached, there will be essentially no food or volume to
produce offspring. Further, we compute the derivative to investigate the stability

f ′(y) = r
(
1− 2

y

K

)
. (2.48)

Hence, f ′(yc1) = r > 0 and f ′(yc2) = −r < 0. Therefore, the zero stationary point is
unstable while the other is stable. This is a good information since we know that the
nontrivial system state, i.e. y = K, will attract nearby solutions. Moreover, f ′(y) < 0 for
y > K and f ′(y) > 0 for y < K. The function y = y(t) will thus increase up to yc2 = K
from initial conditions y(0) ∈ (0, K)while decrease to the same limit for y(0) > K. The
convexity can be calculated in the usual way

y ′′ = (f(y)) ′ = f ′(y)y ′ = f ′(y)f(y), (2.49)

where the primes are understood. The graph y = y(t) is thus convex for f ′ and f
having the same sign and this happens when y ∈ (0, K/2) and y > K. The inflection
point occurs at y = K/2. Note howmuch information about the solution we have been
able to extract from just studying the given ODE.

An invaluable tool in visualising the overall dynamics is to draw a y ′ versus y
diagram. Since y ′ = f(y) the just have to sketch the graph of the function f = f(y).
This is done on 5. The interpretation is clear: initial conditions that start in the interval
(0, K) increase and approach yc2 = K. If the population occupies initially a niche than
the environment can provide it will decrease. Having all of this in mind we can also
sketch the temporal evolution y = y(t). Having investigated the convexity we can even
draw the overall shape of the curve rather accurately. Note the clearly visible inflection
point and initial exponential dynamics for y0 ∈ (0, K/2).

Finally, as an exercise in separable equationwe can easily solve (2.45) with y(0) = y0
to obtain

y(t) =
1

1
K
+
(
1
y0

− 1
K

)
e−rt

, (2.50)
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Figure 5: A geometrical visualisation of the dynamics of logistic equation (2.45) (top)
and the temporal evolution for different initial conditions (bottom).
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which is known as the logistic curve16 and it has an enormous field of applications in:
ecology (population dynamics), medicine (growth of tumours, modelling pandemic),
chemistry (reaction models), agriculture (crop growth), fishery, economy, and others.
Essentially everything that grows with limited supplies can be well-modelled with
logistic model as a first approximation. The exact solution (2.50) behaves exactly as we
anticipated by our geometric reasoning (see Fig. 5). For instance, it is easy to compute
the limit for t → ∞ of (2.50) and obtain either 0 (for y0 ≤ 0 (unphysical)) or K (for
y0 > 0).

Example. (Pandemic modelling)17 We will fit the logistic curve to the data representing
daily new cases of COVID-19 in Hubei, China from 22 January to 31 March 202018.
Note that this is a very naïve approach since the model does not assume anything
about pandemic dynamics, characteristics of displease spreading or safety measures.
However, it serves as a nice illustration of ubiquitous nature of the logistic curve and,
since China immediately applied quarantine, might be of some forecast value. The
virus initially attacked and spread exponentially infecting many people. However,
thanks to the rigorous quarantine it started to slow down due to a lack of access to new
susceptible individuals. The data is presented on Fig. 6. We clearly see the logistic
S-shape of the curve.

There are many ways of finding the correct parameters of our model (2.50), that is
y0, K, and r, in order to provide a good fit with the data. Remember that in reality we
do not hope that the curve will intersect every data point and, hence, we are left with
an overdetermined system of equations: three parameters of the logistic model versus
many more data points. A simple approach would be to choose y0 to be the first while
K to be the last value

y0 = 444, K = 67801. (2.51)

The growth rate can now be found by solving an equation y(t1) = y1 where (t1, y1) is
an arbitrarily chosen data point

y(t1) = y1 → r =
1

t
ln (K− y0)y1

(K− y1)y0
, (2.52)

For example, we may choose the middle of February t1 = 11 and y1 = 7153 to obtain

r = 0.26 day−1. (2.53)

Although, this approach is simple and very quick it has a large space for arbitrariness.
In practicewe use somemore advanced fitting algorithms such as nonlinear least squares.
In simplest terms, the method chooses the unknown parameters such that the sum of
squares of errors between the model and the data is the smallest (hence the name).

16It is not completely clear why Verhulst chose the name "logistic". Presumably, in order to make a
contrast with Malthusian exponential model. The latter historically was called "logarithmic".

17Based on M. Bahrami and B. Wood, Logistic Growth Model for COVID-19, Wolfram COVID-19 Data
and Resources

18Some may say that we are doing "Data Science" and there are people who claim to be data scientists
having only fitted some simple models to the data. Be aware of them - Data Science is much more than
logistic curve fitting.
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Figure 6: A fitting of the logistic model (2.50) with parameters (2.54) (solid line with
circles) to the data of cumulative cases of COVID-19 in Hubei, China (dashed line with
triangles).

This makes the fitting unique in the linear model cases and, at least, well-defined in
nonlinear ones. Using least squares gives

ylsq0 = 659, Klsq = 67743, rlsq = 0.234, (2.54)

which is close to our simple approach. The least-squares model fit is presented on Fig.
6. Notice the very good accuracy with a relative error of 3%.

Example. (Logistic growth with a threshold) There are situationwhere either a population
or adisturbance in the climate systemwill not be allowed togrowuntil a certain threshold
0 < T < K is met. For example, the number of individuals in a population can be too
small to gather sufficiently many supplies in order to sustain a thriving herd and stand
up to predators more efficiently. This phenomenon is called Allee effect after Americal
ecologist Warder Allee who observed that goldfish grow more rapidly when their
number is large. Since then, they have more chances to survive due to cooperation.

To model the Allee effect we have to include some asymmetry in the logistic model.
The simplest choice is to modify the growth rate once again by a linear term

y ′ = ry
(
1−

y

K

)(y
T
− 1
)
= f(y). (2.55)

Note that the last parenthesis is responsible for slowing down the growth for y < T
and promoting it for y > T . There are three critical points: yc1, yc2 as in the logistic
model, and the new one

yc3 = T. (2.56)
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Their stability is now changed

f ′(0) = −r < 0, f ′(K) = r

(
1−

K

T

)
< 0, f ′(T) = r

(
1−

T

K

)
> 0. (2.57)

Therefore, the zero stationary point acquired stability while the new critical point
yc3 = T is unstable. The solution will thus move away from the threshold either to the
complete annihilation of the population or to the carrying capacity. This is depicted on
they ′−y graph (Fig. 7). There is a clear asymmetrywhich is themost important feature
of Allee effect - the growth is more rapid for large population numbers. Moreover, we
see that the solution will increase only when y ∈ (T, K) and decrease otherwise. The
calculation of the inflection points is leaf as an exercise.

This model is not only useful for modelling but also for educative purposes. As
opposed to the logistic model, here we cannot obtain an exact for of the solution in the
form y = y(t) but rather t = t(y)

rt(y) + C =
1

r(K− T)
(−(K− T) lny+ K ln |y− T |− T ln(K− y)) , (2.58)

which is much more cluttered and not very much useful. However, we know that
much of its behaviour that we may not need it to invert it.

2.4 Linear equations
Linear phenomena are usually associated with first approximations to the more com-
plex nonlinear ones near some special situations. This, very frequently, helps to un-
derstand the very structure of the problem. In linearisation we usually assume that a
certain quantity changes only in a small fraction of the whole. For example, acoustics
is a linearisation of the Euler equations of fluid dynamics where the pressure changes
caused by an acoustic wave are small compared with the ambient pressure. Linear
theory of acoustics is extremely accurate.

Themost profound practical aspect of linearity of a given problem is the superposi-
tion principle - we can combine various solutions in order to obtain more complex one.
This has a fundamental meaning in PDEs, linear wave theory, and quantummechanics
since thenwe can split a difficult problem into an infinity of easy tasks, solve them, and
form the solution of the original problem. Here, we will focus on linear ODEs leaving
further developments to the PDE course.

A linear differential equation has been defined in (1.4) as a ODE in the form Ly = f
where f is given and L is a linear operator. For the first order case we can write a
general linear equation in the form

y ′ + p(t)y = q(t), y(0) = y0, (2.59)

where p and q are assumed to be given continuous functions. These equations arise
very frequently in many applications and before we tackle a derivation a general solu-
tion we will see two examples.
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Example. (Newton’s Law of Cooling) Suppose we are working with CSI and have a task
of determining victims death. One of the methods that is used is to take advantage of
physics. Newton’s Law of Cooling states that a body looses its heat proportional to the
difference of its temperature and the surroundings. If T = T(t) is the temperature of
the body and A = A(t) is a given ambient temperature, this law can be written as

T ′ = −k(T −A(t)), (2.60)

where k > 0 is a proportionality constant dependent on the specific heat of the body
and its density. The minus sign is conventional because usually the body cools down
in a colder environment. The equation is linear and can be written is a standard form
T ′ + kT = kA(t).

We can use (2.60) to determine the time of death by measuring the temperature
of the corpse at two points, say t0 and t1. Then, as we know, the general solution of
(2.60) will be a two parameter family of curves with parameters k and the integration
constant. We can determine these by our two measurements T0 and T1. Finally, we can
trace the curve back to a time of death td, i.e. when T(td) = 36.6◦C - when the victim
was just killed. This strategy is very useful and is a basis of the actual techniques used
by CSI.

Example. (Mixing) Assume that at t = 0 a tank with a volume V contains Q0 of salt.
Further, there is a influx of q(t) kilograms per litre of salt that flows inside the tank
with a rate r(t) litres per minute. Inside the tank, the salt is being mixed to produce a
brine. Finally, the whole solution exists the container at a rate r(t). Find the amount of
salt inside the tank at time t > 0.

This is a typical problem in chemical engineering. In order to solve it we have to
write a mass balance in terms of an ODE. This is needed since every parameter here
changes continuously with time. If Q = Q(t) is the amount of salt at time t > 0 we
have

Q ′ = influx− outflux, (2.61)
that is, the change in the mass of the salt is equal to the mass that enters the container
minus the amount leaving it. We know that a concentration of q(t) of salt per litre of
brine enters the tank at a rate r(t) litres per minute, hence

inlfux = q(t)r(t). (2.62)

Further, the whole solution is being mixed and leaves the container. However, the
concentration of salt is now Q(t)/V and therefore,

outflux =
Q

V
r(t). (2.63)

Our mass balance equation can now be written in the form

Q ′ +
r(t)

V
Q = q(t)r(t), (2.64)

which is a linear ODE.
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Having learned about some real-world examples of linear equations we would like
to be able to find their solution. Note that, in general, they are not autonomous.
However, there are at least two methods that can always yield an exact solution to
any linear first order ODE: integrating factor and variation of parameters. Here, we
will describe only the former and later return to the latter when studying higher order
equations.

Usually applying the integrating factor quickly leads to a solution. The idea is to
transform (2.59) into a form that can be integrated

(µ(t)y) ′ = Q(t), (2.65)

for some new functions µ and Q. We see that the above yields an exact form of the
solution after integration. The most important fact is that we can always transform
a general linear first order ODE into this special form. To see this, fix an arbitrary
function µ = µ(t) and multiply (2.59) by it

µ(t)y ′ + µ(t)p(t)y = µ(t)q(t). (2.66)

Now, we would like to choose µ such that the above is a derivative of a product with y

(µ(t)y) ′ − µ ′(t)y+ µ(t)p(t)y = µ(t)q(t). (2.67)

We see that this can be achieved when the excess vanishes, that is µ is a solution of the
separable ODE

µ ′ = p(t)µ(t), (2.68)

with a solution
µ(t) = e

∫t
0
p(s)ds (2.69)

which is called the integrating factor. We can always take the integration constant in the
above formula to be equal to 0 since otherwise we would obtain an integrating factor
Cµ(t). After multiplication with linear ODE the constant C would cancel. This is
equivalent to integrating from 0 to t. After integrating (2.67) with µ chosen according
to (2.69) we obtain the following result.

Theorem 1 (Leibniz). The general solution of the linear first order ODE (2.59) is given by the
formula

y(t) = e−
∫t
0
p(s)ds

(
y0 +

∫ t
0

q(s)e
∫s
0
p(u)duds

)
. (2.70)

Therefore, a linear initial value problem always has a solution.
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Integrating factor
When solving linear ODEs one usually does not need to remember the general
formula for an exact solution (2.70). Instead, it is only needed to do the following
steps.

• Multiply the linear first order ODE by µ(t) given by the formula (2.69).

• Identify the derivative of a product.

• Integrate both sides of the ODE.

Remember that it is easiest to use the integrating factor when the equation is in the
standard form (2.59). Many students fail to do so and incorrectly identify p(t) and
q(t).

We now can return to our examples.

Example. (Newton’s Law of Cooling) The ODE derived previously has the form

T ′ + kT = kA(t), (2.71)

with A(t) and k given. The integrating factor is

µ(t) = e
∫t
0
kds = ekt, (2.72)

which transforms the ODE into

ektT ′ + ektkT = kektA(t), (2.73)

where we immediately recognize the derivative of a product

(ektT) ′ = kektA(t). (2.74)

After integration we have

T(t) = e−kt
(
T0 + k

∫ t
0

eksA(s)ds

)
. (2.75)

This is a closed formula for an exact solution of our problem. However, to illustrate
the matters more vividly we assume that the ambient temperature is constant19. Then,
we can carry out the integral

T(t) = e−kt
(
T0 + kA

∫ t
0

eksds

)
= A+ (T0 −A)e

−kt. (2.76)

Note that T(t) → A for large times. Now, if we measure the temperature at some
second time t1 > 0we can determine k by solving T(t1) = T1 resulting in

k =
1

t1
ln T0 −A
T1 −A

. (2.77)

19A good model for daily change of the temperature is a trigonometric function.
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Figure 8: A graphical representation of the determination of the time of death.

Therefore, our model is calibrated. Now, we are able to follow the curve back to the
time of death T(td) = Td = 36.6◦C

Td = A+ (T0 −A)e
−ktd → td = −t1

ln Td−A
T0−A

ln T0−A
T1−A

. (2.78)

Notice that correctly, td < 0 since the death occurred in the past by our choice of coor-
dinates. The procedure is illustrated on Fig. 8. Note also that finding a past value of a
fitted curve is usually consider ill-posed and in real situations somemore sophisticated
algorithms are necessary to obtain a viable result.

Example. (Mixing) For the mixing equation we have

Q ′ +
r(t)

V
Q = q(t)r(t), (2.79)

for which the integrating factor (2.69) is

µ(t) = e
1
V

∫t
0
r(s)ds. (2.80)

After multiplication, the ODE can be written as

(µ(t)Q) ′ = µ(t)q(t)r(t), (2.81)

which gives

Q(t) = e−
1
V

∫t
0
r(s)ds

(
Q0 +

∫ t
0

e
1
V

∫s
0
r(u)duq(s)r(s)ds

)
. (2.82)
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Figure 9: Salt amount versus time.

For simplicity, if q and r are constant we have

Q(t) = qV − (qV −Q0) e
− q
V
t, (2.83)

and the total mass of salt approaches steady-stateQs = qV for large times (Fig. 9).

In the sequel we will see how linearity plays the main role in forming the structure
of higher order equations.

2.5 Other integrable equations (optional)
In this section we will briefly describe some other integrable classes of equations.
Maybe they are not as frequent as separable or linear, but can appear inmany important
situations.

2.5.1 Bernoulli equations

Bernoulli equations are a class of nonlinear ODEs that can be transformed into a linear
ones with a suitable change of variables. They have the form

y ′ + p(t)y = q(t)yn, n > 0, (2.84)

and have been investigate by Jakob Bernoulli at the end of seventeenth century. Of
course, when n = 0 or n = 1 the equation is linear and hence we assume otherwise.
Bernoulli found that when we divide by yn we obtain

y−ny ′ + p(t)y1−n = q(t), (2.85)
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which can be simplified by a change of the dependent variable

u = y1−n. (2.86)

This is because u ′ = (1 − n)y−ny ′ which is the leading term. Therefore we obtain a
linear equation for u

u ′ + (1− n)−1p(t)u = (1− n)−1q(t). (2.87)

We can now use the integrating factor to solve it and then return to the substitution
y = u1/(1−n).

Example. (Logistic growth with variable capacity) An important example of emergence
of Bernoulli equation is a population that grows according to the logistic law where
the carrying capacity vary with time, that is K = K(t). This situation can arise when,
for example, winter conditions are harsh enough to significantly reduce the amount of
food or there is an introduction of predation. We have

y ′ = ry

(
1−

y

K(t)

)
, (2.88)

which can be written as
y ′ − ry = −

r

K(t)
y2. (2.89)

We identify that n = 2 and substitute

u =
1

y
, (2.90)

to obtain
u ′ − ru = −

r

K(t)
. (2.91)

The integrating factor is just µ(t) = exp(−rt) and, hence,

u(t) = e−rt
(
1

y0
− r

∫ t
0

ers

K(s)
ds

)
, (2.92)

and after returning to substitution we obtain

y(t) =
1

e−rt
(
1
y0

− r
∫t
0
ers

K(s)
ds
) . (2.93)

Note that for constant Kwe obtain the logistic growth.
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2.5.2 Homogeneous equations

Another interesting class of first order equations are the so-called homogenous ones.
Note, however, that the word "homogeneous" have different meaning in different situ-
ations. Here, a function f = f(t, y) is homogeneous of degree n if f(λt, λy) = λnf(t, y)
for every λ ∈ R. Now, a homogeneous differential equation is

y ′ =
f(t, y)

g(t, y)
, (2.94)

where f and g are homogeneous of the same degree. This means that if we substitute

y = tu, (2.95)

we obtain
u+ tu ′ =

f(t, tu)

g(t, tu)
=
f(1, u)

g(1, u)
, (2.96)

wherewehaveused thehomogeneityof fandg. Therefore, definingh(u) = f(1, u)/g(1, u)
we obtain a separable equation

tu ′ = h(u) − u, (2.97)

which has an integral

ln t+ C =

∫
du

h(u) − u
, (2.98)

and the solution depends on the specific form of h.
The above class can also be characterized in a different way. From the homogeneity

of f and gwe have
f(λt, λy)

g(λt, λy)
=
f(t, y)

g(t, y)
, (2.99)

thus putting λ = 1/t yields

f(t, y)

g(t, y)
=
f(1, y

t
)

g(1, y
t
)
= h

(y
t

)
. (2.100)

Therefore, a homogeneous equation is an ODE in which the right-hand side can be
expressed as a function of the ratio y/t. This is the usual definition given in most
textbooks.

Example. We solve

y ′ =
t2 + ty+ y2

t2
, (2.101)

by noticing that after division by t2 we obtain

y ′ = 1+
y

t
+
(y
t

)2
. (2.102)

The substitution y = tu leads to

u+ tu ′ = 1+ u+ u2, (2.103)
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which is separable with

ln t+ C =

∫
du

1+ u2
= arctanu. (2.104)

After going back to the original variable we obtain

y(t) = t tan(ln t+ C), (2.105)

and the integration constant can be determined from suitable conditions.

2.5.3 Exact equations

Work in progress.

2.6 Real-world examples
Here we collect some additional real-world examples of first order ODEs. The list can,
of course, be continued indefinitely.

Example. (Hydrostatic pressure) Assume that a medium filled with a certain fluid of
density ρ is in the hydrostatic balance. Consider a small cylinder of cross section A
and height ∆z. Since we have a force balance, the difference in the pressure force on it
top and bottom has to be balanced by gravity

A(p(z+ ∆z) − p(z)) = −gρA∆z, (2.106)

where A∆z is the volume of the cylinder. Dividing by ∆z and passing to the limit we
obtain the hydrostatic balance equation

dp

dz
= −ρg. (2.107)

For example, when the density is constant, we obtain the well-known law p = p0−ρgz.
However, in the atmosphere the density falls with height and cannot be assumed

constant. Air can be assumed to be a ideal fluid, hence

p = ρRT, (2.108)

where R is a constant while T the temperature. Further, T also decreases with height
and in troposphere (the lowest andmost important for people layer of the atmosphere)
this relation is almost linear

T(z) = T0 − Γz, (2.109)

where Γ is called the lapse rate. Hence,

ρ(z) =
1

R

p(z)

T0 − Γz
, (2.110)

35



which can be plugged into the hydrostatic equation

dp

dz
= −

g

R

p

T0 − Γz
. (2.111)

This is a separable equation with a solution

p(z) = p0

(
1−

Γ

T0
z

)− g
RΓ

, (2.112)

where p0 is the atmospheric pressure at the surface. This accurate equation for the
pressure distribution in troposphere is frequently used as a mean of calibrating altime-
ters.

Example. (Falling raindrop) One of themechanisms of rain is based on falling raindrops
that fall through a mist and accumulate mass. Let the mass of the raindrop be m,
density ρ, radius r, and downward velocity v. Then, from the momentum generated
by the gravity

d

dt
(m(t)v(t)) = m(t)g. (2.113)

Moreover, assuming spherical droplets we have

m(t) =
4

3
πρr(t)3. (2.114)

Now, as the raindrop falls through a medium of water density ρ0 it gains mass. A
sensible approach would be to assume that the rate of mass collection is proportional
to the ρ0 (more dense medium gives more mass), cross section of the droplet (more
area swept), and its velocity (faster accumulation)

dm

dt
= πr(t)2v(t)ρ0. (2.115)

We neglect the air resistance, although in more realistic models it should be included.
Now, from (2.114) we can compute the radius and plug it in (2.115) to have

dm

dt
= αm

2
3v, α = ρ0π

(
3

4

1

πρ

) 2
3

. (2.116)

Therefore the above with (2.113) constitute a closed system of two first order equations
for m = m(t) and v = v(t). We can solve it by noticing that there is no independent
variable involved in the equations and hence, we can use the chain rule to write

dv

dt
=
dv

dm

dm

dt
, (2.117)

which, when plugged into (2.113), yields

v
dv

dm
+
v2

m
=
g

α

1

m
2
3

, (2.118)
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where now our independent variable is the mass. This equation is very similar to
Bernoulli ODE and we can simplify it by substituting u = v2. This gives a linear
equation

du

dm
+
2

m
u =

2g

α

1

m
2
3

. (2.119)

The integrating factor is µ(m) = m2, thus

d

dm

(
m2u

)
=
2g

α
m

4
3 . (2.120)

Which along with condition u(0) = 0 gives

v = βm
1
6 , β =

(
6

5

g

α

) 1
2

, (2.121)

that is, the velocity is proportional tom1/6. We can now go back to (2.113) to obtain

dv

dt
= g−

1

m

dm

dt
v = g−

αm
2
3

m
β2m

2
3 . (2.122)

Therefore,m cancels out and we are left with
dv

dt
= g− αβ2 =

g

7
, (2.123)

and we have obtained an important result that the raindrop will fall with constant
acceleration equal to g/7. The mass will thus increase as t6.

Example. (Hourglass) We will determine the optimal shape of a hourglass. Imagine
an axisymmetric container with cross-sectional area at a height y equal to A(y). The
container is filled with water of height h(t) that flows out through a small opening of
area a at the bottom y = 0.

According to Torricelli Law (which follows from conservation of energy) it follows
that the velocity of escaping water is equal to

va(h) =
√
2gh. (2.124)

Next, if V(h) is the volume of water at height hwe have

d

dt
V(h) = −avw(h), (2.125)

that is, in a small period of time ∆t the volume of water flowing out of the container is
equal to avw(h)∆t. Now, since V(h) =

∫h
0
A(y)dywe have

A(h)
dh

dt
= −a

√
2gh. (2.126)

The necessary property of a hourglass is the constant water level velocity, that is we
require that dh/dt = −C=const. Then, we can measure time according to the height
of water (or sand). This gives

A(h) =
a

C

√
2gh, (2.127)
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but the cross-sectional area is equal to A(h) = πf(h)2 where the graph of f denotes the
shape of the container. For example, f(h) = 1 for a cylinder, f(h) = h for a cone or
f(h) =

√
1− h2 for sphere. Therefore,

f(h) = Dh
1
4 , (2.128)

where D is a new constant. Whence, we have shown that the shape of an hourglass
should be proportional to h 14 .

2.7 Existence and uniqueness (optional)
A main objective of any theoretical study of differential equations is to ascertain
whether a given problem has a unique solution. This can have very important con-
sequences both in pure and applied mathematics. For example, when a model of a
physical phenomenon gives us two solutions we should somehow be able to choose
the one representing the actual situation or to rethink themodel. Therefore, it is crucial
to understand the conditions under which a general ODE, that might not be exactly
solvable, possesses a unique solution.

We will probe that
y ′(t) = f(t, y(t)), y(0) = 0, (2.129)

has a precisely one solution defined on the neighbourhood of t = 0. The zero initial
condition can be prescribed without any loss of generality. Note that we have to prove
our claim without the possibility of presenting an exact solution. This is the main
difficulty of analysis of ODEs. The main and classical result is the following.

Theorem 2 (Picard-Lindelöf). Assume that f is continuous and has a continuous derivative
∂f/∂y on a rectangle [−a, a]×[−b, b]. Then, there is a number ε > 0, such that for |t| ≤ ε ≤ a
there exists exactly one solution of (2.129)20.

Proof. First, we will prove that the solution exists. The proof technique is known
as the Picard iteration and more generally, as the Banach contraction theorem. It has
many applications not limited to the theory of differential equations. Note that upon
integrating the ODE we can write it as

y(t) =

∫ t
0

f(s, y(s))ds. (2.130)

Therefore, our function y satisfies an integral equation. The idea is to define a sequence
of functions yn(t) that satisfy

yn+1(t) :=

∫ t
0

f(s, yn(s))ds, n ≥ 0. (2.131)

20In other words: there exists exactly one curve y = y(t) defined for sufficiently small t that passes
through (0, 0).
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We can also put y0(t) ≡ 0. If we assume that such defined sequence is convergent
(uniformly on [−a, a]) to some function v(t), then

v(t) = lim
n→∞yn+1(t) = lim

n→∞
∫ t
0

f(s, yn(s))ds =

∫ t
0

f(s, lim
n→∞yn(s))ds =

∫ t
0

f(s, v(s))ds,

(2.132)
where we used the continuity of f when taking the limit under an integral sign.
Therefore, v(t) is a solution of (2.130), and hence of (2.129). We must, therefore, show
that our sequence (2.131) is convergent. In this way we will construct the solution.

Since f is continuous over a closed and bounded set [−a, a]× [−b, b] it is bounded
itself. Therefore, there exists a constantM > 0 such that

|f(t, y)| ≤M, (t, y) ∈ [−a, a]× [−b, b]. (2.133)

Similarly, we infer that there is a constant L > 0 such that∣∣∣∣ ∂f∂y(t, y)
∣∣∣∣ ≤ L, (t, y) ∈ [−a, a]× [−b, b], (2.134)

which implies Lipschitz continuity of f. To see this, let u, v ∈ [−b, b] and t ∈ [−a, a].
Then, from the Lagrange mean value theorem there exists ζ = ζ(t) for which we have

|f(t, u) − f(t, v)| =

∣∣∣∣ ∂f∂y(t, ζ(t))
∣∣∣∣ |u− v| ≤ L|u− v|. (2.135)

We are now in position to prove the convergence of yn(t).
First, we have to ascertain that all terms of (2.131) are well-defined. It means that

we have to have yn(t) ∈ [−b, b] for each n ≥ 0 and t ∈ [−a, a]. We need that because
yn(t) is the argument of f continuously defined on [−a, a] × [−b, b]. If yn(t) was not
inside [−b, b], we would not be able to use the continuity assumption. We thus have

|yn+1(t)| =

∣∣∣∣∫ t
0

f(s, yn(s))ds

∣∣∣∣ ≤ ∫ |t|
0

|f(s, yn(s))|ds ≤M
∫ |t|
0

ds =M|t| ≤ b, (2.136)

where we used the boundedness of f (2.133). In order the above to be satisfied we
should take |t| ≤ ε for

ε := min
{
a,
b

M

}
. (2.137)

Now, observe that

yn+1(t) = y0(t)+(y1(t) − y0(t))+(y2(t) − y1(t))+...+(yn+1(t) − yn(t)) =

n∑
i=0

(yi+1(t) − yi(t)) ,

(2.138)
since y0(t) ≡ 0. We would like to show that the above series converges uniformly
which will imply the continuity of the limit. We have,

|y2(t) − y1(t)| ≤
∫ |t|
0

|f (s, y1(s)) − f (s, y0(s))|ds ≤M|t|, (2.139)
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and further

|y3(t) − y2(t)| ≤
∫ |t|
0

|f (s, y2(s)) − f (s, y1(s))|ds

≤ L
∫ |t|
0

|y2(s) − y1(s)|ds ≤ML
∫ |t|
0

sds =ML
|t|2

2
,

(2.140)

where we have used the previous inequality and (2.135). Inductively we show that

|yi+1(t) − yi(t)| ≤MLi−1
|t|i

i!
, i ≥ 0. (2.141)

Hence,
n∑
i=0

|yi+1(t) − yi(t)| ≤
M

L

n∑
i=0

(L|t|)i

i!
≤ M
L

∞∑
i=0

(Lε)i

i!
=
M

L
eLε. (2.142)

Therefore, the series
∑∞

i=0 (yi+1(t) − yi(t)) is uniformly convergent for [−ε, ε] which
implies that its sum is continuous (since all yi are continuous). We can now define

y(t) :=

∞∑
i=0

(yi+1(t) − yi(t)) , (2.143)

which, thanks to (2.138), is the uniform limit of yn(t). From (2.132) we see that y is
the solution of (2.130). As y is defined as a integral of a continuous function, it is
differentiable and, hence, a solution of (2.129).

Having proved the existence we can proceed to uniqueness of the solutions to
(2.130).To this end, assume that we have two solutions u = u(t) i v = v(t), satisfying
(2.130). Let t > 0, we then have

|u(t) − v(t)| ≤
∫ t
0

|f(s, u(s)) − f(s, v(s))|ds ≤ L
∫ t
0

|u(s) − v(s)|ds, (2.144)

where we have used (2.135). Now, put

g(t) :=

∫ t
0

|u(s) − v(s)|ds. (2.145)

Immediately we see that g(0) = 0, g(t) ≥ 0 and g ′(t) = |u(t) − v(t)|. Thanks to (2.144)
we can thus write

g ′(t) − Lg(t) ≤ 0. (2.146)
The left-hand side is similar to a linear first order ODE and we will try to resolve it by
integrating factor. After multiplication by e−Lt we obtain(

e−Ltg(t)
) ′ ≤ 0. (2.147)

The above inequality can be integrated over [0, t] to obtain

0 ≥
∫ t
0

(
e−Lsg(s)

) ′
ds = e−Ltg(t) − e0g(0) = e−Ltg(t). (2.148)
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The expression on the right-hand side is non-negative. The only possibility for the
above inequality to be true is g(t) = 0 for all t ≥ 0. Whence, 0 = g ′(t) = |u(t) − v(t)|.
Therefore, we must have u(t) = v(t) for all t ≥ 0, that is, there is only one solution to
the equation (2.130). The proof of uniqueness for t < 0 is exactly the same 21.

From the proof of Picard-Lindelöf Theorem it follows that the solution of (2.129)
exists at least locally (for |t| ≤ ε) but is unique globally (for t ∈ R).

Example. (Nonuniqueness) The standard example of a nonunique solution of the ODE
is

y ′ = y
1
2 , y(0) = 0. (2.149)

Notice the right-hand side does not satisfy the assumption of Picard-Lindelöf Theorem
since y1/2 does not have a continuous derivative. One solution is of course y ≡ 0 and
the other, by separation of variables,

y(t) =
1

4
t2, t ≥ 0. (2.150)

Therefore, the assumptions of the theorem are essential.

Example. (Successive approximations) The method of Picard’s iterations can be very use-
ful in practice when we would like to obtain an approximate solution of our equation.
Especially when an equation has a small parameter multiplying a term that makes the
equation not solvable explicitly. This even works for algebraic equations. For example,
suppose we have to study the following problem

y ′ = −y+ εe−y, (2.151)

where ε is considered small. From our knowledge on autonomous equations we can
show that there exists a stable stationary point yc being a solution of the following
algebraic equation

x = εe−x. (2.152)

Although we can solve this numerically for a given ε we would like to find some
dependence of the solution to the parameter. We thus form the Picard’s iteration
sequence

xn+1 = εe
−xn . (2.153)

Since ε is small we can take x0 = 0 and then compute

x1 = ε, x2 = εe
−ε, x3 = εe

−εe−ε = ε− ε2 +
3

2
ε3 + ..., (2.154)

and so forth. For example, using the Taylor series for x3 as an approximation we get a
relative error of 0.2%forε = 0.1. Theoverall plot of the error is presentedonFig. 10.

21The presented method of proving uniqueness is a fragment of the so-called Grönwall’s Lemma.
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Figure 10: A relative error of approximating the solution of (2.153) with ε− ε2 + 3
2
ε3.

3 Finite differences and Euler methods

3.1 Finite differences
Differential equations are constructed with derivatives and in numerical analysis we
would like to find a way of approximating them numerically. Since derivatives are
limits of difference quotients we have to find a way of representing these limits with a
finite precision.

Let y = y(x) be a function of variable. In what follows we will always assume
sufficient smoothness of y unless otherwise stated. Then, of course

y ′(x) = lim
h→0+

y(x+ h) − y(x)

h
, (3.1)

is the definition of the derivative. Since the above requires a limit passage we can
truncate it to obtain a finite precision approximation in the form of forward difference

δ+y(x) :=
y(x+ h) − y(x)

h
, (3.2)

or backward difference

δ−y(x) :=
y(x) − y(x− h)

h
, (3.3)

where h > 0. We can also take the average of the two preceding operators and form
the centred difference

δ0y(x) :=
1

2
(δ−y(t) + δ+y(t)) =

y(x+ h) − y(x− h)

2h
, h > 0. (3.4)
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It should be clear that the centred approximation is usually better that either backward
or forward difference.

Example. Let y(x) = sin x. We would like to approximate y ′(x) = cos x. We have

δ+y(x) =
sin(x+ h) − sin x

h
= cos

(
x+

h

2

) sin h
2

h
2

= cos x+ 1

2
sin x h+O(h2), (3.5)

where we used the Taylor expansion when h → 0+. We can thus see that δ+y(x) −
cos x = (sin x)h

2
+O(h2). Similarly, for the centred difference we have

δ0y(x) =
sin(x+ h) − sin(x− h)

2h
= cos x− 1

6
cos x h2 +O(h4) as h→ 0+. (3.6)

We can now see that if h < 1 then h2 � h and the error that we make when approxi-
mating the derivative with δ0 should be much smaller than with the δ+ (apart maybe
from points of the form x = nπ).

We see that various approximations of the derivatives are not equivalent and some
of them are more accurate than the other. In many places below the error of some
method will be proportional to some power of the step h, i.e.

E(h) ≈ Chp, p > 0, (3.7)

where C > 0 is a constant independent on h. A useful way of visualizing this error
during simulations will be to present it in a log-log scale because of the fact that

lnE(h) ≈ p lnh+ lnC. (3.8)

Therefore, lnE(h) is a linear function of lnhwhich slope is precisely equal to the order
of the method p. We will use this tool many times.

The above example has indicated a useful method of obtaining estimates for the
error of approximation - the Taylor expansion.

Definition 7. The truncation error of a finite difference operator δ is

δy(x) − y ′(x). (3.9)

When
|δy(x) − y ′(x)| ≤ Chp, h > 0, p > 0, (3.10)

where C > 0 is independent of h, the number p is the order of approximation.

Of course, in a similar manner we can construct approximations of higher deriva-
tives. Calculating explicitly

δ+y(x)−y
′(x) =

y(x+ h) − y(x)

h
−y ′(x) =

1

2
hy ′′(x)+

1

6
h2y ′′′(x)+O(h3) as h→ 0+,

(3.11)
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and
δ0y(x) − y(x) =

1

6
h2y ′′′(x) +O(h4) as h→ 0+. (3.12)

Therefore, we see that δ+ is of the first, while δ0 of second order. We will see that
centred approximations have larger order than the one-sided due to cancellations, that
is the terms in the expansions of y(x+ h) − y(x− h) cancel out.

One may ask whether we have been lucky in finding formulas for finite difference
approximations. There are some systematic ways of deriving some useful operators.
The simplest of them is the method of undetermined coefficients which utilises Taylor
expansion. Suppose we want to find an approximation of y(k)(x∗) based on knowledge
of y at points {xi}n1 where n ≥ k + 1. This set of points is called the stencil. For every
i = 1, ..., nwe have

y(xi) = y(x
∗)+y ′(x∗)(xi−x

∗)+
1

2
y ′′(x∗)(xi−x

∗)2+ ...+
1

k!
y(k)(x∗)(xi−x

∗)k+ ... (3.13)

We thus want a linear combination of the above to approximate a given derivative
n∑
i=1

ciy(xi) = y
(k)(x∗) +O(hp), (3.14)

where p > 0 has to be as large as possible. Now, plugging (3.13) we arrive at

y(k)(x∗) =

n∑
i=1

ci

n−1∑
j=0

y(j)(x∗)

j!
(xi − x

∗)j =

n−1∑
j=0

y(j)(x∗)

j!

n∑
i=1

ci(xi − x
∗)j (3.15)

Of course, the j−sum is terminated at j = n since we would like to obtain a well-posed
linear system. Now, the both sides of the above equation are equal if and only if

1

j!

n∑
i=1

ci(xi − x
∗)j =

{
1, j = k
0, j 6= k j = 0, ..., n− 1. (3.16)

If all xi are distinct, the above is just the Vandermonde’s system. Unfortunately, for
large n the resulting linear system is badly conditioned and hence, difficult to accu-
rately solve numerically. There are however some useful bypasses over this problem.

Example. We will find a finite difference approximation to y ′(x) build on a stencil x,
x− h, and x− 2h. We write

δ2y(x) = ay(x) + by(x− h) + cy(x− 2h). (3.17)

If we expand two right terms in the above and collect similar expressions we arrive at

δ2y(x) = (a+b+c)y(x)−(b+2c)hy ′(x)+
1

2
(b+4c)h2y ′′(x)−

1

6
(b+8c)h3y ′′′(x)+O(h4) as h→ 0+.

(3.18)
Now, since our approximation concerns y ′ we take

a+ b+ c = 0, b+ 2c = −
1

h
, b+ 4c = 0, (3.19)
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which has a solution
a =

3

2h
, b = −

2

h
, c =

1

2h
. (3.20)

Therefore, our finite difference has the form

δ2y(x) =
1

2h
(3y(x) − 4y(x− h) + y(x− 2h)) . (3.21)

The error of the approximation can be readily calculated from the expansion yielding

δ2y(x) − y
′(x) =

1

12
h2y ′′′(ξ), (3.22)

where ξ is some point. The approximation is thus second order accurate.

3.2 Euler methods
Now, we are able to proceed to design of some numerical methods for ODEs. We start
from the simplest ones - Euler schemes. Suppose we would like to solve

y ′(x) = f(x, y), y(0) = y0. (3.23)

Let us introduce the grid xn = nh where h > 0 is the grid spacing. We can use any
finite difference to approximate the derivative on the left-hand side. When we use δ±
we obtain

y ′(xn) = δ±y(xn) + R± = f(xn, y(xn)). (3.24)
All numerical methods are based on truncating the remainder R±. If yn denotes the
numerical approximation to y(xn) (notice that these are usually different quantities!),
we obtain the Euler forward method

yn = yn−1 + hf(xn−1, yn−1), (3.25)

and Euler backward method

yn = yn−1 + hf(xn, yn). (3.26)

The difference is basically in the point at which the function f is evaluated. Note
also that the forward method is explicit, i.e. the next step is calculated directly from
the previous ones, while backward method is implicit, i.e. the next step additionally
requires solving a nonlinear equation z = yn−1+f(xn, z). This increased computational
cost has its merits and advantages as we will see in the sequel.

Immediately, we ask a question how accurate are the methods (3.25) and (3.26)? Do
they approximate the exact solution of (3.23) arbitrarily good when h → 0+? Naively
thinking, we can expect that since δ± is a first order operator, the Euler methods should
also be first order accurate. This appears to be true however, is not that simple. When
integrating a differential equation the error in each step is accumulated. We have to
ascertain whether it not accumulates too much. This is the problem of convergence.

On the other hand, a numericalmethod can be convergent but to a different solution
than the original ODE’s. This is the problem of consistency. We can rigorously define
the relevant terms.
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Definition 8. A local truncation error (LTE) is the remainder of the numerical scheme when
yn is replaced with the exact solution of the corresponding ODE, that is y(xn). If LTE vanishes
as h→ 0+ the method is said to be consistent.

A consistent numerical method approximates the relevant differential equation.
For forward Euler method we have

LTE =
y(xn) − y(xn−1)

h
− f(xn−1, y(xn−1)) = y

′(xn) +
1

2
hy ′′(xn) +O(h

3) − f(xn−1, y(xn−1))

=
1

2
hy ′′(xn) +O(h

3) as h→ 0+,

(3.27)

since y ′(xn) = f(xn, y(xn)). Therefore, Euler method is a consistent method. A consis-
tent method however, may not be convergent to the exact solution since the error can
accumulate to fast.

Example. Consider a numerical method

yn+1 = yn−1 − 2hyn, y0 = 1, y1 = 1. (3.28)

Computing the local truncation error we have

LTE =
y(xn+1) − y(xn−1)

2h
+ y(xn) =

1

6
h2y ′′′(ξn), (3.29)

therefore the method is consistent with the following ODE

y ′ = −y, y(0) = 1, (3.30)

which has a solution y(x) = e−x. Now, we recall that a linear recurrence can be solved
by looking for power function solutions yn = Crn for some C and r. Plugging this
ansatz we obtain from (3.28)

Crn+1 + 2Chrn − rn−1 = 0. (3.31)

Cancelling yields
r2 + 2hr− 1 = 0, (3.32)

and hence
r± = −h±

√
1+ h2. (3.33)

Hence |r−| > 1 and the recurrence is divergence for a general initial condition.

The above method is called the leap-frog since it jumps two steps ahead. Notice that
although the truncation error is of second order, the method is useless due to its lack
of convergence. Now, we state what we will mean by a convergent numerical method.

Definition 9. Fix x ∈ R. A numerical method is convergent with order p > 0 if

|y(x) − yn| ≤ Chp as nh→ x and h→ 0+, (3.34)

for some constant C > 0 independent of n and h.
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Therefore, a convergent method yields an arbitrarily accurate approximation of
y(x) when the grid is refined with nh converging to x (for example take h = x/n and
n→∞). The convergence proofs are usually difficult to obtain especially for PDEs. In
due course we will indicate the various issues appearing in them.
Theorem 3. Let y = y(x), x ∈ [0, X] be a solution of (3.23) with f(x, y) being continuosly
twice differentiable with respect to y variable. Then, both of Euler methods (3.25)-(3.26) are
first order convergent.
Proof. We will proceed by induction and without any loss of generality we consider
only the forward case. Assume that y0 = y(0) (this is a slight simplification since
computing y0 always contains a round-off error). Define the convergence error

en := y(xn) − yn. (3.35)
Then, from (3.25) and Taylor expansion the first term can be bounded as follows

|e1| = |y(x1)−y1| = |y(x0)+y
′(x0)h+

1

2
y ′′(ξ0)h

2−y0−hf(x0, y0)| ≤
1

2
max
x∈[0,X]

|y ′′(x)|h2 =: τ,

(3.36)
since the initial conditions are the same and y ′(x0) = f(x0, y(x0)). Then, the inductive
step can be carried over similarly

|en| = |y(xn−1) + hy
′(xn−1) +

1

2
h2y ′′(ξn−1) − yn−1 − hf(xn−1, yn−1)|

≤ |en−1|+ |f(xn−1, y(xn−1)) − f(xn−1, yn−1)|h+ τ,
(3.37)

where we used the fact that y ′(xn−1) = f(xn−1, yn−1). Since f is Lipschitz with respect to
the second variable we have |f(xn−1, y(xn−1)) − f(xn−1, yn−1)| ≤ L|en−1| for some L > 0.
Therefore,

|en| ≤ (1+ Lh)|en−1|+ τ. (3.38)
Proceeding inductively, we obtain

|en| ≤ (1+Lh)2|en−2|+(1+Lh)τ ≤ ... ≤ (1+Lh)n−1|e1|+τ

n−2∑
i=0

(1+Lh)i ≤ τ
n−1∑
i=0

(1+Lh)i.

(3.39)
The last sum is geometric and hence

|en| ≤ τ
n−1∑
i=0

(1+ Lh)i =
τ

Lh
((1− Lh)n − 1) =

1

2L
max
x∈[0,X]

|y ′′(x)|

((
1−

Lnh

n

)n
− 1

)
h.

(3.40)
Now, since (1+ 1/n)n ≤ e and nh ≤ Xwe have

|en| ≤
1

2L
max
x∈[0,X]

|y ′′(x)|
(
eLX − 1

)
h = Ch. (3.41)

This ends the proof.

Euler methods are the simplest ones to solve ODEs and many times are not very
useful due to their low accuracy. However, there are many important applications
of using them in numerically solving PDEs since they are very easy to implement in
time-advancement of a scheme. Moreover, sometimes it is not desirable to use high
order methods due to unstable behaviour about which we will have much more to say.
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4 Second order equations
Now we will deal with ordinary equations of the second order, which very often arise
in all kinds of problems related to mechanics. One of the most important examples
here is oscillations, and that is what we will focus on the most. First, let us define the
general class of the equations studied.

Definition 10. An initial value problem of the second order is a differential equation

y ′′ = f(t, y, y ′), t ∈ (t0, T), (4.1)

along with initial conditions
y(0) = y0, y ′(0) = y ′0. (4.2)

Here, y = y(t) is to be found while f is given.

First, notice that we have a pair of initial conditions: one for the function and one
for the derivative. As we will see, this is necessary for having a well-posed problem.
Intuitively, since we are dealing with an equation of a second order, when solving it
we have to perform two integrations. These will produce two integration constant that
has to be determined from two conditions. However, as we will see, this procedure is
rarely the actual way of finding solutions to higher order equations.

Example. (Pendulum) One of themost important and archetypal second order equation
is the one describing pendulum motion. The pendulum is assumed to be a weightless
thread of length l with a bob of mass m attached at the end of it (see Fig. 11). By
θ = θ(t) denote the pendulum’s angle subtended with the vertical. Then, balancing
forces in normal coordinates22 we have that

ml
d2θ

dt2︸ ︷︷ ︸
mass × angular acceleration = net force

= −mg sin θ︸ ︷︷ ︸
tangent coordinate of the gravity

. (4.3)

Therefore,
d2θ

dt2
+
g

l
sin θ = 0, (4.4)

which is a second order nonlinear equation. If the maximal pendulum angle is small,
usually taken to be |θ| ≤ 6◦, we can approximate sinθ ≈ θ and obtain a linear oscillator
equation

d2θ

dt2
+
g

l
θ = 0, (4.5)

which plays a major role in modelling various oscillations.

Example. (Shock absorbers and dampers) Shock absorbers are used in many kinds of
mechanical devices to convert the kinetic energy into heat in order to prevent the
system from excessive strain. For example, they are widely used in cars. We can devise
a simple model for a damper with a spring to which a massm is attached and a forcing

22The curvilinear basis spanned by tangent and normal vectors to the particle motion.
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Figure 11: A schematic of a mathematical pendulum.

F = F(t) introduces energy. The spring moves in a viscous fluid to dissipate energy.
By x = x(t) denote the spring deflection from equilibrium at time t.

FromHooke’s Lawwe know that the elastic force acting on a spring is proportional
to the deflection. That is,

Fe = −kx, (4.6)

where k is the spring constant. Further, the dissipative force of the viscous medium
can be assumed to be proportional to the velocity (this is Newton’s law and the fluid is
called Newtonian)

Fd = −γ
dx

dt
, (4.7)

where γ is the damping constant. Balancing forces gives us

m
d2x

dt2
+ c

dx

dt
+ kx = F(t), (4.8)

which is a linear oscillator equation with damping.

Dealing with a general class of second-order equations is quite difficult and does
not provide adequate physical conclusions. We will therefore examine a very special
subclass of them, namely linear equations with constant coefficients.

Definition 11. A linear equation of the second order is

y ′′ + p(t)y ′ + q(t)y = f(t), (4.9)
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Figure 12: A schematic for the damper.

where p, q, and f are given continuous functions. if f ≡ 0 then the equation is called
homogeneous while in other case - nonhomogeneous. Where p and q are independent of t,
then the equation has constant coefficients.

Note that in general a second order linear equation can be written as

R(t)y ′′ + P(t)y ′ +Q(t)y = F(t), (4.10)

however, if R is different than zero we can always divide by it and obtain (4.9). On
the other hand, the points at which R vanishes are also interesting since at them the
equation, formally, decreases one order. These are called singular points and are beyond
the scope of our lecture.

4.1 Homogeneous equations with constant coefficients
The main object of our research will be equations with constant coefficients, which we
will write as

ay ′′ + by ′ + cy = f(t), (4.11)

where a, b, and c are constant. In general, they can be complex constants, but for us
it is enough to consider the real coefficients. Let us start by finding a solution to the
homogeneous equation

ay ′′ + by ′ + cy = 0. (4.12)

Notice that in a specific case with a = −c = 1 and b = 0 we have y ′′ = y, which can
be solved by both y1(t) = et and y2(t) = e−t. A moment of thought lets us to see
that y3(t) = sinh t and y4(t) = cosh t are also solutions! This is a general case and is
summarized in the following proposition.

Proposition 1. Let y1 and y2 be solutions of (4.9) with f ≡ 0. Then, their linear combination
is also a solution.

Proof. Let y1 and y2 be solutions of the homogeneous equation. Now, it is enough to
take advantage of the linearity of the derivative operator

(αy1 + βy2)
′′ + p(t)(αy1 + βy2)

′ + q(t)(αy1 + βy2) =

α (y ′′1 + p(t)y
′
1 + q(t)y1) + β (y ′′2 + p(t)y

′
2 + q(t)y2) = 0,

(4.13)

which ends the proof.
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Therefore,we can see that ifwefindany two solutions to thehomogeneous equation,
let them be y1 and y2, the solution is also

y(t) = C1y1(t) + C2y2(t). (4.14)

Later in the lecture we will see that provided that y1 and y2 are linearly independent,
then every other solution of our equation could be written in the above form. We
call this general solution. Then C1,2 constants can be determined using the initial
conditions23. The linearly independent solutions y1 and y2 are called fundamental
solutions. The solution of the initial problem, that is with determined constants C1,2,
is called special solution.

Let us now return to the equation with constant coefficients (4.12) and assume that,
by analogy with our simple special case, the solution is an exponential function. Let
y(t) = ert, for some constant r. It is called an ansatz. Then after substitution

ar2 + br+ c = 0, (4.15)

whence, r is a zero of the above equation called characteristic polynomial. We have to
consider various cases.

• Two real roots. If r1 6= r2 are these roots, then of course the fundamental solutions
of the equation (4.12) will be y1(t) = er1t and y2(t) = er2t. The general solution is
therefore

y(t) = C1e
r1t + C2e

r2t, (4.16)
and we do not have any oscillations.

Example. We will solve {
y ′′ + 5y ′ + 6y = 0,
y(0) = 0, y ′(0) = 3.

(4.17)

The characteristic polynomial is r2 + 5r + 6 = 0 with roots r1 = −2 and r2 = −3,
therefore, the general solution is

y(t) = C1e
−2t + C2e

−3t. (4.18)

In order to determine the constants we plug the initial conditions{
0 = y(0) = C1 + C2,
3 = y ′(0) = −2C1 − 3C2.

(4.19)

After solving it we obtain C1 = 3 and C2 = −3. Finally, the special solution has
the form

y(t) = 3
(
e−2t − e−3t

)
, (4.20)

and is presented on Fig. 13. There are no oscillations.

23If they were not linearly independent, for example y2 = αy1, then y(t) = C1y1(t) + C2αy1(t) =
(C1 + αC2)y1(t) = Dy1(t) for some constant D. So, in general, we are not able to meet two initial
conditions.
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Figure 13: A graph of the solution y(t) = 3
(
e−2t − e−3t

)
.

• Two complex roots. The complex roots of a second order polynomial with real
coefficients are always conjugate. Let r1 = λ + iµ and r2 = λ − iµ. Then we
can immediately write the fundamental solutions as y1(t) = eλteiµt and y2(t) =
eλte−iµt. We could end there by now, but usually we are dealing with initial
conditions that are real (e.g. position and speed of the pendulum). So we would
like the solution to the differential equation to be real as well (although the
complex form also gives a lot of benefits). Remember that a linear combination
of solutions is also a solution, therefore they will be solutions

y3(t) =
1

2
(y1(t) + y2(t)) = e

λte
iµt + e−iµt

2
= eλt cosµt,

y4(t) =
1

2i
(y1(t) − y2(t)) = e

λte
iµt − e−iµt

2
= eλt sinµt,

(4.21)

where we used Euler’s formulas for the complex relationship of exponents with
trigonometric functions. The general solution ultimately takes the form of

y(t) = eλt (C1 cosµt+ C2 sinµt) , (4.22)

and thus, the angular frequency of the oscillations is µwhile the time scale of the
amplitude decay is λ−1.

Example. Asimple equationy ′′+y = 0has the characteristic polynomial r2+1 = 0
with two purely imaginary roots r1,2 = ±i. Therefore, the solution is

y(t) = C1 cos t+ C2 sin t, (4.23)

which are clearly oscillatory with the same amplitude equal to
√
C21 + C

2
2 (why?).

They are presented on Fig. 14.
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Figure 14: A graph of the solution y(t) = y(t) = C1 cos t+ C2 sin t.

Example. The equation y ′′ + y ′ + y = 0 gives the characteristic polynomial
r2 + r+ 1 = 0with roots r1,2 = −1/2± i

√
3/2. Therefore

y(t) = e−
1
2
t

(
C1 cos

√
3

2
t+ C2 sin

√
3

2
t

)
, (4.24)

which clearly shows oscillations of angular frequency
√
3/2 that are damped at a

time scale 2 (see Fig. 15).

• One repeated root. This root is represented by the formula r1,2 = − b
2a
, which

gives one fundamental solution y1(t) = e−
b
2a
t . How do we find the second one?

Suppose it is very similar to the first, that is y2(t) = f(t)y1(t) for an unknown
function f. Then

y ′2(t) = f
′e−

b
2a
t −

b

2a
fe−

b
2a
t,

y ′′2 (t) = f
′′e−

b
2a
t −

b

a
f ′e−

b
2a
t +

b2

4a2
fe−

b
2a
t.

(4.25)

When we plug y2 into (4.12) we obtain

af ′′ + (−b+ b)f ′ +

(
b2

4a
−
b2

2a
+ c

)
f = 0. (4.26)

Since a characteristic polynomial has only one double root, its discriminant is
equal to zero, that is, b2 = 4ac. Thus, the factor of f in the above equation
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Figure 15: A graph of the solution y(t) = e− 12 t
(
C1 cos

√
3
2
t+ C2 sin

√
3
2
t
)
.

disappears, leaving f ′′ = 0, that is f(t) = C1t + C2. Whence, we got a general
solution

y(t) = C1e
− b
2a
t + C2te

− b
2a
t, (4.27)

where we slightly renamed the constants. So we can see that to get the second
fundamental solution, it is enough to multiply the first by t.

Example. Let us solve {
y ′′ − y ′ + 1

4
y = 0,

y(0) = 2, y ′(0) = 1
3
.

(4.28)

The characteristic polynomial is r2 − 1 + 1
4
= 0 and has a double root r1,2 = 1

2
.

Then,
y(t) = C1te

1
2
t + C2e

1
2
t. (4.29)

Substituting initial conditions gives{
2 = y(0) = C2,
1
3
= y ′(0) = C1 + 1.

(4.30)

Therefore, the special solution has the form

y(t) = −
2

3
te

1
2
t + 2e

1
2
t, (4.31)

which is depicted on Fig. 16.
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Figure 16: A graph of the solution y(t) = −2
3
te

1
2
t + 2e

1
2
t.

4.2 Nonhomogeneous equations with constant coefficients
Having completely analysed homogeneous equations with constant coefficients we
now look at the linear nonhomogeneous ones. Let us note immediately that if Y1 and
Y2 are solutions of (4.9), then their difference satisfies the homogeneous equation

(Y1 − Y2)
′′ + p(t)(Y1 − y2)

′ + q(t)(Y1 − Y2) =

Y ′′1 + p(t)Y ′1 + q(t)Y1 − (Y ′′1 + p(t)Y ′1 + q(t)Y1) = f(t) − f(t) = 0.
(4.32)

This means that the difference of solutions of the nonhomogeneous equation can be
written as a linear combination of the fundamental solutions of the homogeneous
equation Y1 − Y2 = C1y1 + C2y2. Thus, if ϕ is any solution of the nonhomogeneous
equation (a special solution) then the general solution of (4.9) can be written as

y(t) = C1y1(t) + C2y2(t) +ϕ(t). (4.33)

Therefore, in order to solve a nonhomogeneous equationwe have tomake the following
steps.

1. Find the fundamental solutions of the corresponding homogeneous equation.

2. "Guess" any (special) solution ϕ of the inhomogeneous equation.

3. Write the solution as (4.33).

Example. Let us find a general solution of

y ′′ − 3y ′ + 4y = 3e2t. (4.34)
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The characteristic polynomial of the homogeneous equation has the form r2−3r+4 = 0,
and its roots give us

y1(t) = e
3
2
t cos

√
7

2
t, y2(t)e

3
2
t cos

√
7

2
t. (4.35)

It is also easy to check thatϕ(t) = −1
2
e2t is one of the solutions of our nonhomogeneous

equation. Therefore, its general solution has the form

y(t) = e
3
2
t

(
C1 cos

√
7

2
t+ C2 sin

√
7

2
t

)
−
1

2
e2t. (4.36)

Of course, the word "guess" brings fear and trepidation to many students. Fortu-
nately, there are systematic methods of finding special solutions of nonhomogeneous
equations without any divine intervention.

4.2.1 Method of Undetermined Coefficients

It is also called the Prediction Method and is based on proposing the form ϕ and then
checking that choice. However, it onlyworks for some types of nonhomogeneities (that
is, f). Let us assume that the f has the form of the product of the polynomial Pn (n -
degree), the exponential and trigonometric functions, i.e.

f(t) = Pn(t)e
αt

{
sinβt,
cosβt, (4.37)

where α and β are constant. We can then show (with quite a long, tedious, but
straightforward calculation) that the special solution is

ϕ(t) = ts
[(
Ant

n +An−1t
n−1 + ...+A0

)
eαt cosβt+

(
Bnt

n + Bn−1t
n−1 + ...+ B0

)
eαt sinβt

]
,

(4.38)
The unknown coefficients s, An and Bn can be found by substituting ϕ given by the
above formula into the heterogeneous equation (4.9). There are a few rules to follow
when guessing the ϕ form. First, if f contains a trigonometric function, ϕ should have
them both (the point is that the derivative of the sine is a cosine and vice versa). Second,
the number s is usually 0, but is positive in cases where a part of the nonhomogeneity
f belongs to the set of fundamental solutions.

Example. We will solve
y ′′ − 3y ′ − 4y = −8et cos 2t. (4.39)

Here, P0(t) = −8, α = 1 and β = 2. We thus look for constants A and B such that

ϕ(t) = Aet cos 2t+ Bet sin 2t. (4.40)

To substitute the above expression into the differential equation we need to compute
the derivatives

ϕ ′(t) = (A+ 2B)et cos 2t+ (−2A+ B)et sin 2t,
ϕ ′′(t) = (−3A+ 4B)et cos 2t+ (−4A− 3B)et sin 2t.

(4.41)
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For ϕ to be a solution, we must have ϕ ′′ − 3ϕ ′ − 4ϕ = −8et cos2t, which is equivalent
to

(−10A− 2B)et cos 2t+ (2A− 10B)et sin 2t = −8et cos 2t. (4.42)
Both sides of the above equation will be identically equal (for each t) if the coefficients
of the respective functions are identical, i.e.{

−10A− 2B = −8,
2A− 10B = 0.

(4.43)

Therefore, A = 10
13

and B = 2
13
, that is

ϕ(t) =
10

13
et cos 2t+ 2

13
et sin 2t. (4.44)

Example. Now, consider {
y ′′ − 2y ′ + 1 = (t+ 2)et,
y(0) = 0, y ′(0) = 1.

(4.45)

The general solution of the homogeneous equation is

yh(t) = C1te
t + C2e

t. (4.46)

We will see what the search for a solution to the inhomogeneous equation may look
like. Suppose we are naive and make the ansatz

ϕ1(t) = (At+ B)et. (4.47)

Then, after taking the derivatives and plugging into the equation we obtain

(t+ 2)et = ϕ ′′1 − 2ϕ
′
1 +ϕ1 = (At+ B+ 2A− 2At− 2A− 2B+At+ B)et = 0, (4.48)

which is a contradiction. We can see that ϕ1 certainly cannot be a special solution. Let
us go ahead and propose

ϕ2(t) = (At2 + Bt+ C)et, (4.49)
which gives

(t+ 2)et = ϕ ′′2 − 2ϕ
′
2 +ϕ2 = 2Ae

t. (4.50)
Unfortunately, this is also not a good choice because we get a contradiction again: the
left side of the above equality is variable and the right side is constant. Let it now take

ϕ3(t) = (At3 + Bt2 + Ct+D)et, (4.51)

and then
(t+ 2)et = ϕ ′′2 − 2ϕ

′
2 +ϕ2 = (2B+ 6At)et, (4.52)

which gives 2B + 3At = t + 2, that is A = 1/6 and B = 1. The C and D constants
are arbitrary, so we choose C = D = 0. Ultimately, ϕ3(t) = (t3/6 + t2)et. The general
solution of a heterogeneous equation has the form

y(t) = C1te
t + C2e

t +

(
1

6
t3 + t2

)
et. (4.53)
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Only now can we take use the initial conditions and obtain

0 = y(0) = C2, 1 = y ′(0) = C1, (4.54)

therefore, the solution of the nonhomogeneous problem is

y(t) =

(
1

6
t3 + t2 + t

)
et. (4.55)

Now consider why ϕ1,2 was not the right choice. We can see that ϕ1 is nothing but a
linear combination of two fundamental solutions of the homogeneous equation. There-
fore, substituting this function into the equation returns zero. On the other hand, if we
write ϕ2(t) = At2et + (Bt+C)et, we can again see that the second term belongs to the
set of fundamental solutions. This means that it satisfies the homogeneous equation.
The A parameter alone is insufficient for ϕ2 to satisfy the inhomogeneous equation
because t + 2 belongs to the two-dimensional space of polynomials. Hence, we need
another degree of freedom, and it is provided by ϕ3.

The Method of Undetermined Coefficient is self-correcting: if we assume too little,
we get a contradiction; if too much, we will have to calculate more but the answer will
be correct.

4.2.2 Method of Variation of Parameters

This method comes from Lagrange and allows us to write a solution to the equation
(4.9) for any function f. We are not limited here to the functions for which the Method
of Undetermined Coefficients works. The price to be paid for this generality is the
more complicated form of the solution.

Let y1 and y2 be the fundamental solutions of the homogeneous equation

y ′′ + p(t)y ′ + q(t)y = 0. (4.56)

We know that then the general solution will be their linear combination C1y1(t) +
C2y2(t). Lagrange noticed that the special solution of the equation of the nonhomoge-
neous can be written in the form

ϕ(t) = C1(t)y1(t) + C2(t)y2(t). (4.57)

This is where the name of the method comes from: we let C1 and C2 depend on time.
This extra freedom turns out to be enough for ϕ to be the solution. When we calculate
the derivative, we get

ϕ ′ = C ′1y1 + C1y
′
1 + C

′
2y2 + C2y

′
2. (4.58)

Since we have some freedom in determining C1,2 we can take

C ′1y1 + C
′
2y2 = 0. (4.59)

The reason is that after substituting ϕ in the equation (4.9) there will be no second
derivatives of C1,2. With the condition (4.59) the derivative expresses itself very simply

ϕ ′ = C1y
′
1 + C2y

′
2. (4.60)
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Calculating the second derivative we have

ϕ ′′ = C ′1y
′
1 + C1y

′′
1 + C

′
2y
′
2 + C2y

′′
2 , (4.61)

and after returning to the original ODE we obtain

C1 [y
′′
1 + p(t)y

′
1 + q(t)y1] + C2 [y

′′
1 + p(t)y

′
1 + q(t)y1] + C

′
1y
′
1 + C

′
2y
′
2 = f(t). (4.62)

Since y1 and y2 are solutions of a homogeneous equation, the expressions in parenthe-
ses vanish. Combining this result with (4.59) we obtain a system of equations{

C ′1y1 + C
′
2y2 = 0,

C ′1y
′
1 + C

′
2y
′
2 = f(t)

(4.63)

It is a linear system of algebraic equations with unknowns C ′1 and C ′2. Therefore, the
solution is

C ′1(t) = −
y2(t)f(t)

W(y1, y2)(t)
, C ′2(t) =

y1(t)f(t)

W(y1, y2)(t)
, (4.64)

where the determinant

W(y1, y2)(t) =

∣∣∣∣ y1 y2
y ′1 y ′2

∣∣∣∣ = y1y ′2 − y ′1y2, (4.65)

is called theWronskian. Integrating (4.64) we finally obtain

ϕ(t) = −y1(t)

∫
y2(t)f(t)

W(y1, y2)(t)
+ y2(t)

∫
y1(t)f(t)

W(y1, y2)(t)
. (4.66)

This formula is very important in many theoretical studies since it allows us to "invert"
a differential equation to obtain an integral representation of the solution.

4.3 Wronskian and linear independence (optional)
We saw that the Wronskian appeared in the Method of Variation of Parameters. It is a
determinant of fundamental importance in the theory of linear ordinary equations. As
we will see in a moment, it also occurs in a completely different place - when finding a
special solution.

Consider {
y ′′ + p(t)y ′ + q(t) = 0,
y(0) = y0, y

′(0) = y ′0.
(4.67)

Suppose we can find two solutions to the above homogeneous equation. Let them be
y1 and y2. We will see what conditions they must meet in order for us to be able to
satisfy both initial conditions. First of all, it must happen{

C1y1(0) + C2y2(0) = y0,
C1y

′
1(0) + C2y

′
2(0) = y

′
0.

(4.68)

It is a system of two linear algebraic equations that we can easily solve

C1 =
y0y

′
2(0) − y

′
0y2(0)

y1(0)y ′2(0) − y
′
1(0)y2(0)

, C2 =
−y0y

′
1(0) + y

′
0y1(0)

y1(0)y ′2(0) − y
′
1(0)y2(0)

. (4.69)
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Note that the expression in the denominators is just Wronskian (4.65) taken at 0. Of
course, for the above expressions to make sense, the denominator must always be
different from zero. Therefore, we have proved the theorem.

Theorem 4. Let y1 and y2 be solutions of the homogeneous equation (4.67). If their Wronskian
does not vanish at t = 0, that is

W(y1, y2)(0) 6= 0, (4.70)
then (4.67) has a solution satisfying both initial conditions.

By direct calculation we can check that all the solutions we found for equations
with constant coefficients have non-vanishingWronskians, for example for y1(t) = er1t
and y2(t) = er2t from r1 neqr2 we have

W(y1, y2)(t) = y1(t)y
′
2(t) − y

′
1(t)y2(t) = (r2 − r1) e

(r1+r2)t 6= 0. (4.71)

There are stronger results for solutions to second-order equations. They result from
the theorem about the existence and uniqueness of solutions (Theorem 2). It turns out
that while p and q in (4.67) are continuous on a certain interval, we are always able to
find a unique solution to our problem. Moreover, there is always a set of fundamental
solutions.

Wronskian is also important in the more algebraic aspects of differential equations.
It is closely related to the linear independence of solutions to linear equations.

Theorem 5. Let f and g be functions defined over a certain interval I. IfW(f, g)(t0) 6= 0 for
some t0 then f and g are linearly independent on I. Equivalently, if f and g are not linearly
independent on I thenW(f, g)(t) = 0 for each t ∈ I.

Proof. Assume that
αf(t) + βg(t) = 0. (4.72)

For linear independence we have to show that the above equation implies α = β = 0.
Calculating the derivative we have

αf ′(t) + βg ′(t) = 0. (4.73)

When we substitute t = t0 and write down the system of equations, we get{
αf(t0) + βg(t0) = 0,
αf ′(t0) + βg

′(t0) = 0.
(4.74)

The determinant of the above system is WronskianW(f, g)(t0), which by assumption
is different from zero. This means that α = β = 0 is the solution. The functions f and
g are therefore linearly independent.

Note that despite the disappearance of Wronskian, the f and g functions can still be
linearly independent. Examples include the functions f(t) = |t|t2 and g(t) = t3 on the
(−1, 1) interval.

We will now show a very important result that gives the exact formula for Wron-
skian. Often it can be used to find the second fundamental solution as long as only the
first is known.
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Theorem 6 (Abel). Let y1 and y2 be solutions of the homogeneous equation

y ′′ + p(t)y ′ + q(t)y = 0, (4.75)

for p and q continuous over some interval I. Then, the Wronskian can be written as

W(y1, y2)(t) = C exp
(
−

∫
p(t)dt

)
, (4.76)

where C is a constant that depends on y1,2. Thus, W is either identically zero for all t ∈ I
(C = 0), or is not zero for t ∈ I (C 6= 0).

Proof. From the assumption we have{
y ′′1 (t) + p(t)y

′
1(t) + q(t)y1 = 0,

y ′′2 (t) + p(t)y
′
2(t) + q(t)y2 = 0.

(4.77)

Multiplying the first equation by y2 and the second by y1 and subtracting both sides,
we get

(y1y
′′
2 − y

′′
1y2) + p(t) (y1y

′
2 − y

′
1y2) = 0. (4.78)

If we observe thatW ′ = y1y
′′
2 − y

′′
1y2 then we arrive at

W ′ + p(t)W = 0. (4.79)

It is a very well-known separable first order equation with a solution

W(t) = C exp
(
−

∫
p(t)dt

)
. (4.80)

The integration constant C can be determined from the knowledge of y1,2.

Therefore, if we know y1 then using Abel’s Theorem we can write

y1y
′
2 − y

′
1y2 = C exp

(
−

∫
p(t)dt

)
, (4.81)

which is a linear first order equation for y2.

Example. We know that y1(t) = t−1 is a solution of

y ′′ +
3

2t
y ′ −

1

2t2
y = 0, t > 0. (4.82)

We also have exp
(
−
∫
p(t)dt

)
= t−3/2. Wewill now find the second solution bywriting

y ′2 + t
−1y2 = Ct

− 1
2 . (4.83)

We can apply the integrating factor right away, but it’s easier to multiply the above
equation by t to get

ty ′2 + y2 = Ct
1
2 , (4.84)
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what is
(ty2)

′ = Ct
1
2 . (4.85)

That gives
y2(t) = Dt

1
2 + Et−1. (4.86)

Since Et−1 is linearly dependent on y1, we only need to take y2(t) = t
1
2 .

Let us now summarize our considerations on solutions to second-order linear dif-
ferential equations (identical conclusions carry over to higher orders). Let y1 and y2
be solutions of the homogeneous equation (4.67) on the interval I. Then the following
statements are equivalent.

1. The y1 and y2 functions constitute fundamental system of solutions in the I range.

2. Functions y1 and y2 are linearly independent.

3. W(y1, y2)(t0) 6= 0 for some t0 ∈ I.

4. W(y1, y2)(t) 6= 0 for all t ∈ I.

Many, if not all, considerations of linear second order equations can be easily
generalized to higher order equations. Linearity is the fundamental concept and
associations with algebra sculpt the general structure of solution spaces.

4.4 Forced oscillation and resonance
Wewill now consider a very important example of a forced linear oscillator (4.8) which,
for convenience, can be written in a standard form

x ′′ + 2βx ′ +ω2
0x = f(t), (4.87)

where β = γ/(2m), ω0 =
√
k/m, and f(t) = F(t)/m. This is a simple ODE that we

already know how to solve. Here, we will consider a periodically forced case, that is

f(t) = f0 cosωt, (4.88)

with the amplitude f0 and forcing frequency ω. The characteristic polynomial being
r2 + 2βr+ω2

0 with roots
r1,2 = −b±

√
b2 −ω2

0, (4.89)

therefore we have three cases:

1. undampedwhen β = 0,

2. weakly dampedwhen 0 < β < ω0,

3. critically dampedwhen β = ω0,

4. strongly dampedwhen β > ω0.
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We will only consider weakly damped case for then the nontrivial behaviour occurs.
The solution of the forced equation can be written as

x(t) = e−bt
(
C1 cos

(√
ω2 − b2t

)
+ C2 sin

(√
ω2 − b2t

))
+ϕ(t), (4.90)

whereϕ is the special solution of the nonhomogeneous equation. It can be written as24

ϕ(t) =
f0√

(ω2
0 −ω

2)2 + 4β2ω2
cos
(
ωt− arctan 2βω

ω2
0 −ω

2

)
. (4.91)

Now, since the solution of the homogeneous equation (4.90) has an exponentially
vanishing amplitude at a time scale β−1, it is called the transient solution. On the
other hand, the solution of the forced equation (4.91) is a persisting oscillation with
angular frequencyωwith a given amplitude and phasewith the former being themost
important.

Notice that the amplitude of forced oscillations

A(ω) =
f0√

(ω2
0 −ω

2)2 + 4β2ω2
, (4.92)

depicted on Fig. 17, is unbounded for β = 0 (undamped oscillations). For our case, it
is continuous with a clearly visible peak atω0 equal to

Amax =
f0

2βω0

. (4.93)

Therefore, for even very small forcing f0 the amplitude of oscillations can become very
large when the damping is light. This phenomenon is called resonance. This can be
very dangerous when constructing building or machines - the external oscillations can
resonate with internal ones and lead to a collapse. On the other hand, in electronic
devices or seismographs resonance is harnessed todetect veryweak signals. Resonance
is being also utilized, for example, in acoustics (tuningmusical instruments, amplifying
sound) and lasers (by creating coherent light in the cavity).

4.5 Boundary value problems
Boundary value problems appear very often in the analysis of partial differential equa-
tions. They are related to solving a given problem in a certain region on the boundary
of which it is necessary to impose some conditions for the unknown solution. The
problem of heat propagation in the rod can be used as an example. The situation is
different if one end of the bar is cooled to a certain temperature and other whether it is
insulated. Boundary value problems are not only important for partial equations, they
are also a fundamental object in the application of ordinary equations.

Example. (Hanging cable) An important problem in engineering and construction is to
determine the shape of a hanging cable or chain. Since this is the solution of lowest

24This requires a little bit of work!
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ω0
ω

A(ω)

Figure 17: Amplitude of oscillations for 0 < β < ω0 versusω.

energy it is being used in designing arches of highest sustainable load or calculating
the break-points of electrical cables (wires) that can be stressed by heavy snow or frost.
Moreover, the solution of the problem is used in constructing suspension bridges or
anchoring heavy marine objects.

We would like to find the ODE governing the shape of the steady-state of hanging
cable of linear density ρ (see Fig. 18). Let the graph of the function y = y(x) denote it
and we fix its ends at x = ±L

y(−L) = H1, y(L) = H2. (4.94)

In order to balance forces, that is cable tension Twith gravity, we have to consider only
a small portion of it, say (x, x + ∆x) and then pass to the limit with ∆x → 0. This is
needed since all the tension changes from point to point. Looking at the bottom of Fig.
18 we see that the horizontal balance of forces is just

T(x+ ∆x) cosϕ(x+ ∆x) − T(x) cosϕ(x) = 0, (4.95)

wereϕ denotes the angle subtended between the tangent to the cable and the horizon-
tal. Dividing by ∆x and taking the limit yields

(T(x) cosϕ(x)) ′ = 0, (4.96)

where prime denotes the derivative with respect to x. This means that

T(x) cosϕ(x) = T0, (4.97)

where the constant T0 is the maximal tension of the cable (since cosϕ(x) = 1 then).
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T

T
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ϕ(x+ ∆x)

ϕ(x)

Figure 18: A schematic of a hanging cable or chain (top) and its small portion (bottom).
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The balance in the vertical direction involves the gravity. The mass of our small
increment is

m = g

∫ x+∆x
x

ρ(s)
√
1+ (y ′(s))2ds = ρ(ξ)g

√
1+ (y ′(ξ))2∆x, (4.98)

where we have used the mean-value theorem for integrals with x < ξ < x + ∆x.
Therefore, the vertical balance gives

T(x+ ∆x) sinϕ(x+ ∆x) − T(x) sinϕ(x) = ρ(ξ)g
√
1+ (y ′(ξ))2∆x, (4.99)

or after the limit
(T(x) sinϕ(x)) ′ = ρ(x)g

√
1+ (y ′(x))2. (4.100)

Now, because of (4.97) and the fact that tanϕ(x) = y ′(x) we can get rid of the angle
and arrive at the final equation

T0y
′′ = ρ(x)g

√
1+ (y ′)2, (4.101)

which is a nonlinear second order equation. Before we solve it, notice that when the
cable deflection is small, that is |y ′(x)| is small, then the square root in the ODE can be
accurately approximated by one. Then, the simplified equation becomes T0y ′′ = ρ(x)g
which can immediately can be solved by double integration.

For the full nonlinear case we notice that the given ODE is just a first order equation
in disguise. That is, when we plug u = y ′ we obtain

u ′ = a
√
1+ u2, a =

ρg

T0
, (4.102)

where we assumed that the density is constant (however, it can also be integrated for
general distributions of mass). This is a separable ODE with an integral

u(x) = sinh (ax+ C) , (4.103)

with integration constant C. Further, going back to the substitution leads us to

y(x) =
1

a
cosh (ax+ C) +D. (4.104)

And after plugging the boundary conditions (4.94) we have

y(x) = H−
cosh(aL) − cosh(ax)

a
. (4.105)

Therefore, the graph of the hanging cable or a chain is the hyperbolic cosine (and not
a parabola!). Due to that, this curve is called catenary from the Latin catena. It also
has an important property that it forms a surface of revolution, called catenoid, with
prescribed boundary conditions and with the smallest surface area.

Other interesting situations can also be modelled. For example, when our cable is a
part of the suspension bridge that is loaded with a road of mass density w, we would
obtain

T0y
′′ = ρ(x)g

√
1+ (y ′)2 +wgx, (4.106)
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inmany situations theweight of the road ismuch larger than that of the cable, and then
ρ can be neglected and the result is a parabola. Another generalization is the equation
modelling the shape of a swinging jumping rope. In this case the tension balances the
centrifugal force (when the gravity is negligible), and hence

T0y
′′ = −ρ(x)ω2y

√
1+ (y ′)2, (4.107)

whereω is the angular velocity. The factor y comes from the fact that it is equal to the
radius of revolution. The boundary conditions can, for example, be

y ′(0) = 0, y(L) = 0. (4.108)

The resulting curve is called troposkein (from Greek "turning rope") and is being used
in designing wind turbines.

We will now proceed to formal definitions.
Definition 12. A two-point boundary value problem is a second order ordinary differen-
tial equation defined on an interval along with conditions prescribed at its endpoints called
boundary conditions.
Definition 13. The Sturm-Liouville boundary value problem is a differential equation

− (p(x)y ′) ′ + q(x)y = λr(x)y, x ∈ (0, 1), (4.109)

along with homogeneous boundary conditions

a1y(0) + a2y
′(0) = 0, b1y(1) + b2y

′(1) = 0. (4.110)

Any nonzero solution y of the above problem is called the eigenfunction with corresponding
constant λ called an eigenvalue. Here, p, q, and r are given continuous functions.

The Sturm-Liouville problem is very general and includes almost all boundary
problems found in applications of differential equations. Note that we can consider
the (0, 1) interval without losing generality, since the independent variable can always
be scaled by a linear function. Note that if we define a linear operator

Ly := −(p(x)y ′) ′ + q(x)y, (4.111)

this Sturm-Liouville problem can be written as

Ly = λr(x)y, (4.112)

which immediately reminds us of the eigenvalue problem for matrices known from
algebra. Hence, the similar nomenclature.

Example. One of the simplest Sturm-Liouville problems is the case for p(x) = 1,
q(x) = 0 and r(x) = 1, i.e.

y ′′ = −λy. (4.113)
For the boundary conditions let us take

y(0) = y(1) = 0. (4.114)

We have to find all of the solutions and in order to do that we have to consider three
cases dependeing on the sign of λ.
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• λ = 0 gives us y ′′ = 0, therefore

y(x) = ax+ b. (4.115)

The condition at x = 0 gives us b = 0 and the other 0 = y(1) = a. This means
that y ≡ 0 is the solution to our problem for λ = 0. It is a trivial solution that is
uninteresting from the point of view of applications.

• λ < 0 implies
y(x) = C1e

√
λx + C2C1e

−
√
λx. (4.116)

Now, 0 = y(0) = C1 + C2, hence C2 = −C1. Therefore,

y(x) = C1

(
e
√
−λx − e−

√
−λx
)

(4.117)

Using the second condition gives us

0 = y(1) = C1

(
e
√
−λ − e−

√
−λ
)
= 2C2 sinh

√
−λ. (4.118)

Nowwe have to have C2 = 0which means the trivial solution y ≡ 0 or sinh
√
λ =

0. We know that the hyperbolic sine vanishes only for λ = 0, which contradicts
the assumption. So in this case, the trivial solution is the only one we can count
on.

• λ > 0 forces
y(x) = C1 cos

√
λx+ C2 sin

√
λx. (4.119)

The condition at zero gives us

0 = y(0) = C1, (4.120)

therefore y(x) = C2 sin
√
λx. The second one implies

0 = y(1) = C2 sin
√
λ. (4.121)

If we take C2 = 0 we obtain y ≡ 0, which is a trivial solution. This forces
sin
√
λ = 0what is satisfied only for

λk = k
2π2, k ∈ Z. (4.122)

We can see that our problem can have solutions only for particular values of λ.
Moreover, the eigenfunctions are then

yk(x) = Ak sin (kπx) , k ∈ Z. (4.123)

TheAk constants cannot be determinedwithout an additional condition. Wewill
see below that the existence of a very natural and elegant way to deal with this
ambiguity.
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The above example teaches us many things. First, the homogeneous Sturm-
Liouville problem always has an uninteresting trivial solution. Second, non-trivial
solutions exist only for certain eigenvalues. Therefore, solving boundary problems
consists in finding eigenfunctions and their corresponding eigenvalues simultaneously.

Many properties of the above simple example can be carried over into more general
boundary value problems. One of themost important of these is the Lagrange Identity.

Theorem 7 (Lagrange). Let operator L be defined according to (4.111). Then, for u, v ∈
C2(0, 1) we have ∫ 1

0

(vLu− uLv)dx = 0. (4.124)

Proof. Immediately we have∫ 1
0

vLu dx =

∫ 1
0

(−(p(x)u ′) ′v+ quv)dx. (4.125)

If we integrate the first term of the integrand twice by parts, we get∫ 1
0

vLu dx = −p(x) [u ′(x)v(x) − u(x)v ′(x)]
1

0 +

∫ 1
0

uLv dx. (4.126)

Using the boundary conditions (4.110) we can calculate (for a2 6= 0 and b2 6= 0)

−p(x) [u ′(x)v(x) − u(x)v ′(x)]
1

0 = −p(1) [u ′(1)v(1) − u(1)v ′(1)] + p(0) [u ′(0)v(0) − u(0)v ′(0)]

= −p(1)

[
−
b1

b2
u(1)v(1) +

b1

b2
u(1)v(1)

]
+ p(0)

[
−
b1

b2
u(0)v(0) +

b1

b2
u(0)v(0)

]
= 0,

(4.127)

which ends the proof (case when a2 = 0 or b2 = 0 is analogous).

If we define the scalar product by

〈u, v〉 =
∫ 1
0

u(x)v̄(x)dx, (4.128)

then, the Lagrange Identity can be written as

〈Lu, v〉 = 〈u, Lv〉, (4.129)

which means that L is symmetric with respect to that product. We now show some
results about the Sturm-Liouville problems. They all assume that (4.109) - (4.110) has
solutions. The proof of this claim is very complex and requires additional machinery.
It can be found in more advanced textbooks.

Proposition 2. All the eigenvalues of the problem (4.109)-(4.110) are real.
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Proof. Let λ be the eigenvalue corresponding to ϕ. Then

〈Lϕ,ϕ〉 = 〈ϕ, Lϕ〉 = 〈Lϕ,ϕ〉. (4.130)

Since ϕ is a solution we have Lϕ = λr(x)ϕ, that is

λ〈rϕ,ϕ〉 = λ 〈rϕ,ϕ〉 = λ 〈ϕ, rϕ〉 = λ 〈rϕ,ϕ〉, (4.131)

because r is a real-valued function. Therefore(
λ− λ

) ∫ 1
0

r(x) |ϕ(x)|2 dx = 0. (4.132)

We therefore must have λ = λ.

Further important result concerns orthogonality.
Proposition 3. If ϕ1 and ϕ2 are eigenfunctions of (4.109)-(4.110) with corresponding eigen-
values λ1 and λ2, with λ1 6= λ2, then∫ 1

0

r(x)ϕ1(x)ϕ2(x)dx = 0. (4.133)

Proof. Similarly as above we have

λ1〈rϕ1, ϕ2〉 = 〈Lϕ1, ϕ2〉 = 〈ϕ1, Lϕ2〉 = λ2〈ϕ1, rϕ2〉. (4.134)

Using the result that eigenfunctions are real we further obtain

(λ1 − λ2) 〈ϕ1, rϕ2〉 = 0, (4.135)

which forces 〈ϕ1, rϕ2〉 = 0.

Orthogonality allows us to properly norm the set of functions that are solutions to
the boundary problem. This allows for the determination of the constants appearing
when solving the differential equation (see above example).
Definition 14. The set {ϕn}n is called orthonormal with respect to r, if

〈ϕn, rϕm〉 =
∫ 1
0

ϕn(x)ϕm(x)r(x)dx = δnm, (4.136)

where δnm is the Kronecker delta.
To sum up, the Sturm-Liouville problem has countably many solutions that are

eigenfunctions ϕn with corresponding eigenvalues λn. Eigenfunctions are orthogonal
with respect to the weight of r and can be made orthonormal by appropriate normal-
ization. It turns out that the much stronger result about completeness of the set of
eigenfunctions is true. This means that if f ∈ C2(0, 1) (this assumption can be seriously
weakened) and {ϕn}n is the orthonormal set of eigenfunctions of the Sturm-Liouville
problem, we have

f(x) =

∞∑
n=1

〈f, rϕn〉ϕn(x). (4.137)

This immediately reminds us of similar results for unitary finite-dimensional spaces
learned in algebra or Fourier series in calculus. This is indeed the origin of these
matters.
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5 Laplace transform
There is a remarkable method of transforming systems of linear equations with con-
stant coefficients that greatly utilize finding their solution. This transformation takes
differential into algebraic equations which, then, can be solved with known Gaussian
elimination or other means. The idea of the method goes back to Laplace. Today, it has
numerous applications not only in mathematics but also in physics and engineering
(especially electrical).

5.1 Solving linear constant coefficients equations
Here, we will see how the Laplace transform can be utilized in solving linear equations
with constant coefficients. First, we define what it is exactly.

Definition 15. Laplace transform of a function f = f(t) is

L {f(t)} (s) = F(s) =
∫∞
0

f(t)e−stdt, (5.1)

provided the integral converges. The function f is usually called the original of the transform
F.

Depending on the context, sometimes it is more useful to write the Laplace trans-
form as an operator L or the image F. The exponential inside the integral contains
the new independent variable s. Before we proceed to studying some properties of
Laplace transform, we have to ascertain that it is always well-defined for a given class
of functions. Usually, the following result is satisfactory.

Theorem 8. Let a piecewise continuous function f is of exponential order, that is there are
constants M, a, and T such that for t > T we have |f(t)| ≤ M exp(at). Then, the Laplace
transform (5.1) exists for s > a.

Proof. Left as an exercise - comparison criterion for improper integrals.

Therefore, in what follows we will always assume that we are dealing with func-
tions satisfying the above theorem. We start with some simple examples.

Example.

1. If

f(t) = H(t) :=

{
1, t ≥ 0,
0, t < 0,

(5.2)

then
L {H} (s) =

∫∞
0

e−stdt =
1

s
, (5.3)

where s > 0. The function H is called the Heaviside function.
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2. The Laplace transform of f(t) = eat is

L
{
eat
}
(s) =

∫∞
0

eate−stdt =

∫∞
0

e−(s−a)tdt =
1

s− a
, (5.4)

for s > a. We see that multiplying by an exponential results in translating the
transform.

3. The Laplace transform of f(t) = sin(at) is

L {sin(at)} (s) =
∫∞
0

sin(at)e−stdt = a

s2 + a2
, (5.5)

for s > 0. Similarly,
L {cos(at)} (s) = s

s2 + a2
. (5.6)

As we mentioned above, the Laplace transform is an operator acting on a space
of functions of exponential order. It is easy to see that it in fact linear. Further, since
the exponential is an eigenfunction of the derivative, we see the reason why Laplace
transform can change differentiation into multiplication and, hence, switch differential
into algebraic equations.

Proposition 4. Let f be of exponential order. Then, we have the following.

1. Linearity
L {α f(t) + βg(t)} = αL {f(t)}+ βL {g(t)} , α, β ∈ R. (5.7)

2. Transform of a derivative

L
{
f(n)(t)

}
(s) = snL {f(t)}−

n−1∑
i=0

sn−1−if(i)(0), (5.8)

in particular
L {f ′(t)} (s) = sL {f(t)} (s) − f(0). (5.9)

Proof. The linearity follows from liniearity of an integral. Therefore, we focus on the
second property. Note that,

L {f ′(t)} (s) =
∫∞
0

f ′(t)e−stdt
parts
=
[
f(t)e−st

]∞
0
+ s

∫∞
0

f(t)e−stdt

= −f(0) + sL {f(t)} (s).
(5.10)

And the rest follows by induction.

These two properties are essential in solving linear differential equations with con-
stant coefficients. It applied not only to ODEs but to PDEs as well.
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Example. We will solve y ′′ − y ′ − 2y = 0 with conditions y(0) = 1, y ′(0) = 0. The
application of the transform and using linearity and the transform of a derivative (5.8)
gives

0 = L {y ′′ − y ′ − 2y} = s2Y(s) − sy(0) − y ′(0) − sY(s) + y(0) − 2Y(s). (5.11)

Solving for the unknown Y yields

Y(s) =
s− 1

s2 − s− 2
=
1

3

1

s− 2
+
2

3

1

s+ 1
, (5.12)

which is the Laplace transform of our solution. We have found in (5.4) that these
transforms correspond to an exponential originals, and hence

y(t) =
1

3
e2t +

2

3
e−t, (5.13)

which is the solution to our initial value problem.

Notice that in one step, the method of Laplace transform finds a solution of an ODE
with applied initial conditions. Probably the most difficult part in this process is to
find out which original corresponds to a given Laplace transform. In many cases we
can look them up in tables after simplifying the form of the transform. The latter can
frequently be accomplished by expansion into partial fractions. In general we can do
the following steps.

1. We start with equation of the form25

ay ′′ + by ′ + cy = f(t), (5.14)

with initial conditions
y(0) = y0, y ′(0) = y ′0. (5.15)

2. Apply Laplace transform, use linearity, and change differentiation into multipli-
cation by s (formula (5.8))

a(s2Y(s) − sy(0) − y ′(0)) + b(sY(s) − y(0)) + cY(s) = F(s). (5.16)

3. Solve for Y,
Y(s) =

(as+ b)y(0) + ay ′(0)

as2 + bs+ c
+

F(s)

as2 + bs+ c
. (5.17)

4. Expand into partial fractions noting that in the denominator we have the charac-
teristic polynomial of the ODE.

5. Look up in the tables what are the corresponding originals to the given trans-
forms.

25Everything here can be conducted for higher order equations and even systems.
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All of the above steps can be illustrated in the following example.

Example. We solve a nonhomogeneous problem y ′′ + y = sin 2t with y(0) = 2 and
y ′(0) = 1. We have

s2Y − sy(0) − y ′(0) + Y =
2

s2 + 4
→ Y(s) =

2s+ 1

s2 + 1
+

2

(s2 + 1)(s2 + 4)
. (5.18)

After expansion into partial fractions we obtain

Y(s) = 2
s

s2 + 1
+
5

3

1

s2 + 1
−
2

3

1

s2 + 4
. (5.19)

Each term can be identified (5.5)-(5.6) to yield

y(t) = 2 cos t+ 5

3
sin t− 1

3
sin(2t). (5.20)

Note that in this last step we also used linearity.

The simplicity of the Laplace transform method is evident. It can even be incor-
porated into symbolic computation environments to implement efficient solvers for
systems of constant coefficient linear equations. The success of the above method is
based on a seemingly hard to notice property of the Laplace transform - the unique-
ness. Why dowe know that a given transform corresponds to a unique original? If this
were not the case, the method would be useless in applications. Fortunately, Laplace
transform is unique and we will give the proof of it in Section 5.4.

5.2 Step functions and Dirac delta
Another very useful property of Laplace transform is equal difficultywith dealingwith
piecewise continuous nonhomogeneities in our ODEs. A solution of such a problem
would be very exhausting when using normal methods for then, we would have to
solve additional algebraic equations in order to ascertain smooth junctions of the partial
solutions in the jump points. Laplace transform does it automatically. This is useful in
dealing with problems modelling switching.

To start, let us redefine the Heaviside function

Hc(t) := H(t− c) =

{
1, t ≥ c,
0, t < c.

(5.21)

In that way we can model switching

f(t)Hc(t) =

{
f(t), t ≥ c,
0, t < c.

(5.22)

The above is called a causal signal since it has its own well-defined origin at t = c (see
Fig. 19). The transform of such a causal function can be computed from the definition

L {f(t)Hc(t)} =
∫∞
c

f(t)e−stdt =

∫∞
0

e−s(x+c)f(x+ c)dx = e−scL {f(t+ c)} . (5.23)

74



c
t

1

Hc (t)

Figure 19: A Heaviside function.

Which, after substitution f(t) 7→ f(t− c), can be written as

L {f(t− c)Hc(t)} = e−csL {f(t)} , (5.24)

therefore, a multiplication of the Laplace transform by e−cs results in a original that is
switched on at t = c. This result has important applications in solving problems with
piecewise continuous force.

Example. Let us solve 2y ′′+y ′+y = g(t)with zero initial conditions and (see Fig. 20)

g(t) =

{
1, 2 ≤ t ≤ 15,
0, 0 ≤ t < 2 and t > 15.

(5.25)

We can write it as g(t) = H2(t) −H15(t). This is an important part since it allows us to
easily compute the

(2s2 + s+ 1)Y(s) =
e−2s − e−15s

s
, (5.26)

which is
Y(s) = e−2sZ(s) − e−15sZ(s), (5.27)

where Z(s) = (s(2s2 + s+ 1))−1 that after inverting gives

z(t) = 1−
1√
7
e−t/4

(
√
7 cos

√
7

4
t+ sin

√
7

4
t

)
. (5.28)

Finally, using (5.24)

y(t) = H2(t)z(t− 2) −H15(t)z(t− 15), (5.29)
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which is presented on Fig. 5.25. Notice that the function oscillates freely after switching
on the force at t = 2 and then, suddenly falls at turning it off at t = 15. The remaining
vibrations decay with a time scale 4.

2 15
t

1

g(t)

10 20 30 40
t

0.5

1.0

y(t)

Figure 20: The causal signal as in (5.25) (top) and the solution (5.29) (bottom).

The piecewise step functions can be very useful in modelling sudden switching
behaviour in electrical circuits. However, doing that we are quickly being led to a
daunting task of calculating the derivative of such a function. For example, suppose
we have an RLC circuit with a current source. If we suddenly turn the current on, that
is I = I(t) is a step function, the voltage drop on the inductor is LdI/dt. This derivative
does not exists in the classical sense. For then, a step function is piecewise constant
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and it has a derivative equal to zero except at one point. However, it makes a profound
effect on our circuit. Other examples can be found in mechanics.

Example. (Unit impulse) Imagine a situation when a point mass is momentarily and
very briefly struck by another one. We can think about bouncing billiard balls or a
piano hammer striking the string. The latter can bemodelled by a linear oscillator with
forcing

my ′′ + γy ′ + ky = f∆t(t), (5.30)

where f∆t models the strike with duration ∆t. Since the exchange of the momentum P

is completed in a very short interval of time ∆twe have

f(t) =


P

∆t
, 0 < t < ∆t,

0, t ≥ ∆t.
(5.31)

Then, the total momentum at time t is

p∆t(t) =

∫ t
0

f(s)ds =


0, t ≤ 0,
Pt

∆t
, 0 < t ≤ ∆t,

P, t > ∆t.

(5.32)

In the limit ∆t→ 0+ we have

p(t) =

∫ t
0

f(s)ds =

{
0, t ≤ 0,
P, t > 0,

(5.33)

which is the Heaviside function PH0(t). However, in that limit the force f∆t becomes
infinite at t = 0 and zero for t 6= 0. Therefore, the short impulse of momentum can be
modelled by an idealized spike of force.

To train our intuition about the possible generalized derivative of a step function
consider its smooth approximations. On Fig. 21we see several smooth approximations
of the Heaviside function. They are becoming steeper with each iteration. Steeper the
function, the larger the derivative. However, ifHn denotes the approximation we have∫∞

−∞H
′
n(x)dx = Hn(∞) −Hn(−∞) = 1− 0 = 1, (5.34)

and hence, the integral of the derivative is always constant. The area under the spike
is always the same regardless its size. This is because the higher the impulse, the more
concentrated it is near zero. In the limit H ′n would be an infinitely high spike centred
at x = 0. This clearly cannot be a function.

Nevertheless, the concept of such an impulse function dates back even to Fourier.
Then, Heaviside and other engineers used it as a useful tool in solving problems
in electricity. Later, Dirac gave it a working definition, called the Dirac delta, and
revolutionized formulation of quantum mechanics. All these practitioners were right
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Figure 21: Exemplary approximations to theHeaviside functions (top) and their deriva-
tives (bottom).
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- there exists something bizarre as a derivative of a unit step. But it was only until
Laurent Schwartz to give a rigorous mathematical definition of the derivative of it. It
appears that there is a larger and more general than functions class of mappings - the
distributions (also called generalized functions even though they are not functions in
general). They are continuous functionals over a space of the so-called test functions.
The continuity is regarded in the sense of a precisely given topology and the space of
test functions is also clearly defined (for example they have to be infinitely smooth).
Technical details of distribution theory is, unfortunately, beyond the scope of our
elementary lecture on ODEs and we have to abstain from giving a rigorous definition
here. However, we will present a working, non-rigorous way of summarizing our
observations.

Definition 16. Dirac delta is an object δ (a "generalized function") satisfying

1. (Concentration near zero)
δ(t) = 0 for t 6= 0. (5.35)

2. (Normalization) ∫
R
δ(t)dt = 1. (5.36)

If δ were a function the first property would be in contradiction with the second.
For then, a function that is zero almost everywhere has a zero integral. Moreover, the
second property can be generalized to the so-called filtering or sifting property∫∞

−∞ δ(t− t0)f(t) =
∫∞
−∞ δ(t− t0)f(t0)dt+

∫∞
−∞ δ(t− t0)(f(t) − f(t0))dt

= f(t0)

∫∞
−∞ δ(t− t0)dt = f(t0),

(5.37)

since δ(t−t0)(f(t)−f(t0)) = 0. Wewill use this properties to find the Laplace transform
of Dirac delta. From the definition (5.1) we have

L {δ(t)} (s) =
∫∞
0

δ(t)e−stdt = e−st|t=0 = 1, (5.38)

and the Laplace transform is constant. Now, we are able to solve differential equations
with impulsive forcing.

Example. Let us go back to (5.30) and for simplicity assume that m = k = 1 = P and
γ = 0. We have

y ′′ + y = δ(t), (5.39)

which models an idealized oscillator forced by an unit impulse at t = 0. Assume that
we have zero initial conditions. Taking the Laplace transform when t > 0 leads to

Y(s) =
1

s2 + 1
, (5.40)
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which yields

y(t) =

{
sin t, t > 0,

0, t ≤ 0,
(5.41)

which is continuouswith discontinuous derivative. Taking secondderivative produces
the Dirac delta.

5.3 The convolution (optional)
There is a fundamental mathematical operation known as convolution that is closely
associated with Laplace transform.

Definition 17. The (one-sided) convolution of two functions f and g is defined by

f ∗ g(t) =
∫ t
0

f(τ)g(t− τ)dτ =

∫ t
0

f(t− τ)g(τ)dτ, (5.42)

provided the integral exists.

The convolution integral above arises in many applied situations where the past
values of some quantity affect the present state. We can meet convolution in biol-
ogy, hydrology, physics, and engineering. It can be thought as a generalized linear
superposition of a functions values at different time.

n∑
j=1

f(tj)gj ≈
∫ t
0

f(τ)g(t− τ)dτ, (5.43)

where gj are some weights.
There are times when we are dealing with products of transforms. It would be an

error to think that the original of such is the product of originals, that is in general

L {f(t)g(t)} 6= L {f(t)}L {g(t)} . (5.44)

However, there is a remarkable result joining products of Laplace transform with con-
volutions. First, we consider an important example.

Example. (Transfer function) In many fields of engineering, such as electronics, one
considers complicated systems that process signals (e.g. filters). Usually, themodelling
can be done with a black-box that takes an input signal f and changes it into output
signal y. If the system is linear this operation can be written as a system of linear ODEs
with constant coefficients. For simplicity, with a second order equation we would have

ay ′′ + by ′ + cy = f(t). (5.45)

Taking the Laplace transform we would obtain

Y(s) =
(as+ b)y(0) + ay ′(0)

as2 + bs+ c
+

F(s)

as2 + bs+ c
. (5.46)
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The first term is associated only with the system itself, while the second is the external
input. By linearity we can focus only on the latter and deduce that in order to find the
system response we should be able to invert the product H(s)F(s), where

H(s) =
1

as2 + bs+ c
, (5.47)

is called the transfer function since it depends only on the characteristics of the system.
The inversion, i.e. h(t) = L−1 {H(s)} is then called impulse response.

The main result is the following.

Theorem 9 (Convolution theorem). Let f and g be piecewise functions of exponential order.
Then, if H(s) = F(s)G(s) with h(t) = L−1 {H(s)} we have

h(t) = f ∗ g(t). (5.48)

Proof. From the definition of the Laplace transform (5.1) we have

F(s)G(s) =

(∫∞
0

f(t)e−stdt

)(∫∞
0

g(τ)e−sτdt

)
, (5.49)

which can be written as an iterated integral

F(s)G(s) =

∫∞
0

g(τ)dτ

∫∞
0

f(t)e−s(t+τ)dt. (5.50)

Now, a change of the variable ξ = t+ τ yields

F(s)G(s) =

∫∞
0

g(τ)dτ

∫∞
t

f(ξ− τ)e−sξdξ. (5.51)

When we use Fubini Theorem and interchange the order of integration we obtain

F(s)G(s) =

∫∞
0

e−sξdξ

∫ t
0

f(ξ− τ)g(τ)dτ, (5.52)

or
F(s)G(s) =

∫∞
0

(∫ t
0

f(ξ− τ)g(τ)dτ

)
e−sξdξ, (5.53)

which is what we had to prove.

Therefore, the product of Laplace transforms corresponds to a convolution of the
originals. We will end this section with a very important historical example that can
neatly be solved with the use of convolution theorem.

Example. (The tautochrone) A classical problem in mechanics is to determine a shape of
the curve over which a particle will slide without friction and under the gravity to the
bottom in the same time regardless of the initial position. It arose when constructing
pendulum clock that were suppose to work on ships. There were many approaches
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to find the the tautochrone (from Green - "same time"): Huygens, Leibnitz, Jacob
Bernoulli, and Abel. We will follow that of Abel.

Suppose the particle starts at height y0 and slides over a curve y = y(x). The
conservation of mechanical energy gives

1

2
m

(
dl

dt

)2
= mg(y0 − y), (5.54)

where ds/dt is the tangential velocity. Therefore,

dl

dt
= −

√
2g(y0 − y), (5.55)

where the minus sign denotes the velocity pointing downwards. Upon integration it
follows that the time of fall equals

T = −

∫
dl√

2g(y0 − y)
=

∫y0
0

1√
2g(y0 − y)

dl

dy
dy, (5.56)

where in the last equality we have substituted l = l(y), used the chain rule, and inter-
changed the endpoints of integration. The above is called the Abel integral equation
since it requires us to find dl/dt provided we know T .

For a tautochrone we have T =const. and we can take the Laplace transform of the
equation. The left-hand side is easy

L {T } = T

s
, (5.57)

while on the right-hand side of the integral equation we notice the convolution. There-
fore, thanks to Theorem 9we know that the Laplace transformwill be a product of two
transforms, hence

T

s
=
1

2g
L
{
1
√
y

}
L
{
dl

dy

}
. (5.58)

What remains it to compute the Laplace transform of 1/√ywhich is

L
{
1
√
y

}
=

∫∞
0

y−
1
2e−sydy =

2√
s

∫∞
0

e−x
2

dx =

√
π

s
, (5.59)

where we substituted x = sy and used the Poisson’s integral. Therefore,

L
{
dl

dy

}
=

√
2g

π

√
s
T

s
=

√
2g

π

T√
s
. (5.60)

Whence, using (5.59) again we arrive at

dl

dy
=
T
√
2g

π

1
√
y
. (5.61)
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Finally, using the well-known formula for a differential of arc-length we have√
1+

(
dx

dy

)2
=
T
√
2g

π

1
√
y
. (5.62)

The solution of the above is called the cycloid and is a curve that is traced by a bicy-
cle valve when riding with constant speed. It can be obtained in a parametric form.
Therefore, the tautochrone is an arc of a cycloid.

5.4 Uniqueness of the Laplace transform (optional)
We end this section with a proof that the Laplace transform is uniquely associated
with a given function. That is, the Laplace transform operator is one to one. Before we
proceed to the main result, we need a fundamental theorem from calculus.

Theorem 10 (Weierstrass). If f : [a, b]→ R is continuous, then for each ε > 0 there exists a
polynomial P = Pε(t) such that

max
t∈[a,b]

|f(t) − Pε(t)| < ε. (5.63)

This is the famous Weierstrass approximation theorem stating that a continuous
function on a closed and bounded interval can be uniformly approximated by polyno-
mials. Next, we prove the following lemma.

Lemma 1. Let f = f(t) be a continuous function defined on [0, 1]. If for each n ∈ N we have∫ 1
0

f(t)tndt = 0 (5.64)

then it follows that f ≡ 0.

Proof. Fix ε > 0 and fromWeierstrass theorem let us take a polynomial Pε. Since f is a
continuous function on a bounded interval we have |f(t)| ≤M for someM > 0. Then,
from the assumption and linearity of the integral we have

∫1
0
f(t)Pε(t)dt = 0. We can

also write∫ 1
0

f(t)2dt =

∫ 1
0

f(t)(f(t)−Pε(t))dt+

∫ 1
0

f(t)Pε(t)dt ≤M max
t∈[a,b]

|f(t)−Pε(t)| < Mε. (5.65)

Since ε is arbitrary we have
∫1
0
f(t)2dt = 0, which forces f ≡ 0.

Finally, we state the main result.

Theorem 11. Let f, g be continuous functions on [0,∞) of exponential order. Then L {f} =
L {g} forces f = g.
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Proof. From the linearity of the Laplace transform it suffices to show that L {f} = 0

implies f ≡ 0. Assume that

L {f} (s) =
∫∞
0

f(t)e−stdt = 0, s > a, (5.66)

for some a ∈ R. Fix an arbitrary constant s0 > a. After substitution x = e−t we obtain

L {f} (s) =
∫ 1
0

f(− ln x)xs−1dx = 0. (5.67)

Let now s = s0 + n+ 1 for any fixed n ∈ N. Then,∫ 1
0

[f(− ln x)xs0 ] xndx = 0. (5.68)

Since f(− ln x)xs0 is continuous (f is of exponential order) from the above lemma we
have f ≡ 0.

The above theorem can also be proved under the assumption that f and g aremerely
piecewise continuous. However, the proof is a little bit more technical and we omit it.
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Figure 22: A cartoon of the three springs problem.

6 Systems of equations
In modelling we are frequently in need of describing interactions between several dif-
ferent species or objects. Not only each of them has its own dynamics, all of them can
interact with each other producing interesting effects. Gravitational attraction between
masses or coexistence of various animal populations are prominent examples.

Example. (The n body problem) One of the most important and profound tasks in
mathematical physics is to study the gravitational attraction of n point masses. The
main problem is to determine the future motion of a set of particles provided we know
their position at some time. Givennmasses {mi}

n
i=1we canwrite theNewton equations

of motion in R3

mi

d2xi
dt2

= G

n∑
j=1
j6=i

mimj

‖xj − xi‖2
xj − xi
‖xj − xi‖

, 0 ≤ i ≤ n. (6.1)

Here, xi ∈ R3 denotes the position of the i-th particle. The above system of second
order ordinary equations with variable coefficients is a basis of celestial mechanics and
attracted attention of almost every great mathematician from the times of Newton.
The two body problem can completely be solved (Kepler’s problem). Moreover, there
is also a lot of knowledge of three body problem. For larger number of masses, the
n bodyproblemposes a great difficulty both for analytical and numerical solutions.

Example. (Three springs) Two masses are interconnected by three springs (see Fig. 22).
Assuming no friction and Hooke’s Law we will find the equations of motion. Let xi
denote the distance from the equilibrium position of the i-th spring with constant ki.
This means that the spring elongations are, respectively: x1, x2 − x1, and −x2. From
Hooke’s Law we thus have

m1

d2x1

dt2
= −k1x1 + k2(x2 − x1),

m2

d2x1

dt2
= −k2(x2 − x1) − k3x2,

(6.2)

which is a system of two ordinary linear equations of the second order.

Example. (Electrical circuit) Systems of linear ODEs arise very frequently in analysis
large electrical circuits. They are a fundamental tool for each electrical engineer and
along Laplace transform they constitute the basis of circuit theory.

A simple example of a parallel RLC circuit is presented on Fig. 23. As usual, we use
Kirchhoff’s Law to obtain a balance of voltage and currents in the loop. Its states that
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Figure 23: A schematic of an electrical circuit.

the sum of currents in each subloop is equal to zero. By I and V we denote the current
and voltage drop across the inductor, and similarly IR, IC. From elementary physics
concerning electrical circuits we know the constitutive relations for each element

IR =
V

R
,

IC = C
dV

dt
,

dI

dt
=
V

L
,

(6.3)

where R is the resistance, C capacity, and L inductance. Therefore, from Kirchhoff’s
Law we have

IC = −I− IR → C
dV

dt
= −I−

V

R
. (6.4)

From which we can find the change in the voltage

dV

dt
= −

I

C
−
V

RC
. (6.5)

The equation for the change of the current follows from the constitutive relation for the
inductor

dI

dt
=
V

L
. (6.6)

Whence, two above equations are a closed system of linear first order equations with
constant coefficients. Application of Kirchhoff’s Laws can be generalized for multiple
loops and more complex electrical networks.

Example. (Population interactions) Let x = x(t) and y = y(t) denote numbers of two
populations living on the same area. In general, their change can be modelled by a
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system 
dx

dt
= xF(x, y),

dy

dt
= yG(x, t),

(6.7)

where F and G model interactions. For example, if F = −G = 1 we would have two
independent populations fromwhich x grows andydies exponentially. The interesting
cases arise when there is a nontrivial interaction. Probably the simplest model of two
populations from which one preys on the other is due to Lotka and Volterra

dx

dt
= αx− βxy,

dy

dt
= γy+ δxy,

(6.8)

where α, β, γ, and δ are positive constants. The product xy models interaction since
it is positive only when both populations are present. The interaction is positive for
predators y, and negative for prey x. The growth, on the other hand, is positive for
prey, and negative for predators. This makes sense since without the food (i.e. x = 0),
predators should die out. But when there is plenty of prey, the amount of predators
increases proportionally to the product xy - more hunters can acquire more food. This
further can be generalized to become amore realistic description of interacting species.
For example, we can assume logistic growth of prey and saturation of hunting abilities
for predators (there should be a limit of the food gathering abilities with respect to
the population number). Within the framework of our model we can also describe
competing or symbiotic species. Possibilities are infinite and they constitute the basics
of mathematical ecology.

Example. (A n order equation is equivalent to a system of n first order equations) Let us
consider an equation

y(n)(t) = F(t, y, y ′, ..., y(n)). (6.9)

Then, after substitution

x1 = y, x2 = y
′, x3 = y

′′, · · · xn = y(n−1), (6.10)

we obtain 
x ′1 = y

′ = x2,

x ′2 = y
′′ = x3,

· · ·
x ′n = y(n) = F(t, x1, x2, ..., xn),

(6.11)

which is a system of first order, possibly nonlinear, equations. This technique of
transforming a single equation into a system is very useful not only in theoretical con-
siderations.
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6.1 Definitions
As usual, we will start our investigations from analysis systems of linear ODEs. They
will greatly aid us in understanding the more difficulty nonlinear ones. We start with
formal definitions.

Definition 18. A an initial value problem for a system of ordinary differential equations
of order n is

x ′1 = F1(t, x1, · · · , xn),
x ′2 = F2(t, x1, · · · , xn),
· · ·
x ′n = Fn(t, x1, · · · , xn).

with initial conditions


x1(0) = x

0
1,

x2(0) = x
0
2,

· · ·
xn(0) = x

0
n.

(6.12)

Functions Fi along with initial conditions are given.

The above is the most general system of n differential equations. Under the as-
sumption of continuity of Fj and ∂Fi/∂xj it can be shown that the above problem has
a unique local solution (see Sec. 2.7). The linear systems arise when all Fj are linear
with respect to the unknowns yi. In what follows with a bold face font we will denote
vectors and use matrix notation to simplify visual appearance.

Definition 19. A linear system has the form

x ′ = P(t)x+ f, (6.13)

where x = (x1, x2, ..., xn)
T and

P(t) =


p11(t) p21(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)
· · · · · · · · · · · ·
pn1(t) p2n(t) · · · pnn(t)

 , f(t) =


f1(t)
f2(t)
· · ·
fn(t)

 . (6.14)

When f ≡ 0 the system is homogeneous and otherwise it is nonhomogeneous. If P(t) =
const. then the system has constant coefficients.

A linear system, similarly to a n-th order equation, has n linearly independent
solutions

x(k) = (x
(k)
1 , · · · , x

(k)
n ), (6.15)

where 1 ≤ k ≤ n. The Wronskian is then

W(x1, ..., xn) = det

x
(1)
1 x

(2)
1 · · · x

(n)
1

... ... · · · ...
x
(1)
n x

(2)
n · · · x

(n)
n

 . (6.16)

Whence, the general solution can always be written as

x = c1x(1) + · · ·+ cnx(n), (6.17)
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which is very similar to the case of a single equation of second order.
In what follows we will limit ourselves to studying systems of two equations. This

is due to the fact that they are the most basic block of the theory and are found in a
multitude of different applied situations. One of the most useful methods of studying,
especially nonlinear, system is the geometrical method that we have already met with
first order equations. Here, it is the very place when this ingenious idea of Poincaré
proves to be indispensable.

Definition 20. A phase space of a system (6.12) is the collection of all trajectories of its
solutions corresponding to all initial conditions. That is, if x is a solution of (6.12) with a given
initial condition, then the trajectory

{(x1(t), x2(t), ..., xn(t)) ∈ Rn : t ∈ R} (6.18)

is a element of the phase space26. For a two-dimensional case the phase space becomes the phase
plane. We will also denote x = x1 and y = x2.

The nomenclature is taken from thermodynamics where the phase space consists
of all trajectories of all possible states of a system. An example is presented on Fig.
24 where arrows indicate the direction of the solution when t increases. This method
has a virtue of being completely geometrical where many quantitative features of
the solution are evident. For example, the figure shows circles in the centre which
correspond to periodic solutions. This could be very difficult to prove otherwise. Note
also that using phase plane analysis does not require solving the system (which can
very rarely be accomplished).

In two dimensions the situation is a little bit easier. Even without solving the
nonlinear system {

x ′ = F(x, y),

y ′ = G(x, y),
(6.19)

we can write an ODE describing its trajectories

dy

dx
=

dy
dt
dx
dt

=
G(x, y)

F(x, y)
. (6.20)

Solving it for different initial conditions yields the complete phase plane.

6.2 Linear systems with constant coefficients
Here, we will focus on a complete analysis of homogeneous linear systems with con-
stant coefficients which can be written as

x ′ = Ax, (6.21)

where A is a 2 × 2 constant matrix. The nonhomogeneous systems can be dealt
with essentially the same techniques as single second order equations (see Problems).
Similarly to them, we look for exponential solutions

x = ξeλt, (6.22)
26It is a parameterically given curve in the x1 − x2 − ...− xn plane.
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Figure 24: An exemplary phase plane.
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where ξ and λ are to be found. When we plug the above ansatz into (6.21) we obtain

Aξ = λξ, (6.23)

which is an eigenvalue problem for the matrix A. Therefore, ξ is an eigenvector with
corresponding eigenvalue λ. Whence, we are left in considering various cases.

• Two real and distinct eigenvalues. In that case the general solution is

x(t) = C1ξ(1)eλ1t + C2ξ
(2)eλ2t, (6.24)

where ξ1,2 are eigenvectors of Awith corresponding eigenvalues λ1,2.

Example. For a system

x ′ =
(
1 1

4 1

)
x = Ax, (6.25)

we have

(A− λI) = 0 ⇐⇒ 0 = det
(
1− λ 1

4 1− λ

)
= λ2 − 2λ− 3. (6.26)

Therefore, λ1 = 3 and λ2 = −1. The first eigenvector is calculated as follows

0 = (A− 3I)

(
ξ1
ξ2

)
=

(
−2 1

4 −2

)(
ξ1
ξ2

)→ ξ(1) =

(
1

2

)
. (6.27)

Similarly, the second one is

ξ(2) =

(
1

−2

)
. (6.28)

The general solution is then

x(t) = C1
(
1

2

)
e3t + C2

(
1

−2

)
e−t. (6.29)

The phase plane can we drawn remembering that we have to include all para-
metrically given curves, that is, for each constant C1,2 we draw

x(t) = C1e
3t + C2e

−t, y(t) = 2C1e
3t − 2C2e

−t. (6.30)

This can be done either with the help of elementary calculus techniques or with
the aid of a computer. Moreover, note that we can distinguish two special curves:
one for C1 = 0 and the other for C2 = 0{

x(t) = C2e
−t,

y(t) = −2C2e
−t,

{
x(t) = C1e

3t,

y(t) = 2C1e
3t,

(6.31)

or
y = −2x, or y = 2x. (6.32)
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Figure 25: A phase portrait of the solution (6.30). The separatrices are drawn in bold.
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Note that these lines are generated by eigenvectors and are called separatrices or
invariant manifolds. The full depiction of the phase plane is presented on Fig.
25. Note that trajectories approach the origin but then are suddenly repelled to
infinity.

Two distinct real eigenvalues
In general, for the case of two distinct real eigenvalues we can have three cases.
Depending on the sign of eigenvalues λ1,2. The typical phase portraits are depicted
on Fig. 26.
1. λ1, λ2 < 0. The solutions will approach the origin when t→∞. The origin is

then called the stable node.
2. λ1λ2 < 0. The solutions approach and then are repelled from the origin as
t→ ±∞. The origin is then called the saddle point.

3. λ1, λ2 > 0. The solutions will approach the origin when t→ −∞. The origin
is then called the unstable node.

• Two conjugate complex eigenvalues. We have then λ1,2 = µ± iω and ξ(1,2) = a± ib.
Similarly as in the case of second order equations, it leads to complex solutions

x(1,2)(t) = ξ(1,2)e(µ±iω)t = eµt (a± ib) (cosωt± i sinωt)
= eµt [a cosωt− b sinωt± i (a sinωt+ b cosωt)] .

(6.33)

In order to obtain real functions we may take a linear combination of the above.
For example, we can extract real and imaginary parts to obtain oscillatory solu-
tions

x(3) = 1

2

(
x(1) + x(2)

)
= eµt (a cosωt− b sinωt) ,

x(4) = 1

2i

(
x(1) − x(2)

)
= eµt (a sinωt+ b cosωt) .

(6.34)

The general solution is therefore

x(t) = C1x(3) + C2x(4). (6.35)

Note that the real part of the eigenvalues tells us about the stability (decaying
amplitude) while the imaginary part corresponds to the frequency of oscillations.
Example. For a system

x ′ =
(
− 1
2

1

−1 − 1
2

)
x, (6.36)

the eigenvalues are λ1,2 = −1
2
± i, and eigenvectors

ξ(1,2) =

(
1

±i

)
=

(
1

0

)
± i
(
0

1

)
(6.37)
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Figure 26: Different types of phase portraits for two distinct real eigenvalues. Top:
stable node (λ1, λ2 < 0), and unstable node (λ1, λ2 > 0). Bottom: saddle point
(λ1 < 0 < λ2).
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Fundamental solutions are then

x(1)(t) = e−
1
2
t

((
1

0

)
cos t−

(
0

1

)
sin t

)
,

x(2)(t) = e−
1
2
t

((
1

0

)
sin t+

(
0

1

)
cos t

)
.

(6.38)

The trajectory corresponding to x(1)(t) has coordinates{
x1(t) = e

− 1
2
t cos t,

x2(t) = −e−
1
2
t sin t.

(6.39)

We thus have x21+x22 = e−t which is an equation for a spiral - the radius decreases
exponentially with time. The direction of rotation can be found from the system
itself since the derivative x ′ is the tangent vector. For example, if we take (x1, x2) =
(1, 0) we obtain

x ′(1, 0) =
(
− 1
2

1

−1 − 1
2

)(
1

0

)
=

(
− 1
2

−1

)
, (6.40)

therefore, the tangent vector to a trajectory at (1, 0) points into down-left direc-
tion. The phase portrait is presented on Fig. 27. For the complex eigenvalues
case there always will be some oscillations.

Two complex eigenvalues
In general, for the case of two distinct real eigenvalues we can have three cases.
Depending on the sign of µ = Re λ1,2. The typical phase portraits are depicted on
Fig. 28.
1. µ < 0. The solutions will approach the origin when t → ∞. The origin is

then called the stable spiral (focus).
2. µ = 0. The solutions will not approach nor be repelled from the origin when
t→ ±∞. The origin is then called the centre.

3. µ > 0. The solutions will approach the origin when t → −∞. The origin is
then called the unstable spiral (focus).

• Repeated real eigenvalues and one eigenvector. Immediatelywehave one fundamental
solution

x(1)(t) = ξeλt. (6.41)
The other is sought in the form

x(2)(t) = ξteλt + ηeλt, (6.42)

where we added t (similarly as in the case of second order equations) and the
term with η. The latter is crucial. We have

teλtAξ+ eλtAη = Ax(2) = dx(2)

dt
= ξeλt + λξteλt + ληeλt. (6.43)

95



-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Figure 27: The phase portrait for the example with two complex eigenvalues.
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Figure 28: Phase portraits corresponding to commplex eigenvalues. On top: stable
spiral (focus) (µ < 0) and unstable spiral (focus) (µ > 0). Bottom: centre (µ = 0).
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Since ξ is the eigenvector of Awe finally obtain

(A− λI)η = ξ, (6.44)

thereforeη is the generalized eigenvector corresponding to ξ. The phase portrait
is called the improper node.

Example. The system

x ′ =
(
1 9

−1 −5

)
x, (6.45)

has only one eigenvalue λ = −2with eigenvector

ξ =

(
3

−1

)
(6.46)

The generalized eigenvector satisfies (A+ 2I)η = ξ, that is[
3 9

−1 −3

] [
η1
η2

]
=

[
3

−1

]
. (6.47)

The solution is
η =

(
1

0

)
+ k

(
3

−1

)
, (6.48)

for an arbitrary constant k ∈ R. We neglect the multiple of ξ and finally

x(t) =
(
(C1 + C2t)

[
3

−1

]
+ C2

[
1

0

])
e−2t. (6.49)

The phase portrait is presented on Fig. 29. We can see that it resembles a node,
however, is more "flattened" due to one characteristic direction.

• Repeated real eigenvalues and two independent eigenvector In this casewe immediately
have

x =
(
C1ξ

(1) + C2ξ
(2)
)
eλt. (6.50)

The phase portrait can be obtained explicitly by extracting the independent vari-
able x1 =

(
C1ξ

(1)
1 + C2ξ

(2)
1

)
eλt

x2 =
(
C1ξ

(1)
2 + C2ξ

(2)
2

)
eλt

→ x2 =
C1ξ

(1)
1 + C2ξ

(2)
1

C1ξ
(1)
2 + C2ξ

(2)
2

x1. (6.51)

It is a set of rays comming out of the origin. It is called the star (see Fig. 30).

We can thus see that in order to solve a linear system we have to find eigenvalues
and eigenvectors of the matrix A. Sometimes only the determination of the type of
the phase portrait is needed without finding explicit solutions. This can be done very
quickly with the help of the following simple observation.
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Figure 29: A phase portrait for (6.49).
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Figure 30: A stable star phase portrait.
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Let the matrix of the system has a form

A =

(
a b

c d

)
. (6.52)

Then, the characteristic polynomial has the form

λ2 − τλ+ ∆ = 0, (6.53)

where τ = a+d is the trace ofAwhile∆ = ad−bc is its determinant. The eigenvalues
are then

λ1,2 =
1

2

(
τ±

√
τ2 − 4∆

)
. (6.54)

From Viéte’s formulas we have

τ = λ1 + λ2, ∆ = λ1λ2. (6.55)

from which it is straightforward to classify the signs of eigenvalues. Therefore, in
order to determine the type of the phase portrait we have only to compute τ and ∆,
observe their sign, and compute τ2− 4δ. This will allow us to find a point (τ, ∆) on the
τ − ∆ plane corresponding to a particular phase portrait. For example, when ∆ < 0
we always have a saddle since then eigenvalues have opposite signs. Similarly, when
∆ > 0with τ2−4∆ < 0 the phase portrait is an unstable spiral. The overall classification
is depicted on Fig. 31.

6.3 Systems of two nonlinear autonomous equations
The most interesting applications of systems of differential equations can be found
in nonlinear ones. The general situation is, of course, very difficult since even for
single equations we cannot obtain all information of their solutions. However, in what
follows we will learn how the phase plane analysis is useful in finding information
about quantitative behaviour of their solutions.

6.3.1 Critical points and stability

The crucial notion is the stationary or critical point which we have already met in the
case of single equations. In what followswewill analyse only autonomous systems, that
is, these where there is no explicit dependence on t (compare Definition 5). They are
also called dynamical systems.

Definition 21. A critical (stationary) point of the system{
x ′ = F(x, y),

y ′ = G(x, y),
(6.56)

is a point xc = (xc, yc), for which F(xc) = G(xc) = 0.
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Figure 31: Classification of the phase portraits according to the trace τ and determinant
∆ of the matrix A.

Critical points are fundamental since at these, the system does not evolve - deriva-
tives vanish. Nondenegerate, i.e. detA 6= 0, linear systems have a unique critical point
at the origin. We expect that a given nonlinear system possesses several stationary
points that attract or repel nearby trajectories. In models of real phenomena we rarely
can find out about initial conditions (unless we are conducting an experiment in lab-
oratory). What matters the most is the long-time behaviour of the system and what
happens with the trajectories.

Definition 22. Let φ be a solution of the autonomous system (6.56) with a critical point xc.
Then xc is

• stable if for t > 0 we have

∀ε>0 ∃δ>0 ‖φ(0) − xc‖ < δ =⇒ ‖φ(t) − xc‖ < ε. (6.57)

• asymptotically stable if it is stable and

∃0<δ0<δ ‖φ(0) − xc‖ < δ0 =⇒ lim
t→∞φ(t) = xc. (6.58)

• unstable if it is not stable.

The definitions of stability can be best understood graphically. On Fig. 32 we see
two situations that depict differences between stability and asymptotic stability. The
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Figure 32: Top: stable critical point - trajectories starting from δ-ball always stay in
ε-ball. Bottom: asymptotic stability - trajectories starting from δ0-oball do not leave
ε-ball and asymptotically approach xc.
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Figure 33: An intuitive interpretation of stable and unstable critical point.

most important part is the fact that a point is stable when nearby trajectories are always
confined in an arbitrary neighbourhood. In asymptotic stability the trajectories has
also approach the critical point for large times.

An intuitive definition of the stability can also be given in physical terms. On Fig.
33 we can see a ball that has been placed on the top of a mountain. It is a stationary
point since it is at rest. However, an arbitrarily small perturbation will force it to fall
in either way oscillating around the bottom of the valley. If the friction is present the
bottom will be asymptotically stable and, otherwise, it will be a stable critical point
of the system. Note that sufficiently large perturbations can force the ball outside our
scenery. Hence, our notion of stability is only local.

Example. (Pendulum) The pendulum equation has the form

d2θ

dt2
+ 2β

dθ

dt
+ω2

0 sin θ = 0. (6.59)

Let x = θ and y = θ ′. Then, 
dx

dt
= y,

dy

dt
= −ω2

0 sin x− 2βy.
(6.60)

Critical points satisfy y = 0 and 2y = ω2
0 sin x. That means

x = ±nπ, y = 0, n ∈ N. (6.61)

These are the points in which the pendulum is either on the top (n - odd) or at the
bottom (n - even). Intuitively we know that the former are unstable while the latter
stable. However, to show that rigorously is a completely different matter...

Checking stability for linear systems is easy - it straightforwardly follows from the
definition and availability of the exact solution. Note that we have already indicated
the stability of various phase portraits in their name.

Theorem 12. Let x ′ = Ax be a system of two linear equations with constant coefficients. Let
the matrix A be nonsingular with eigenvalues λ1,2. Then, there exists a unique critical point
x = 0, which is
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• asymptotically stable when Re {λ1,2} < 0 (stable nodes and spirals),

• stable when Re {λ1,2} = 0 (centre),

• unstable when Re {λ1} > 0 or <{λ2} > 0 (unstable nodes and spirals).

6.3.2 Linearisation

Linear systems are very important in finding the behaviour of nonlinear equations
near their stationary points. Assume is the critical point of (6.56). When we use Taylor
series to expand F and Gwe obtain

F(x, y) = F(xc, yc) +
∂F

∂x
(xc, yc)(x− xc) +

∂F

∂y
(xc, yc)(y− yc) + R1,

G(x, y) = G(xc, yc) +
∂G

∂x
(xc, yc)(x− xc) +

∂G

∂y
(xc, yc)(y− yc) + R2,

(6.62)

where R = (R1, R2) is the remainder. Now, since F(xc, yc) = G(xc, yc) = 0we can write
(x− x0)

′ =
∂F

∂x
(xc, yc)(x− xc) +

∂F

∂y
(xc, yc)(y− yc) + R1,

(y− y0)
′ =

∂G

∂x
(xc, yc)(x− xc) +

∂G

∂y
(xc, yc)(y− yc) + R2.

(6.63)

Now, if we denote u = x− xc then we obtain

u ′ = Au+ R, (6.64)

where

A =


∂F

∂x
(xc, yc)

∂F

∂y
(xc, yc)

∂G

∂x
(xc, yc)

∂G

∂y
(xc, yc)

 (6.65)

is the Jacobi matrix of (F,G). Since ‖R‖ = O(‖u‖2) when ‖u‖ → 0 (that is x → xc) we
expect that neglecting the remainder will not alter the behaviour of the system near
the critical point. This is indeed the case and the full statement is one of the most
important results in theory of dynamical systems.

Theorem 13 (Hartman-Grobman). Let the dynamical system x ′ = f(x) has a linearisation
u ′ = Au near the critical point xc. Assume that all of the eignevlaues of Jacobi matrix A
have nonzero real part. Then, there exists a neighbourhood of xc in which the solutions of the
nonlinear equations are topologically equivalent to the solutions of corresponding linearisation.

In plain words, the Hartman-Grobman Theorem says that near the critical points,
the phase portraits of a nonlinear system and its linearisation are the same up to a
continuous mapping with a continuous inverse. The main assumption is the nonvan-
ishing real part of all of the eigenvalues. When this is not the case, a more interesting
situations can happen. We can now summarize all we have found concerning the
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analysis of dynamical systems.

Nonlinear systems
In order to analyse the behaviour of solutions of a dynamical system we usually
proceed as follows.

1. Find all critical points of the system by solving F(xc, yc) = G(xc, yc) = 0.

2. Calculate the Jacobi matrix (6.65).

3. Analyse the type and stability of each critical point by studying the Jacobi
matrix.

4. Sketch the phase portrait.

Example. (Competition) Consider two populations that compete for common resources
(ex. sheep and rabbits eating grass). If the growth of both populations is logistic we
have 

dx

dt
= r1x

(
1−

x

K1

)
− a1xy,

dy

dt
= r2x

(
1−

x

K2

)
− a2xy.

(6.66)

Note that in each case the interaction term is negative since one specie steals food from
the other. Although it is possible to analyse the general case we will focus on a specific
example.

dx

dt
= x(1− x− y) = F(x, y),

dy

dt
= y

(
3

4
− y−

1

2
x

)
= G(x, y),

A(x, y) =

[
1− 2x− y −x

−
1

2
y

3

4
− 2y−

1

2
x

]
. (6.67)

The critical points are found from the systemx(1− x− y) = 0,y

(
3

4
− y−

1

2
x

)
= 0,

(6.68)

therefore we have four solutions: (0, 0) (both populations die), (0, 3/4) (only the first
population dies), (1, 0) (only the second population dies), and (1/2, 1/2) (an equilib-
rium).

• For the point (0, 0) we have

A(0, 0) =

[
1 0

0 3
4

]
, (6.69)

which has eigenvalues λ1 = 1, λ2 = 3
4
and vectors ξ(1) = (1, 0) and ξ(2) = (0, 1). It

is an unstable node.
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• For the point (1, 0) we have

A(1, 0) =

[
−1 −1
0 1

4

]
, (6.70)

whence, λ1 = −1, λ2 = 1
4
, and ξ(1) = (1, 0) with ξ(2) = (4,−5). It is a saddle point.

• For the point (0, 3/4) we have

A(0, 3/4) =

[
1
4

0

− 3
8

− 3
4

]
, (6.71)

that is, λ1 = 1
4
, λ2 = −3

4
and ξ(1) = (8,−3) with ξ(2) = (0, 1). It is a saddle point.

• For the point (1/2, 1/2) we have

A(1/2, 1/2) =

[
− 1
2

− 1
2

− 1
4

− 1
2

]
, (6.72)

that is, λ1 = −2+
√
2

4
< 0, λ2 = −2+

√
2

4
< 0 and ξ(1) = (

√
2,−1)with ξ(2) = (

√
2, 1). It

is a stable node.

Therefore, we see that only the point with both populations living in equilibrium is
stable which is a good news. The phase portrait is depicted on Fig. 34. All trajectories,
regardless their initial conditions, will approach this stable point.

Example. (Lotka-Volterra predator-prey model) We go back to one of our initial examples
concerning predator-prey model

dx

dt
= αx− βxy,

dy

dt
= −γy+ δxy.

(6.73)

Critical points are (0, 0) and (γ/δ, α/β). The Jacobi matrix can be written as

A(x, y) =

[
α− βy −βx
δy −γ+ δx

]
. (6.74)

We see that
A(0, 0) =

(
α 0

0 −γ

)
(6.75)

and
A(γ/δ, α/β) =

(
0 −βγ

δ
αδ
β

0

)
. (6.76)

Therefore, the point (0, 0) is a saddle. Similarly we can show that the eigenvalues of A
at the other critical point (γ/δ, α/β) are±i√αγ. They are purely imaginary. We cannot,
then, use Hartman-Grobman theorem to make any conclusions. However, we expect
that the system oscillates near that point.
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Figure 34: The phase portrait for competitive species model.
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Figure 35: The phase portrait for the Lotka-Volterra system.

To prove this claim we write the ODE for trajectories (6.20)

dy

dx
=

−γy+ δxy

αx− βxy
→ ∫ α− βy

y
dy =

∫
−γ+ δx

x
dx. (6.77)

After integrationwe obtainC = α lny−βy+γ ln x−δx = f(x, y)which is an conserved
quantity, that is constant on each trajectory. Therefore, each trajectory is a level curve
of a function f = f(x, y). Moreover, it is easy to show that f has a global maximum
at (γ/δ, α/β). Therefore, each level curve is closed yielding a periodic solution of the
system. The phase portrait is presented on Fig. 35.

We can immediately draw an important conclusion. Since solutions are oscillatory,
the populations will periodically change their numbers. This can be observed in na-
ture since when predation is high it can quickly decrease the number of prey. As a
consequence, predators die out due to a lack of sufficient amount of food. Then, the
chance of survival of remaining prey increases leading to proliferation of this popula-
tion. The cycle repeats from this point because predators can acquire more food and
thus rebuild their numbers. A real-world dta concerning Lynx (predator) and Hare
(prey) is depicted on Fig. 36. Oscillations are evident.
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Figure 36: A real data concerning populations of Lynx and Hare from Hudson Bay
Company.
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